/* * Direct MTD block device access * * (C) 2000-2003 Nicolas Pitre <nico@fluxnic.net> * (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> */ #include <linux/fs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/vmalloc.h> #include <linux/mtd/mtd.h> #include <linux/mtd/blktrans.h> #include <linux/mutex.h> static struct mtdblk_dev { struct mtd_info *mtd; int count; struct mutex cache_mutex; unsigned char *cache_data; unsigned long cache_offset; unsigned int cache_size; enum { STATE_EMPTY, STATE_CLEAN, STATE_DIRTY } cache_state; } *mtdblks[MAX_MTD_DEVICES]; static struct mutex mtdblks_lock; /* * Cache stuff... * * Since typical flash erasable sectors are much larger than what Linux's * buffer cache can handle, we must implement read-modify-write on flash * sectors for each block write requests. To avoid over-erasing flash sectors * and to speed things up, we locally cache a whole flash sector while it is * being written to until a different sector is required. */ static void erase_callback(struct erase_info *done) { wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; wake_up(wait_q); } static int erase_write (struct mtd_info *mtd, unsigned long pos, int len, const char *buf) { struct erase_info erase; DECLARE_WAITQUEUE(wait, current); wait_queue_head_t wait_q; size_t retlen; int ret; /* * First, let's erase the flash block. */ init_waitqueue_head(&wait_q); erase.mtd = mtd; erase.callback = erase_callback; erase.addr = pos; erase.len = len; erase.priv = (u_long)&wait_q; set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&wait_q, &wait); ret = mtd->erase(mtd, &erase); if (ret) { set_current_state(TASK_RUNNING); remove_wait_queue(&wait_q, &wait); printk (KERN_WARNING "mtdblock: erase of region [0x%lx, 0x%x] " "on \"%s\" failed\n", pos, len, mtd->name); return ret; } schedule(); /* Wait for erase to finish. */ remove_wait_queue(&wait_q, &wait); /* * Next, write the data to flash. */ ret = mtd->write(mtd, pos, len, &retlen, buf); if (ret) return ret; if (retlen != len) return -EIO; return 0; } static int write_cached_data (struct mtdblk_dev *mtdblk) { struct mtd_info *mtd = mtdblk->mtd; int ret; if (mtdblk->cache_state != STATE_DIRTY) return 0; DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: writing cached data for \"%s\" " "at 0x%lx, size 0x%x\n", mtd->name, mtdblk->cache_offset, mtdblk->cache_size); ret = erase_write (mtd, mtdblk->cache_offset, mtdblk->cache_size, mtdblk->cache_data); if (ret) return ret; /* * Here we could argubly set the cache state to STATE_CLEAN. * However this could lead to inconsistency since we will not * be notified if this content is altered on the flash by other * means. Let's declare it empty and leave buffering tasks to * the buffer cache instead. */ mtdblk->cache_state = STATE_EMPTY; return 0; } static int do_cached_write (struct mtdblk_dev *mtdblk, unsigned long pos, int len, const char *buf) { struct mtd_info *mtd = mtdblk->mtd; unsigned int sect_size = mtdblk->cache_size; size_t retlen; int ret; DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: write on \"%s\" at 0x%lx, size 0x%x\n", mtd->name, pos, len); if (!sect_size) return mtd->write(mtd, pos, len, &retlen, buf); while (len > 0) { unsigned long sect_start = (pos/sect_size)*sect_size; unsigned int offset = pos - sect_start; unsigned int size = sect_size - offset; if( size > len ) size = len; if (size == sect_size) { /* * We are covering a whole sector. Thus there is no * need to bother with the cache while it may still be * useful for other partial writes. */ ret = erase_write (mtd, pos, size, buf); if (ret) return ret; } else { /* Partial sector: need to use the cache */ if (mtdblk->cache_state == STATE_DIRTY && mtdblk->cache_offset != sect_start) { ret = write_cached_data(mtdblk); if (ret) return ret; } if (mtdblk->cache_state == STATE_EMPTY || mtdblk->cache_offset != sect_start) { /* fill the cache with the current sector */ mtdblk->cache_state = STATE_EMPTY; ret = mtd->read(mtd, sect_start, sect_size, &retlen, mtdblk->cache_data); if (ret) return ret; if (retlen != sect_size) return -EIO; mtdblk->cache_offset = sect_start; mtdblk->cache_size = sect_size; mtdblk->cache_state = STATE_CLEAN; } /* write data to our local cache */ memcpy (mtdblk->cache_data + offset, buf, size); mtdblk->cache_state = STATE_DIRTY; } buf += size; pos += size; len -= size; } return 0; } static int do_cached_read (struct mtdblk_dev *mtdblk, unsigned long pos, int len, char *buf) { struct mtd_info *mtd = mtdblk->mtd; unsigned int sect_size = mtdblk->cache_size; size_t retlen; int ret; DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: read on \"%s\" at 0x%lx, size 0x%x\n", mtd->name, pos, len); if (!sect_size) return mtd->read(mtd, pos, len, &retlen, buf); while (len > 0) { unsigned long sect_start = (pos/sect_size)*sect_size; unsigned int offset = pos - sect_start; unsigned int size = sect_size - offset; if (size > len) size = len; /* * Check if the requested data is already cached * Read the requested amount of data from our internal cache if it * contains what we want, otherwise we read the data directly * from flash. */ if (mtdblk->cache_state != STATE_EMPTY && mtdblk->cache_offset == sect_start) { memcpy (buf, mtdblk->cache_data + offset, size); } else { ret = mtd->read(mtd, pos, size, &retlen, buf); if (ret) return ret; if (retlen != size) return -EIO; } buf += size; pos += size; len -= size; } return 0; } static int mtdblock_readsect(struct mtd_blktrans_dev *dev, unsigned long block, char *buf) { struct mtdblk_dev *mtdblk = mtdblks[dev->devnum]; return do_cached_read(mtdblk, block<<9, 512, buf); } static int mtdblock_writesect(struct mtd_blktrans_dev *dev, unsigned long block, char *buf) { struct mtdblk_dev *mtdblk = mtdblks[dev->devnum]; if (unlikely(!mtdblk->cache_data && mtdblk->cache_size)) { mtdblk->cache_data = vmalloc(mtdblk->mtd->erasesize); if (!mtdblk->cache_data) return -EINTR; /* -EINTR is not really correct, but it is the best match * documented in man 2 write for all cases. We could also * return -EAGAIN sometimes, but why bother? */ } return do_cached_write(mtdblk, block<<9, 512, buf); } static int mtdblock_open(struct mtd_blktrans_dev *mbd) { struct mtdblk_dev *mtdblk; struct mtd_info *mtd = mbd->mtd; int dev = mbd->devnum; DEBUG(MTD_DEBUG_LEVEL1,"mtdblock_open\n"); mutex_lock(&mtdblks_lock); if (mtdblks[dev]) { mtdblks[dev]->count++; mutex_unlock(&mtdblks_lock); return 0; } /* OK, it's not open. Create cache info for it */ mtdblk = kzalloc(sizeof(struct mtdblk_dev), GFP_KERNEL); if (!mtdblk) { mutex_unlock(&mtdblks_lock); return -ENOMEM; } mtdblk->count = 1; mtdblk->mtd = mtd; mutex_init(&mtdblk->cache_mutex); mtdblk->cache_state = STATE_EMPTY; if ( !(mtdblk->mtd->flags & MTD_NO_ERASE) && mtdblk->mtd->erasesize) { mtdblk->cache_size = mtdblk->mtd->erasesize; mtdblk->cache_data = NULL; } mtdblks[dev] = mtdblk; mutex_unlock(&mtdblks_lock); DEBUG(MTD_DEBUG_LEVEL1, "ok\n"); return 0; } static int mtdblock_release(struct mtd_blktrans_dev *mbd) { int dev = mbd->devnum; struct mtdblk_dev *mtdblk = mtdblks[dev]; DEBUG(MTD_DEBUG_LEVEL1, "mtdblock_release\n"); mutex_lock(&mtdblks_lock); mutex_lock(&mtdblk->cache_mutex); write_cached_data(mtdblk); mutex_unlock(&mtdblk->cache_mutex); if (!--mtdblk->count) { /* It was the last usage. Free the device */ mtdblks[dev] = NULL; if (mtdblk->mtd->sync) mtdblk->mtd->sync(mtdblk->mtd); vfree(mtdblk->cache_data); kfree(mtdblk); } mutex_unlock(&mtdblks_lock); DEBUG(MTD_DEBUG_LEVEL1, "ok\n"); return 0; } static int mtdblock_flush(struct mtd_blktrans_dev *dev) { struct mtdblk_dev *mtdblk = mtdblks[dev->devnum]; mutex_lock(&mtdblk->cache_mutex); write_cached_data(mtdblk); mutex_unlock(&mtdblk->cache_mutex); if (mtdblk->mtd->sync) mtdblk->mtd->sync(mtdblk->mtd); return 0; } static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) { struct mtd_blktrans_dev *dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return; dev->mtd = mtd; dev->devnum = mtd->index; dev->size = mtd->size >> 9; dev->tr = tr; if (!(mtd->flags & MTD_WRITEABLE)) dev->readonly = 1; add_mtd_blktrans_dev(dev); } static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) { del_mtd_blktrans_dev(dev); kfree(dev); } static struct mtd_blktrans_ops mtdblock_tr = { .name = "mtdblock", .major = 31, .part_bits = 0, .blksize = 512, .open = mtdblock_open, .flush = mtdblock_flush, .release = mtdblock_release, .readsect = mtdblock_readsect, .writesect = mtdblock_writesect, .add_mtd = mtdblock_add_mtd, .remove_dev = mtdblock_remove_dev, .owner = THIS_MODULE, }; static int __init init_mtdblock(void) { mutex_init(&mtdblks_lock); return register_mtd_blktrans(&mtdblock_tr); } static void __exit cleanup_mtdblock(void) { deregister_mtd_blktrans(&mtdblock_tr); } module_init(init_mtdblock); module_exit(cleanup_mtdblock); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Nicolas Pitre <nico@fluxnic.net> et al."); MODULE_DESCRIPTION("Caching read/erase/writeback block device emulation access to MTD devices");