/* * drivers/mtd/nand/rtc_from4.c * * Copyright (C) 2004 Red Hat, Inc. * * Derived from drivers/mtd/nand/spia.c * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Overview: * This is a device driver for the AG-AND flash device found on the * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), * which utilizes the Renesas HN29V1G91T-30 part. * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * MTD structure for Renesas board */ static struct mtd_info *rtc_from4_mtd = NULL; #define RTC_FROM4_MAX_CHIPS 2 /* HS77x9 processor register defines */ #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) /* * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) */ /* Address where flash is mapped */ #define RTC_FROM4_FIO_BASE 0x14000000 /* CLE and ALE are tied to address lines 5 & 4, respectively */ #define RTC_FROM4_CLE (1 << 5) #define RTC_FROM4_ALE (1 << 4) /* address lines A24-A22 used for chip selection */ #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) /* mask address lines A24-A22 used for chip selection */ #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) /* FPGA status register for checking device ready (bit zero) */ #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) #define RTC_FROM4_DEVICE_READY 0x0001 /* FPGA Reed-Solomon ECC Control register */ #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) /* FPGA Reed-Solomon ECC code base */ #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) /* FPGA Reed-Solomon ECC check register */ #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) #define ERR_STAT_ECC_AVAILABLE 0x20 /* Undefine for software ECC */ #define RTC_FROM4_HWECC 1 /* Define as 1 for no virtual erase blocks (in JFFS2) */ #define RTC_FROM4_NO_VIRTBLOCKS 0 /* * Module stuff */ static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); static const struct mtd_partition partition_info[] = { { .name = "Renesas flash partition 1", .offset = 0, .size = MTDPART_SIZ_FULL}, }; #define NUM_PARTITIONS 1 /* * hardware specific flash bbt decriptors * Note: this is to allow debugging by disabling * NAND_BBT_CREATE and/or NAND_BBT_WRITE * */ static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; static struct nand_bbt_descr rtc_from4_bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 40, .len = 4, .veroffs = 44, .maxblocks = 4, .pattern = bbt_pattern }; static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 40, .len = 4, .veroffs = 44, .maxblocks = 4, .pattern = mirror_pattern }; #ifdef RTC_FROM4_HWECC /* the Reed Solomon control structure */ static struct rs_control *rs_decoder; /* * hardware specific Out Of Band information */ static struct nand_ecclayout rtc_from4_nand_oobinfo = { .eccbytes = 32, .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}, .oobfree = {{32, 32}} }; #endif /* * rtc_from4_hwcontrol - hardware specific access to control-lines * @mtd: MTD device structure * @cmd: hardware control command * * Address lines (A5 and A4) are used to control Command and Address Latch * Enable on this board, so set the read/write address appropriately. * * Chip Enable is also controlled by the Chip Select (CS5) and * Address lines (A24-A22), so no action is required here. * */ static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *chip = (mtd->priv); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE); else writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE); } /* * rtc_from4_nand_select_chip - hardware specific chip select * @mtd: MTD device structure * @chip: Chip to select (0 == slot 3, 1 == slot 4) * * The chip select is based on address lines A24-A22. * This driver uses flash slots 3 and 4 (A23-A22). * */ static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); switch (chip) { case 0: /* select slot 3 chip */ this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); break; case 1: /* select slot 4 chip */ this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); break; } } /* * rtc_from4_nand_device_ready - hardware specific ready/busy check * @mtd: MTD device structure * * This board provides the Ready/Busy state in the status register * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. * */ static int rtc_from4_nand_device_ready(struct mtd_info *mtd) { unsigned short status; status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); return (status & RTC_FROM4_DEVICE_READY); } /* * deplete - code to perform device recovery in case there was a power loss * @mtd: MTD device structure * @chip: Chip to select (0 == slot 3, 1 == slot 4) * * If there was a sudden loss of power during an erase operation, a * "device recovery" operation must be performed when power is