/* * Copyright (c) International Business Machines Corp., 2006 * Copyright (c) Nokia Corporation, 2007 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Artem Bityutskiy (Битюцкий Артём), * Frank Haverkamp */ /* * This file includes UBI initialization and building of UBI devices. At the * moment UBI devices may only be added while UBI is initialized, but dynamic * device add/remove functionality is planned. Also, at the moment we only * attach UBI devices by scanning, which will become a bottleneck when flashes * reach certain large size. Then one may improve UBI and add other methods. */ #include #include #include #include #include #include #include "ubi.h" /* Maximum length of the 'mtd=' parameter */ #define MTD_PARAM_LEN_MAX 64 /** * struct mtd_dev_param - MTD device parameter description data structure. * @name: MTD device name or number string * @vid_hdr_offs: VID header offset * @data_offs: data offset */ struct mtd_dev_param { char name[MTD_PARAM_LEN_MAX]; int vid_hdr_offs; int data_offs; }; /* Numbers of elements set in the @mtd_dev_param array */ static int mtd_devs = 0; /* MTD devices specification parameters */ static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; /* All UBI devices in system */ struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; /* Root UBI "class" object (corresponds to '//class/ubi/') */ struct class *ubi_class; /* Slab cache for lock-tree entries */ struct kmem_cache *ubi_ltree_slab; /* Slab cache for wear-leveling entries */ struct kmem_cache *ubi_wl_entry_slab; /* "Show" method for files in '//class/ubi/' */ static ssize_t ubi_version_show(struct class *class, char *buf) { return sprintf(buf, "%d\n", UBI_VERSION); } /* UBI version attribute ('//class/ubi/version') */ static struct class_attribute ubi_version = __ATTR(version, S_IRUGO, ubi_version_show, NULL); static ssize_t dev_attribute_show(struct device *dev, struct device_attribute *attr, char *buf); /* UBI device attributes (correspond to files in '//class/ubi/ubiX') */ static struct device_attribute dev_eraseblock_size = __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_avail_eraseblocks = __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_total_eraseblocks = __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_volumes_count = __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_max_ec = __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_reserved_for_bad = __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_bad_peb_count = __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_max_vol_count = __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_min_io_size = __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); static struct device_attribute dev_bgt_enabled = __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); /* "Show" method for files in '//class/ubi/ubiX/' */ static ssize_t dev_attribute_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct ubi_device *ubi; ubi = container_of(dev, struct ubi_device, dev); if (attr == &dev_eraseblock_size) return sprintf(buf, "%d\n", ubi->leb_size); else if (attr == &dev_avail_eraseblocks) return sprintf(buf, "%d\n", ubi->avail_pebs); else if (attr == &dev_total_eraseblocks) return sprintf(buf, "%d\n", ubi->good_peb_count); else if (attr == &dev_volumes_count) return sprintf(buf, "%d\n", ubi->vol_count); else if (attr == &dev_max_ec) return sprintf(buf, "%d\n", ubi->max_ec); else if (attr == &dev_reserved_for_bad) return sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); else if (attr == &dev_bad_peb_count) return sprintf(buf, "%d\n", ubi->bad_peb_count); else if (attr == &dev_max_vol_count) return sprintf(buf, "%d\n", ubi->vtbl_slots); else if (attr == &dev_min_io_size) return