/* * at91_can.c - CAN network driver for AT91 SoC CAN controller * * (C) 2007 by Hans J. Koch * (C) 2008, 2009 by Marc Kleine-Budde * * This software may be distributed under the terms of the GNU General * Public License ("GPL") version 2 as distributed in the 'COPYING' * file from the main directory of the linux kernel source. * * Send feedback to * * * Your platform definition file should specify something like: * * static struct at91_can_data ek_can_data = { * transceiver_switch = sam9263ek_transceiver_switch, * }; * * at91_add_device_can(&ek_can_data); * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "at91_can" #define AT91_NAPI_WEIGHT 12 /* * RX/TX Mailbox split * don't dare to touch */ #define AT91_MB_RX_NUM 12 #define AT91_MB_TX_SHIFT 2 #define AT91_MB_RX_FIRST 0 #define AT91_MB_RX_LAST (AT91_MB_RX_FIRST + AT91_MB_RX_NUM - 1) #define AT91_MB_RX_MASK(i) ((1 << (i)) - 1) #define AT91_MB_RX_SPLIT 8 #define AT91_MB_RX_LOW_LAST (AT91_MB_RX_SPLIT - 1) #define AT91_MB_RX_LOW_MASK (AT91_MB_RX_MASK(AT91_MB_RX_SPLIT)) #define AT91_MB_TX_NUM (1 << AT91_MB_TX_SHIFT) #define AT91_MB_TX_FIRST (AT91_MB_RX_LAST + 1) #define AT91_MB_TX_LAST (AT91_MB_TX_FIRST + AT91_MB_TX_NUM - 1) #define AT91_NEXT_PRIO_SHIFT (AT91_MB_TX_SHIFT) #define AT91_NEXT_PRIO_MASK (0xf << AT91_MB_TX_SHIFT) #define AT91_NEXT_MB_MASK (AT91_MB_TX_NUM - 1) #define AT91_NEXT_MASK ((AT91_MB_TX_NUM - 1) | AT91_NEXT_PRIO_MASK) /* Common registers */ enum at91_reg { AT91_MR = 0x000, AT91_IER = 0x004, AT91_IDR = 0x008, AT91_IMR = 0x00C, AT91_SR = 0x010, AT91_BR = 0x014, AT91_TIM = 0x018, AT91_TIMESTP = 0x01C, AT91_ECR = 0x020, AT91_TCR = 0x024, AT91_ACR = 0x028, }; /* Mailbox registers (0 <= i <= 15) */ #define AT91_MMR(i) (enum at91_reg)(0x200 + ((i) * 0x20)) #define AT91_MAM(i) (enum at91_reg)(0x204 + ((i) * 0x20)) #define AT91_MID(i) (enum at91_reg)(0x208 + ((i) * 0x20)) #define AT91_MFID(i) (enum at91_reg)(0x20C + ((i) * 0x20)) #define AT91_MSR(i) (enum at91_reg)(0x210 + ((i) * 0x20)) #define AT91_MDL(i) (enum at91_reg)(0x214 + ((i) * 0x20)) #define AT91_MDH(i) (enum at91_reg)(0x218 + ((i) * 0x20)) #define AT91_MCR(i) (enum at91_reg)(0x21C + ((i) * 0x20)) /* Register bits */ #define AT91_MR_CANEN BIT(0) #define AT91_MR_LPM BIT(1) #define AT91_MR_ABM BIT(2) #define AT91_MR_OVL BIT(3) #define AT91_MR_TEOF BIT(4) #define AT91_MR_TTM BIT(5) #define AT91_MR_TIMFRZ BIT(6) #define AT91_MR_DRPT BIT(7) #define AT91_SR_RBSY BIT(29) #define AT91_MMR_PRIO_SHIFT (16) #define AT91_MID_MIDE BIT(29) #define AT91_MSR_MRTR BIT(20) #define AT91_MSR_MABT BIT(22) #define AT91_MSR_MRDY BIT(23) #define AT91_MSR_MMI BIT(24) #define AT91_MCR_MRTR BIT(20) #define AT91_MCR_MTCR BIT(23) /* Mailbox Modes */ enum at91_mb_mode { AT91_MB_MODE_DISABLED = 0, AT91_MB_MODE_RX = 1, AT91_MB_MODE_RX_OVRWR = 2, AT91_MB_MODE_TX = 3, AT91_MB_MODE_CONSUMER = 4, AT91_MB_MODE_PRODUCER = 5, }; /* Interrupt mask bits */ #define AT91_IRQ_MB_RX ((1 << (AT91_MB_RX_LAST + 1)) \ - (1 << AT91_MB_RX_FIRST)) #define AT91_IRQ_MB_TX ((1 << (AT91_MB_TX_LAST + 1)) \ - (1 << AT91_MB_TX_FIRST)) #define AT91_IRQ_MB_ALL (AT91_IRQ_MB_RX | AT91_IRQ_MB_TX) #define AT91_IRQ_ERRA (1 << 16) #define AT91_IRQ_WARN (1 << 17) #define AT91_IRQ_ERRP (1 << 18) #define AT91_IRQ_BOFF (1 << 19) #define AT91_IRQ_SLEEP (1 << 20) #define AT91_IRQ_WAKEUP (1 << 21) #define AT91_IRQ_TOVF (1 << 22) #define AT91_IRQ_TSTP (1 << 23) #define AT91_IRQ_CERR (1 << 24) #define AT91_IRQ_SERR (1 << 25) #define AT91_IRQ_AERR (1 << 26) #define AT91_IRQ_FERR (1 << 27) #define AT91_IRQ_BERR (1 << 