restored * to ensure correct operation. This routine performs the required steps * for the requested chip. * * See page 86 of the data sheet for details. * */ static void deplete(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; /* wait until device is ready */ while (!this->dev_ready(mtd)) ; this->select_chip(mtd, chip); /* Send the commands for device recovery, phase 1 */ this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); /* Send the commands for device recovery, phase 2 */ this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); } #ifdef RTC_FROM4_HWECC /* * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function * @mtd: MTD device structure * @mode: I/O mode; read or write * * enable hardware ECC for data read or write * */ static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) { volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); unsigned short status; switch (mode) { case NAND_ECC_READ: status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; *rs_ecc_ctl = status; break; case NAND_ECC_READSYN: status = 0x00; *rs_ecc_ctl = status; break; case NAND_ECC_WRITE: status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; *rs_ecc_ctl = status; break; default: BUG(); break; } } /* * rtc_from4_calculate_ecc - hardware specific code to read ECC code * @mtd: MTD device structure * @dat: buffer containing the data to generate ECC codes * @ecc_code ECC codes calculated * * The ECC code is calculated by the FPGA. All we have to do is read the values * from the FPGA registers. * * Note: We read from the inverted registers, since data is inverted before * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code * */ static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); unsigned short value; int i; for (i = 0; i < 8; i++) { value = *rs_eccn; ecc_code[i] = (unsigned char)value; rs_eccn++; } ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ } /* * rtc_from4_correct_data - hardware specific code to correct data using ECC code * @mtd: MTD device structure * @buf: buffer containing the data to generate ECC codes * @ecc1 ECC codes read * @ecc2 ECC codes calculated * * The FPGA tells us fast, if there's an error or not. If no, we go back happy * else we read the ecc results from the fpga and call the rs library to decode * and hopefully correct the error. * */ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) { int i, j, res; unsigned short status; uint16_t par[6], syn[6]; uint8_t ecc[8]; volatile unsigned short *rs_ecc; status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { return 0; } /* Read the syndrom pattern from the FPGA and correct the bitorder */ rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); for (i = 0; i < 8; i++) { ecc[i] = bitrev8(*rs_ecc); rs_ecc++; } /* convert into 6 10bit syndrome fields */ par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)]; par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)]; par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)]; par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)]; par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)]; par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0); /* Convert to computable syndrome */ for (i = 0; i < 6; i++) { syn[i] = par[0]; for (j = 1; j < 6; j++) if (par[j] != rs_decoder->nn) syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; /* Convert to index form */ syn[i] = rs_decoder->index_of[syn[i]]; } /* Let the library code do its magic. */ res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); if (res > 0) { DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); } return res; } /** * rtc_from4_errstat - perform additional error status checks * @mtd: MTD device structure * @this: NAND chip structure * @state: state or the operation * @status: status code returned from read status * @page: startpage inside the chip, must be called with (page & this->pagemask) * * Perform additional error status checks on erase and write failures * to determine if errors are correctable. For this device, correctable * 1-bit errors on erase and write are considered acceptable. * * note: see pages 34..37 of data sheet for details. * */ static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page) { int er_stat = 0; int rtn, retlen; size_t len; uint8_t *buf; int i; this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); if (state == FL_ERASING) { for (i = 0; i < 4; i++) { if (!(status & 1 << (i + 1))) continue; this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1); rtn = this->read_byte(mtd); this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); /* err_ecc_not_avail */ if (!