sprintf(buf, "%d\n", ubi->min_io_size); else if (attr == &dev_bgt_enabled) return sprintf(buf, "%d\n", ubi->thread_enabled); else BUG(); return 0; } /* Fake "release" method for UBI devices */ static void dev_release(struct device *dev) { } /** * ubi_sysfs_init - initialize sysfs for an UBI device. * @ubi: UBI device description object * * This function returns zero in case of success and a negative error code in * case of failure. */ static int ubi_sysfs_init(struct ubi_device *ubi) { int err; ubi->dev.release = dev_release; ubi->dev.devt = ubi->cdev.dev; ubi->dev.class = ubi_class; sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num); err = device_register(&ubi->dev); if (err) return err; err = device_create_file(&ubi->dev, &dev_eraseblock_size); if (err) return err; err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); if (err) return err; err = device_create_file(&ubi->dev, &dev_total_eraseblocks); if (err) return err; err = device_create_file(&ubi->dev, &dev_volumes_count); if (err) return err; err = device_create_file(&ubi->dev, &dev_max_ec); if (err) return err; err = device_create_file(&ubi->dev, &dev_reserved_for_bad); if (err) return err; err = device_create_file(&ubi->dev, &dev_bad_peb_count); if (err) return err; err = device_create_file(&ubi->dev, &dev_max_vol_count); if (err) return err; err = device_create_file(&ubi->dev, &dev_min_io_size); if (err) return err; err = device_create_file(&ubi->dev, &dev_bgt_enabled); return err; } /** * ubi_sysfs_close - close sysfs for an UBI device. * @ubi: UBI device description object */ static void ubi_sysfs_close(struct ubi_device *ubi) { device_remove_file(&ubi->dev, &dev_bgt_enabled); device_remove_file(&ubi->dev, &dev_min_io_size); device_remove_file(&ubi->dev, &dev_max_vol_count); device_remove_file(&ubi->dev, &dev_bad_peb_count); device_remove_file(&ubi->dev, &dev_reserved_for_bad); device_remove_file(&ubi->dev, &dev_max_ec); device_remove_file(&ubi->dev, &dev_volumes_count); device_remove_file(&ubi->dev, &dev_total_eraseblocks); device_remove_file(&ubi->dev, &dev_avail_eraseblocks); device_remove_file(&ubi->dev, &dev_eraseblock_size); device_unregister(&ubi->dev); } /** * kill_volumes - destroy all volumes. * @ubi: UBI device description object */ static void kill_volumes(struct ubi_device *ubi) { int i; for (i = 0; i < ubi->vtbl_slots; i++) if (ubi->volumes[i]) ubi_free_volume(ubi, ubi->volumes[i]); } /** * uif_init - initialize user interfaces for an UBI device. * @ubi: UBI device description object * * This function returns zero in case of success and a negative error code in * case of failure. */ static int uif_init(struct ubi_device *ubi) { int i, err; dev_t dev; mutex_init(&ubi->volumes_mutex); spin_lock_init(&ubi->volumes_lock); sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); /* * Major numbers for the UBI character devices are allocated * dynamically. Major numbers of volume character devices are * equivalent to ones of the corresponding UBI character device. Minor * numbers of UBI character devices are 0, while minor numbers of * volume character devices start from 1. Thus, we allocate one major * number and ubi->vtbl_slots + 1 minor numbers. */ err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); if (err) { ubi_err("cannot register UBI character devices"); return err; } ubi_assert(MINOR(dev) == 0); cdev_init(&ubi->cdev, &ubi_cdev_operations); dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev)); ubi->cdev.owner = THIS_MODULE; err = cdev_add(&ubi->cdev, dev, 1); if (err) { ubi_err("cannot add character device"); goto out_unreg; } err = ubi_sysfs_init(ubi); if (err) goto out_sysfs; for (i = 0; i < ubi->vtbl_slots; i++) if (ubi->volumes[i]) { err = ubi_add_volume(ubi, ubi->volumes[i]); if (err) { ubi_err("cannot add volume %d", i); goto out_volumes; } } return 0; out_volumes: kill_volumes(ubi); out_sysfs: ubi_sysfs_close(ubi); cdev_del(&ubi->cdev); out_unreg: unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); return err; } /** * uif_close - close user interfaces for an UBI device. * @ubi: UBI device description object */ static void uif_close(struct ubi_device *ubi) { kill_volumes(ubi); ubi_sysfs_close(ubi); cdev_del(&ubi->cdev); unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); } /** * attach_by_scanning - attach an MTD device using scanning method. * @ubi: UBI device descriptor * * This function returns zero in case of success and a negative error code in * case of failure. * * Note, currently this is the only method to attach UBI devices. Hopefully in * the future we'll have more scalable attaching methods and avoid full media * scanning. But even in this case scanning will be needed as a fall-back * attaching method if there are some on-flash table corruptions. */ static int attach_by_scanning(struct ubi_device *ubi) { int err; struct ubi_scan_info *si; si = ubi_scan(ubi); if (IS_ERR(si)) return PTR_ERR(si); ubi->bad_peb_count = si->bad_peb_count; ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; ubi->max_ec = si->max_ec; ubi->mean_ec = si->mean_ec; err = ubi_read_volume_table(ubi, si); if (err) goto out_si; err = ubi_wl_init_scan(ubi, si); if (err) goto out_vtbl; err = ubi_eba_init_scan(ubi, si); if (err) goto out_wl; ubi_scan_destroy_si(si); return 0; out_wl: ubi_wl_close(ubi); out_vtbl: vfree(ubi->vtbl); out_si: ubi_scan_destroy_si(si); return err; } /** * io_init - initialize I/O unit for a given UBI device. * @ubi: UBI device description object * * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are * assumed: * o EC header is always at offset zero - this cannot be changed; * o VID header starts just after the EC header at the closest address * aligned to @io->@hdrs_min_io_size; * o data starts just after the VID header at the closest address aligned to * @io->@min_io_size * * This function returns zero in case of success and a negative error code in * case of failure. */ static int io_init(struct ubi_device *ubi) { if (ubi->mtd->numeraseregions != 0) { /* * Some flashes have several erase regions. Different regions * may have different eraseblock size and other * characteristics. It looks like mostly multi-region flashes * have one "main" region and one or more small regions to * store boot loader code or boot parameters or whatever. I * guess we should just pick the largest region. But this is * not implemented. */ ubi_err("multiple regions, not implemented"); return -EINVAL; } /* * Note, in this implementation we support MTD devices with 0x7FFFFFFF * physical eraseblocks maximum. */ ubi->peb_size = ubi->mtd->erasesize; ubi->peb_count = ubi->mtd->size / ubi->mtd->erasesize; ubi->flash_size = ubi->mtd->size; if (ubi->mtd->block_isbad && ubi->mtd->block_markbad) ubi->bad_allowed = 1; ubi->min_io_size = ubi->mtd->writesize; ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; /* Make sure minimal I/O unit is power of 2 */ if (!is_power_of_2(ubi->min_io_size)) { ubi_err("min. I/O unit (%d) is not power of 2", ubi->min_io_size); return -EINVAL; } ubi_assert(ubi->hdrs_min_io_size > 0); ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); /* Calculate default aligned sizes of EC and VID headers */ ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); dbg_msg("min_io_size %d", ubi->min_io_size); dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size); dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize); dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize); if (ubi->vid_hdr_offset == 0) /* Default offset */ ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = ubi->ec_hdr_alsize; else { ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & ~(ubi->hdrs_min_io_size - 1); ubi->vid_hdr_shift = ubi->vid_hdr_offset - ubi->vid_hdr_aloffset; } /* Similar for the data offset */ if (ubi->leb_start == 0) { ubi->leb_start = ubi->vid_hdr_offset + ubi->vid_hdr_alsize; ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); } dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset); dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift); dbg_msg("leb_start %d", ubi->leb_start); /* The shift must be aligned to 32-bit boundary */ if (ubi->vid_hdr_shift % 4) { ubi_err("unaligned VID header shift %d", ubi->vid_hdr_shift); return -EINVAL; } /* Check sanity */ if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || ubi->leb_start % ubi->min_io_size) { ubi_err("bad VID header (%d) or data offsets (%d)", ubi->vid_hdr_offset, ubi->leb_start); return -EINVAL; } /* * It may happen that EC and VID headers are situated in one minimal * I/O unit. In this case we can only accept this UBI image in * read-only mode. */ if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { ubi_warn("EC and VID headers are in the same minimal I/O unit, " "switch to read-only mode"); ubi->ro_mode = 1; } ubi->leb_size = ubi->peb_size - ubi->leb_start; if (!(ubi->mtd->flags & MTD_WRITEABLE)) { ubi_msg("MTD device %d is write-protected, attach in " "read-only mode", ubi->mtd->index); ubi->ro_mode = 1; } dbg_msg("leb_size %d", ubi->leb_size); dbg_msg("ro_mode %d", ubi->ro_mode); /* * Note, ideally, we have to initialize ubi->bad_peb_count here. But * unfortunately, MTD does not provide this information. We should loop * over all physical eraseblocks and invoke mtd->block_is_bad() for * each physical eraseblock. So, we skip ubi->bad_peb_count * uninitialized and initialize it after scanning. */ return 0; } /** * attach_mtd_dev - attach an MTD device. * @mtd_dev: MTD device name or number string * @vid_hdr_offset: VID header offset * @data_offset: data offset * * This function attaches an MTD device to UBI. It first treats @mtd_dev as the * MTD device name, and tries to open it by this name. If it is unable to open, * it tries to convert @mtd_dev to an integer and open the MTD device by its * number. Returns zero in case of success and a negative error code in case of * failure. */ static int attach_mtd_dev(const char *mtd_dev, int vid_hdr_offset, int data_offset) { struct ubi_device *ubi; struct mtd_info *mtd; int i, err; mtd = get_mtd_device_nm(mtd_dev); if (IS_ERR(mtd)) { int mtd_num; char *endp; if (PTR_ERR(mtd) != -ENODEV) return PTR_ERR(mtd); /* * Probably this is not MTD device name but MTD device number - * check this out. */ mtd_num = simple_strtoul(mtd_dev, &endp, 0); if (*endp != '\0' || mtd_dev == endp) { ubi_err("incorrect MTD device: \"%s\"", mtd_dev); return -ENODEV; } mtd = get_mtd_device(NULL, mtd_num); if (IS_ERR(mtd)) return PTR_ERR(mtd); } /* Check if we already have the same MTD device attached */ for (i = 0; i < UBI_MAX_DEVICES; i++) ubi = ubi_devices[i]; if (ubi && ubi->mtd->index == mtd->index) { ubi_err("mtd%d is already attached to ubi%d", mtd->index, i); err = -EINVAL; goto out_mtd; } ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); if (!ubi) { err = -ENOMEM; goto out_mtd; } ubi->mtd = mtd; /* Search for an empty slot in the @ubi_devices array */ ubi->ubi_num = -1; for (i = 0; i < UBI_MAX_DEVICES; i++) if (!ubi_devices[i]) { ubi->ubi_num = i; break; } if (ubi->ubi_num == -1) { ubi_err("only %d UBI devices may be created", UBI_MAX_DEVICES); err = -ENFILE; goto out_free; } dbg_msg("attaching mtd%d to ubi%d: VID header offset %d data offset %d", ubi->mtd->index, ubi->ubi_num, vid_hdr_offset, data_offset); ubi->vid_hdr_offset = vid_hdr_offset; ubi->leb_start = data_offset; err = io_init(ubi); if (err) goto out_free; mutex_init(&ubi->buf_mutex); ubi->peb_buf1 = vmalloc(ubi->peb_size); if (!ubi->peb_buf1) goto out_free; ubi->peb_buf2 = vmalloc(ubi->peb_size); if (!ubi->peb_buf2) goto out_free; #ifdef CONFIG_MTD_UBI_DEBUG mutex_init(&ubi->dbg_buf_mutex); ubi->dbg_peb_buf = vmalloc(ubi->peb_size); if (!ubi->dbg_peb_buf) goto out_free; #endif err = attach_by_scanning(ubi); if (err) { dbg_err("failed to attach by scanning, error %d", err); goto out_free; } err = uif_init(ubi); if (err) goto out_detach; ubi_msg("attached mtd%d to ubi%d", ubi->mtd->index, ubi->ubi_num); ubi_msg("MTD device name: \"%s\"", ubi->mtd->name); ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20); ubi_msg("physical eraseblock size: %d bytes (%d KiB)", ubi->peb_size, ubi->peb_size >> 10); ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size); ubi_msg("number of good PEBs: %d", ubi->good_peb_count); ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count); ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size); ubi_msg("VID header offset: %d (aligned %d)", ubi->vid_hdr_offset, ubi->vid_hdr_aloffset); ubi_msg("data offset: %d", ubi->leb_start); ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots); ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD); ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT); ubi_msg("number of user volumes: %d", ubi->vol_count - UBI_INT_VOL_COUNT); ubi_msg("available PEBs: %d", ubi->avail_pebs); ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs); ubi_msg("number of PEBs reserved for bad PEB handling: %d", ubi->beb_rsvd_pebs); ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec); /* Enable the background thread */ if (!DBG_DISABLE_BGT) { ubi->thread_enabled = 1; wake_up_process(ubi->bgt_thread); } ubi_devices[ubi->ubi_num] = ubi; return 0; out_detach: ubi_eba_close(ubi); ubi_wl_close(ubi); vfree(ubi->vtbl); out_free: vfree(ubi->peb_buf1); vfree(ubi->peb_buf2); #ifdef CONFIG_MTD_UBI_DEBUG vfree(ubi->dbg_peb_buf); #endif kfree(ubi); out_mtd: put_mtd_device(mtd); return err; } /** * detach_mtd_dev - detach an MTD device. * @ubi: UBI device description object */ static void detach_mtd_dev(struct ubi_device *ubi) { int ubi_num = ubi->ubi_num, mtd_num = ubi->mtd->index; dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); uif_close(ubi); ubi_eba_close(ubi); ubi_wl_close(ubi); vfree(ubi->vtbl); put_mtd_device(ubi->mtd); vfree(ubi->peb_buf1); vfree(ubi->peb_buf2); #ifdef CONFIG_MTD_UBI_DEBUG vfree(ubi->dbg_peb_buf); #endif kfree(ubi_devices[ubi_num]); ubi_devices[ubi_num] = NULL; ubi_msg("mtd%d is detached from ubi%d", mtd_num, ubi_num); } /** * ltree_entry_ctor - lock tree entries slab cache constructor. * @obj: the lock-tree entry to construct * @cache: the lock tree entry slab cache * @flags: constructor flags */ static void ltree_entry_ctor(struct kmem_cache *cache, void *obj) { struct ubi_ltree_entry *le = obj; le->users = 0; init_rwsem(&le->mutex); } static int __init ubi_init(void) { int err, i, k; /* Ensure that EC and VID headers have correct size */ BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); if (mtd_devs > UBI_MAX_DEVICES) { printk("UBI error: too many MTD devices, maximum is %d\n", UBI_MAX_DEVICES); return -EINVAL; } ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); if (IS_ERR(ubi_class)) return PTR_ERR(ubi_class); err = class_create_file(ubi_class, &ubi_version); if (err) goto out_class; ubi_ltree_slab = kmem_cache_create("ubi_ltree_slab", sizeof(struct ubi_ltree_entry), 0, 0, <ree_entry_ctor); if (!ubi_ltree_slab) goto out_version; ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", sizeof(struct ubi_wl_entry), 0, 0, NULL); if (!ubi_wl_entry_slab) goto out_ltree; /* Attach MTD devices */ for (i = 0; i < mtd_devs; i++) { struct mtd_dev_param *p = &mtd_dev_param[i]; cond_resched(); err = attach_mtd_dev(p->name, p->vid_hdr_offs, p->data_offs); if (err) goto out_detach; } return 0; out_detach: for (k = 0; k < i; k++) detach_mtd_dev(ubi_devices[k]); kmem_cache_destroy(ubi_wl_entry_slab); out_ltree: kmem_cache_destroy(ubi_ltree_slab); out_version: class_remove_file(ubi_class, &ubi_version); out_class: class_destroy(ubi_class); return err; } module_init(ubi_init); static void __exit ubi_exit(void) { int i; for (i = 0; i < UBI_MAX_DEVICES; i++) if (ubi_devices[i]) detach_mtd_dev(ubi_devices[i]); kmem_cache_destroy(ubi_wl_entry_slab); kmem_cache_destroy(ubi_ltree_slab); class_remove_file(ubi_class, &ubi_version); class_destroy(ubi_class); } module_exit(ubi_exit); /** * bytes_str_to_int - convert a string representing number of bytes to an * integer. * @str: the string to convert * * This function returns positive resulting integer in case of success and a * negative error code in case of failure. */ static int __init bytes_str_to_int(const char *str) { char *endp; unsigned long result; result = simple_strtoul(str, &endp, 0); if (str == endp || result < 0) { printk("UBI error: incorrect bytes count: \"%s\"\n", str); return -EINVAL; } switch (*endp) { case 'G': result *= 1024; case 'M': result *= 1024; case 'K': case 'k': result *= 1024; if (endp[1] == 'i' && (endp[2] == '\0' || endp[2] == 'B' || endp[2] == 'b')) endp += 2; case '\0': break; default: printk("UBI error: incorrect bytes count: \"%s\"\n", str); return -EINVAL; } return result; } /** * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. * @val: the parameter value to parse * @kp: not used * * This function returns zero in case of success and a negative error code in * case of error. */ static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) { int i, len; struct mtd_dev_param *p; char buf[MTD_PARAM_LEN_MAX]; char *pbuf = &buf[0]; char *tokens[3] = {NULL, NULL, NULL}; if (!val) return -EINVAL; if (mtd_devs == UBI_MAX_DEVICES) { printk("UBI error: too many parameters, max. is %d\n", UBI_MAX_DEVICES); return -EINVAL; } len = strnlen(val, MTD_PARAM_LEN_MAX); if (len == MTD_PARAM_LEN_MAX) { printk("UBI error: parameter \"%s\" is too long, max. is %d\n", val, MTD_PARAM_LEN_MAX); return -EINVAL; } if (len == 0) { printk("UBI warning: empty 'mtd=' parameter - ignored\n"); return 0; } strcpy(buf, val); /* Get rid of the final newline */ if (buf[len - 1] == '\n') buf[len - 1] = '\0'; for (i = 0; i < 3; i++) tokens[i] = strsep(&pbuf, ","); if (pbuf) { printk("UBI error: too many arguments at \"%s\"\n", val); return -EINVAL; } p = &mtd_dev_param[mtd_devs]; strcpy(&p->name[0], tokens[0]); if (tokens[1]) p->vid_hdr_offs = bytes_str_to_int(tokens[1]); if (tokens[2]) p->data_offs = bytes_str_to_int(tokens[2]); if (p->vid_hdr_offs < 0) return p->vid_hdr_offs; if (p->data_offs < 0) return p->data_offs; mtd_devs += 1; return 0; } module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: " "mtd=[,,]. " "Multiple \"mtd\" parameters may be specified.\n" "MTD devices may be specified by their number or name. " "Optional \"vid_hdr_offs\" and \"data_offs\" parameters " "specify UBI VID header position and data starting " "position to be used by UBI.\n" "Example: mtd=content,1984,2048 mtd=4 - attach MTD device" "with name content using VID header offset 1984 and data " "start 2048, and MTD device number 4 using default " "offsets"); MODULE_VERSION(__stringify(UBI_VERSION)); MODULE_DESCRIPTION("UBI - Unsorted Block Images"); MODULE_AUTHOR("Artem Bityutskiy"); MODULE_LICENSE("GPL");