28) #define AT91_IRQ_ERR_ALL (0x1fff0000) #define AT91_IRQ_ERR_FRAME (AT91_IRQ_CERR | AT91_IRQ_SERR | \ AT91_IRQ_AERR | AT91_IRQ_FERR | AT91_IRQ_BERR) #define AT91_IRQ_ERR_LINE (AT91_IRQ_ERRA | AT91_IRQ_WARN | \ AT91_IRQ_ERRP | AT91_IRQ_BOFF) #define AT91_IRQ_ALL (0x1fffffff) struct at91_priv { struct can_priv can; /* must be the first member! */ struct net_device *dev; struct napi_struct napi; void __iomem *reg_base; u32 reg_sr; unsigned int tx_next; unsigned int tx_echo; unsigned int rx_next; struct clk *clk; struct at91_can_data *pdata; }; static struct can_bittiming_const at91_bittiming_const = { .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 2, .brp_max = 128, .brp_inc = 1, }; static inline int get_tx_next_mb(const struct at91_priv *priv) { return (priv->tx_next & AT91_NEXT_MB_MASK) + AT91_MB_TX_FIRST; } static inline int get_tx_next_prio(const struct at91_priv *priv) { return (priv->tx_next >> AT91_NEXT_PRIO_SHIFT) & 0xf; } static inline int get_tx_echo_mb(const struct at91_priv *priv) { return (priv->tx_echo & AT91_NEXT_MB_MASK) + AT91_MB_TX_FIRST; } static inline u32 at91_read(const struct at91_priv *priv, enum at91_reg reg) { return readl(priv->reg_base + reg); } static inline void at91_write(const struct at91_priv *priv, enum at91_reg reg, u32 value) { writel(value, priv->reg_base + reg); } static inline void set_mb_mode_prio(const struct at91_priv *priv, unsigned int mb, enum at91_mb_mode mode, int prio) { at91_write(priv, AT91_MMR(mb), (mode << 24) | (prio << 16)); } static inline void set_mb_mode(const struct at91_priv *priv, unsigned int mb, enum at91_mb_mode mode) { set_mb_mode_prio(priv, mb, mode, 0); } static struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) { struct sk_buff *skb; skb = netdev_alloc_skb(dev, sizeof(struct can_frame)); if (unlikely(!skb)) return NULL; skb->protocol = htons(ETH_P_CAN); skb->ip_summed = CHECKSUM_UNNECESSARY; *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); return skb; } static struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) { struct sk_buff *skb; skb = alloc_can_skb(dev, cf); if (unlikely(!skb)) return NULL; memset(*cf, 0, sizeof(struct can_frame)); (*cf)->can_id = CAN_ERR_FLAG; (*cf)->can_dlc = CAN_ERR_DLC; return skb; } /* * Swtich transceiver on or off */ static void at91_transceiver_switch(const struct at91_priv *priv, int on) { if (priv->pdata && priv->pdata->transceiver_switch) priv->pdata->transceiver_switch(on); } static void at91_setup_mailboxes(struct net_device *dev) { struct at91_priv *priv = netdev_priv(dev); unsigned int i; /* * The first 12 mailboxes are used as a reception FIFO. The * last mailbox is configured with overwrite option. The * overwrite flag indicates a FIFO overflow. */ for (i = AT91_MB_RX_FIRST; i < AT91_MB_RX_LAST; i++) set_mb_mode(priv, i, AT91_MB_MODE_RX); set_mb_mode(priv, AT91_MB_RX_LAST, AT91_MB_MODE_RX_OVRWR); /* The last 4 mailboxes are used for transmitting. */ for (i = AT91_MB_TX_FIRST; i <= AT91_MB_TX_LAST; i++) set_mb_mode_prio(priv, i, AT91_MB_MODE_TX, 0); /* Reset tx and rx helper pointers */ priv->tx_next = priv->tx_echo = priv->rx_next = 0; } static int at91_set_bittiming(struct net_device *dev) { const struct at91_priv *priv = netdev_priv(dev); const struct can_bittiming *bt = &priv->can.bittiming; u32 reg_br; reg_br = ((priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) << 24) | ((bt->brp - 1) << 16) | ((bt->sjw - 1) << 12) | ((bt->prop_seg - 1) << 8) | ((bt->phase_seg1 - 1) << 4) | ((bt->phase_seg2 - 1) << 