(rtn & ERR_STAT_ECC_AVAILABLE)) er_stat |= 1 << (i + 1); } } else if (state == FL_WRITING) { unsigned long corrected = mtd->ecc_stats.corrected; /* single bank write logic */ this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); rtn = this->read_byte(mtd); this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { /* err_ecc_not_avail */ er_stat |= 1 << 1; goto out; } len = mtd->writesize; buf = kmalloc(len, GFP_KERNEL); if (!buf) { printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n"); er_stat = 1; goto out; } /* recovery read */ rtn = nand_do_read(mtd, page, len, &retlen, buf); /* if read failed or > 1-bit error corrected */ if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) { er_stat |= 1 << 1; kfree(buf); } rtn = status; if (er_stat == 0) { /* if ECC is available */ rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ } return rtn; } #endif /* * Main initialization routine */ static int __init rtc_from4_init(void) { struct nand_chip *this; unsigned short bcr1, bcr2, wcr2; int i; /* Allocate memory for MTD device structure and private data */ rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); if (!rtc_from4_mtd) { printk("Unable to allocate Renesas NAND MTD device structure.\n"); return -ENOMEM; } /* Get pointer to private data */ this = (struct nand_chip *)(&rtc_from4_mtd[1]); /* Initialize structures */ memset(rtc_from4_mtd, 0, sizeof(struct mtd_info)); memset(this, 0, sizeof(struct nand_chip)); /* Link the private data with the MTD structure */ rtc_from4_mtd->priv = this; rtc_from4_mtd->owner = THIS_MODULE; /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ bcr1 = *SH77X9_BCR1 & ~0x0002; bcr1 |= 0x0002; *SH77X9_BCR1 = bcr1; /* set */ bcr2 = *SH77X9_BCR2 & ~0x0c00; bcr2 |= 0x0800; *SH77X9_BCR2 = bcr2; /* set area 5 wait states */ wcr2 = *SH77X9_WCR2 & ~0x1c00; wcr2 |= 0x1c00; *SH77X9_WCR2 = wcr2; /* Set address of NAND IO lines */ this->IO_ADDR_R = rtc_from4_fio_base; this->IO_ADDR_W = rtc_from4_fio_base; /* Set address of hardware control function */ this->cmd_ctrl = rtc_from4_hwcontrol; /* Set address of chip select function */ this->select_chip = rtc_from4_nand_select_chip; /* command delay time (in us) */ this->chip_delay = 100; /* return the status of the Ready/Busy line */ this->dev_ready = rtc_from4_nand_device_ready; #ifdef RTC_FROM4_HWECC printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); this->ecc.mode = NAND_ECC_HW_SYNDROME; this->ecc.size = 512; this->ecc.bytes = 8; /* return the status of extra status and ECC checks */ this->errstat = rtc_from4_errstat; /* set the nand_oobinfo to support FPGA H/W error detection */ this->ecc.layout = &rtc_from4_nand_oobinfo; this->ecc.hwctl = rtc_from4_enable_hwecc; this->ecc.calculate = rtc_from4_calculate_ecc; this->ecc.correct = rtc_from4_correct_data; #else printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); this->ecc.mode = NAND_ECC_SOFT; #endif /* set the bad block tables to support debugging */ this->bbt_td = &rtc_from4_bbt_main_descr; this->bbt_md = &rtc_from4_bbt_mirror_descr; /* Scan to find existence of the device */ if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { kfree(rtc_from4_mtd); return -ENXIO; } /* Perform 'device recovery' for each chip in case there was a power loss. */ for (i = 0; i < this->numchips; i++) { deplete(rtc_from4_mtd, i); } #if RTC_FROM4_NO_VIRTBLOCKS /* use a smaller erase block to minimize wasted space when a block is bad */ /* note: this uses eight times as much RAM as using the default and makes */ /* mounts take four times as long. */ rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; #endif /* Register the partitions */ add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); #ifdef RTC_FROM4_HWECC /* We could create the decoder on demand, if memory is a concern. * This way we have it handy, if an error happens * * Symbolsize is 10 (bits) * Primitve polynomial is x^10+x^3+1 * first consecutive root is 0 * primitve element to generate roots = 1 * generator polinomial degree = 6 */ rs_decoder = init_rs(10, 0x409, 0, 1, 6); if (!rs_decoder) { printk(KERN_ERR "Could not create a RS decoder\n"); nand_release(rtc_from4_mtd); kfree(rtc_from4_mtd); return -ENOMEM; } #endif /* Return happy */ return 0; } module_init(rtc_from4_init); /* * Clean up routine */ static void __exit rtc_from4_cleanup(void) { /* Release resource, unregister partitions */ nand_release(rtc_from4_mtd); /* Free the MTD device structure */ kfree(rtc_from4_mtd); #ifdef RTC_FROM4_HWECC /* Free the reed solomon resources */ if (rs_decoder) { free_rs(rs_decoder); } #endif } module_exit(rtc_from4_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("d.marlin