/* * drivers/mtd/ndfc.c * * Overview: * Platform independend driver for NDFC (NanD Flash Controller) * integrated into EP440 cores * * Author: Thomas Gleixner * * Copyright 2006 IBM * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/module.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> #include <linux/mtd/ndfc.h> #include <linux/mtd/mtd.h> #include <linux/platform_device.h> #include <asm/io.h> #ifdef CONFIG_40x #include <asm/ibm405.h> #else #include <asm/ibm44x.h> #endif struct ndfc_nand_mtd { struct mtd_info mtd; struct nand_chip chip; struct platform_nand_chip *pl_chip; }; static struct ndfc_nand_mtd ndfc_mtd[NDFC_MAX_BANKS]; struct ndfc_controller { void __iomem *ndfcbase; struct nand_hw_control ndfc_control; atomic_t childs_active; }; static struct ndfc_controller ndfc_ctrl; static void ndfc_select_chip(struct mtd_info *mtd, int chip) { uint32_t ccr; struct ndfc_controller *ndfc = &ndfc_ctrl; struct nand_chip *nandchip = mtd->priv; struct ndfc_nand_mtd *nandmtd = nandchip->priv; struct platform_nand_chip *pchip = nandmtd->pl_chip; ccr = __raw_readl(ndfc->ndfcbase + NDFC_CCR); if (chip >= 0) { ccr &= ~NDFC_CCR_BS_MASK; ccr |= NDFC_CCR_BS(chip + pchip->chip_offset); } else ccr |= NDFC_CCR_RESET_CE; __raw_writel(ccr, ndfc->ndfcbase + NDFC_CCR); } static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct ndfc_controller *ndfc = &ndfc_ctrl; if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD); else writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE); } static int ndfc_ready(struct mtd_info *mtd) { struct ndfc_controller *ndfc = &ndfc_ctrl; return __raw_readl(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; } static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode) { uint32_t ccr; struct ndfc_controller *ndfc = &ndfc_ctrl; ccr = __raw_readl(ndfc->ndfcbase + NDFC_CCR); ccr |= NDFC_CCR_RESET_ECC; __raw_writel(ccr, ndfc->ndfcbase + NDFC_CCR); wmb(); } static int ndfc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct ndfc_controller *ndfc = &ndfc_ctrl; uint32_t ecc; uint8_t *p = (uint8_t *)&ecc; wmb(); ecc = __raw_readl(ndfc->ndfcbase + NDFC_ECC); ecc_code[0] = p[1]; ecc_code[1] = p[2]; ecc_code[2] = p[3]; return 0; } /* * Speedups for buffer read/write/verify * * NDFC allows 32bit read/write of data. So we can speed up the buffer * functions. No further checking, as nand_base will always read/write * page aligned. */ static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct ndfc_controller *ndfc = &ndfc_ctrl; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) *p++ = __raw_readl(ndfc->ndfcbase + NDFC_DATA); } static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct ndfc_controller *ndfc = &ndfc_ctrl; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) __raw_writel(*p++, ndfc->ndfcbase + NDFC_DATA); } static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct ndfc_controller *ndfc = &ndfc_ctrl; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) if (*p++ != __raw_readl(ndfc->ndfcbase + NDFC_DATA)) return -EFAULT; return 0; } /* * Initialize chip structure */ static void ndfc_chip_init(struct ndfc_nand_mtd *mtd) { struct ndfc_controller *ndfc = &ndfc_ctrl; struct nand_chip *chip = &mtd->chip; chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA; chip->cmd_ctrl = ndfc_hwcontrol; chip->dev_ready = ndfc_ready; chip->select_chip = ndfc_select_chip; chip->chip_delay = 50; chip->priv = mtd; chip->options = mtd->pl_chip->options; chip->controller = &ndfc->ndfc_control; chip->read_buf = ndfc_read_buf; chip->write_buf = ndfc_write_buf; chip->verify_buf = ndfc_verify_buf; chip->ecc.correct = nand_correct_data; chip->ecc.hwctl = ndfc_enable_hwecc; chip->ecc.calculate = ndfc_calculate_ecc; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = 256; chip->ecc.bytes = 3; chip->ecclayout = chip->ecc.layout = mtd->pl_chip->ecclayout; mtd->mtd.priv = chip; mtd->mtd.owner = THIS_MODULE; } static int ndfc_chip_probe(struct platform_device *pdev) { struct platform_nand_chip *nc = pdev->dev.platform_data; struct ndfc_chip_settings *settings = nc->priv; struct ndfc_controller *ndfc = &ndfc_ctrl; struct ndfc_nand_mtd *nandmtd; if (nc->chip_offset >= NDFC_MAX_BANKS || nc->nr_chips > NDFC_MAX_BANKS) return -EINVAL; /* Set the bank settings */ __raw_writel(settings->bank_settings, ndfc->ndfcbase + NDFC_BCFG0 + (nc->chip_offset << 2)); nandmtd = &ndfc_mtd[pdev->id]; if (nandmtd->pl_chip) return -EBUSY; nandmtd->pl_chip = nc; ndfc_chip_init(nandmtd); /* Scan for chips */ if (nand_scan(&nandmtd->mtd, nc->nr_chips)) { nandmtd->pl_chip = NULL; return -ENODEV; } #ifdef CONFIG_MTD_PARTITIONS printk("Number of partitions %d\n", nc->nr_partitions); if (nc->nr_partitions) { /* Add the full device, so complete dumps can be made */ add_mtd_device(&nandmtd->mtd); add_mtd_partitions(&nandmtd->mtd, nc->partitions, nc->nr_partitions); } else #else add_mtd_device(&nandmtd->mtd); #endif atomic_inc(&ndfc->childs_active); return 0; } static int ndfc_chip_remove(struct platform_device *pdev) { return 0; } static int ndfc_nand_probe(struct platform_device *pdev) { struct platform_nand_ctrl *nc = pdev->dev.platform_data; struct ndfc_controller_settings *settings = nc->priv; struct resource *res = pdev->resource; struct ndfc_controller *ndfc = &ndfc_ctrl; unsigned long long phys = settings->ndfc_erpn | res->start; #ifndef CONFIG_PHYS_64BIT ndfc->ndfcbase = ioremap((phys_addr_t)phys, res->end - res->start + 1); #else ndfc->ndfcbase = ioremap64(phys, res->end - res->start + 1); #endif if (!ndfc->ndfcbase) { printk(KERN_ERR "NDFC: ioremap failed\n"); return -EIO; } __raw_writel(settings->ccr_settings, ndfc->ndfcbase + NDFC_CCR); spin_lock_init(&ndfc->ndfc_control.lock); init_waitqueue_head(&ndfc->ndfc_control.wq); platform_set_drvdata(pdev, ndfc); printk("NDFC NAND Driver initialized. Chip-Rev: 0x%08x\n", __raw_readl(ndfc->ndfcbase + NDFC_REVID)); return 0; } static int ndfc_nand_remove(struct platform_device *pdev) { struct ndfc_controller *ndfc = platform_get_drvdata(pdev); if (atomic_read(&ndfc->childs_active)) return -EBUSY; if (ndfc) { platform_set_drvdata(pdev, NULL); iounmap(ndfc_ctrl.ndfcbase); ndfc_ctrl.ndfcbase = NULL; } return 0; } /* driver device registration */ static struct platform_driver ndfc_chip_driver = { .probe = ndfc_chip_probe, .remove = ndfc_chip_remove, .driver = { .name = "ndfc-chip", .owner = THIS_MODULE, }, }; static struct platform_driver ndfc_nand_driver = { .probe = ndfc_nand_probe, .remove = ndfc_nand_remove, .driver = { .name = "ndfc-nand", .owner = THIS_MODULE, }, }; static int __init ndfc_nand_init(void) { int ret; spin_lock_init(&ndfc_ctrl.ndfc_control.lock); init_waitqueue_head(&ndfc_ctrl.ndfc_control.wq); ret = platform_driver_register(&ndfc_nand_driver); if (!ret) ret = platform_driver_register(&ndfc_chip_driver); return ret; } static void __exit ndfc_nand_exit(void) { platform_driver_unregister(&ndfc_chip_driver); platform_driver_unregister(&ndfc_nand_driver); } module_init(ndfc_nand_init); module_exit(ndfc_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); MODULE_DESCRIPTION("Platform driver for NDFC");