0); dev_info(dev->dev.parent, "writing AT91_BR: 0x%08x\n", reg_br); at91_write(priv, AT91_BR, reg_br); return 0; } static void at91_chip_start(struct net_device *dev) { struct at91_priv *priv = netdev_priv(dev); u32 reg_mr, reg_ier; /* disable interrupts */ at91_write(priv, AT91_IDR, AT91_IRQ_ALL); /* disable chip */ reg_mr = at91_read(priv, AT91_MR); at91_write(priv, AT91_MR, reg_mr & ~AT91_MR_CANEN); at91_setup_mailboxes(dev); at91_transceiver_switch(priv, 1); /* enable chip */ at91_write(priv, AT91_MR, AT91_MR_CANEN); priv->can.state = CAN_STATE_ERROR_ACTIVE; /* Enable interrupts */ reg_ier = AT91_IRQ_MB_RX | AT91_IRQ_ERRP | AT91_IRQ_ERR_FRAME; at91_write(priv, AT91_IDR, AT91_IRQ_ALL); at91_write(priv, AT91_IER, reg_ier); } static void at91_chip_stop(struct net_device *dev, enum can_state state) { struct at91_priv *priv = netdev_priv(dev); u32 reg_mr; /* disable interrupts */ at91_write(priv, AT91_IDR, AT91_IRQ_ALL); reg_mr = at91_read(priv, AT91_MR); at91_write(priv, AT91_MR, reg_mr & ~AT91_MR_CANEN); at91_transceiver_switch(priv, 0); priv->can.state = state; } /* * theory of operation: * * According to the datasheet priority 0 is the highest priority, 15 * is the lowest. If two mailboxes have the same priority level the * message of the mailbox with the lowest number is sent first. * * We use the first TX mailbox (AT91_MB_TX_FIRST) with prio 0, then * the next mailbox with prio 0, and so on, until all mailboxes are * used. Then we start from the beginning with mailbox * AT91_MB_TX_FIRST, but with prio 1, mailbox AT91_MB_TX_FIRST + 1 * prio 1. When we reach the last mailbox with prio 15, we have to * stop sending, waiting for all messages to be delivered, then start * again with mailbox AT91_MB_TX_FIRST prio 0. * * We use the priv->tx_next as counter for the next transmission * mailbox, but without the offset AT91_MB_TX_FIRST. The lower bits * encode the mailbox number, the upper 4 bits the mailbox priority: * * priv->tx_next = (prio << AT91_NEXT_PRIO_SHIFT) || * (mb - AT91_MB_TX_FIRST); * */ static netdev_tx_t at91_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct at91_priv *priv = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct can_frame *cf = (struct can_frame *)skb->data; unsigned int mb, prio; u32 reg_mid, reg_mcr; mb = get_tx_next_mb(priv); prio = get_tx_next_prio(priv); if (unlikely(!(at91_read(priv, AT91_MSR(mb)) & AT91_MSR_MRDY))) { netif_stop_queue(dev); dev_err(dev->dev.parent, "BUG! TX buffer full when queue awake!\n"); return NETDEV_TX_BUSY; } if (cf->can_id & CAN_EFF_FLAG) reg_mid = (cf->can_id & CAN_EFF_MASK) | AT91_MID_MIDE; else reg_mid = (cf->can_id & CAN_SFF_MASK) << 18; reg_mcr = ((cf->can_id & CAN_RTR_FLAG) ? AT91_MCR_MRTR : 0) | (cf->can_dlc << 16) | AT91_MCR_MTCR; /* disable MB while writing ID (see datasheet) */ set_mb_mode(priv, mb, AT91_MB_MODE_DISABLED); at91_write(priv, AT91_MID(mb), reg_mid); set_mb_mode_prio(priv, mb, AT91_MB_MODE_TX, prio); at91_write(priv, AT91_MDL(mb), *(u32 *)(cf->data + 0)); at91_write(priv, AT91_MDH(mb), *(u32 *)(cf->data + 4)); /* This triggers transmission */ at91_write(priv, AT91_MCR(mb), reg_mcr); stats->tx_bytes += cf->can_dlc; dev->trans_start = jiffies; /* _NOTE_: substract AT91_MB_TX_FIRST offset from mb! */ can_put_echo_skb(skb, dev, mb - AT91_MB_TX_FIRST); /* * we have to stop the queue and deliver all messages in case * of a prio+mb counter wrap around. This is the case if * tx_next buffer prio and mailbox equals 0. * * also stop the queue if next buffer is still in use * (== not ready) */ priv->tx_next++; if (!(at91_read(priv, AT91_MSR(get_tx_next_mb(priv))) & AT91_MSR_MRDY) || (priv->tx_next & AT91_NEXT_MASK) == 0) netif_stop_queue(dev); /* Enable interrupt for this mailbox */ at91_write(priv, AT91_IER, 1 << mb); return NETDEV_TX_OK; } /** * at91_activate_rx_low - activate lower rx mailboxes * @priv: a91 context * * Reenables the lower mailboxes for reception of new CAN messages */ static inline void at91_activate_rx_low(const struct at91_priv *priv) { u32 mask = AT91_MB_RX_LOW_MASK; at91_write(priv, AT91_TCR, mask); } /** * at91_activate_rx_mb - reactive single rx mailbox * @priv: a91 context * @mb: mailbox to reactivate * * Reenables given mailbox for reception of new CAN messages */ static inline void at91_activate_rx_mb(const struct at91_priv *priv, unsigned int mb) { u32 mask = 1 << mb; at91_write(priv, AT91_TCR, mask); } /** * at91_rx_overflow_err - send error frame due to rx overflow * @dev: net device */ static void at91_rx_overflow_err(struct net_device *dev) { struct net_device_stats *stats = &dev->stats; struct sk_buff *skb; struct can_frame *cf; dev_dbg(dev->dev.parent, "RX buffer overflow\n"); stats->rx_over_errors++; stats->rx_errors++; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return; cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; netif_receive_skb(skb); stats->rx_packets++; stats->rx_bytes += cf->can_dlc; } /** * at91_read_mb - read CAN msg from mailbox (lowlevel impl) * @dev: net device * @mb: mailbox number to read from * @cf: can frame where to store message * * Reads a CAN message from the given mailbox and stores data into * given can frame. "mb" and "cf" must be valid. */ static void at91_read_mb(struct net_device *dev, unsigned int mb, struct can_frame *cf) { const struct at91_priv *priv = netdev_priv(dev); u32 reg_msr, reg_mid; reg_mid = at91_read(priv, AT91_MID(mb)); if (reg_mid & AT91_MID_MIDE) cf->can_id = ((reg_mid >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG; else cf->can_id = (reg_mid >> 18) & CAN_SFF_MASK; reg_msr = at91_read(priv, AT91_MSR(mb)); if (reg_msr & AT91_MSR_MRTR) cf->can_id |= CAN_RTR_FLAG; cf->can_dlc = min_t(__u8, (reg_msr >> 16) & 0xf, 8); *(u32 *)(cf->data + 0) = at91_read(priv, AT91_MDL(mb)); *(u32 *)(cf->data + 4) = at91_read(priv, AT91_MDH(mb)); if (unlikely(mb == AT91_MB_RX_LAST && reg_msr & AT91_MSR_MMI)) at91_rx_overflow_err(dev); } /** * at91_read_msg - read CAN message from mailbox * @dev: net device * @mb: mail box to read from * * Reads a CAN message from given mailbox, and put into linux network * RX queue, does all housekeeping chores (stats, ...) */ static void at91_read_msg(struct net_device *dev, unsigned int mb) { struct net_device_stats *stats = &dev->stats; struct can_frame *cf; struct sk_buff *skb; skb = alloc_can_skb(dev, &cf); if (unlikely(!skb)) { stats->rx_dropped++; return; } at91_read_mb(dev, mb, cf); netif_receive_skb(skb); stats->rx_packets++; stats->rx_bytes += cf->can_dlc; } /** * at91_poll_rx - read multiple CAN messages from mailboxes * @dev: net device * @quota: max number of pkgs we're allowed to receive * * Theory of Operation: * * 12 of the 16 mailboxes on the chip are reserved for RX. we split * them into 2 groups. The lower group holds 8 and upper 4 mailboxes. * * Like it or not, but the chip always saves a received CAN message * into the first free mailbox it finds (starting with the * lowest). This makes it very difficult to read the messages in the * right order from the chip. This is how we work around that problem: * * The first message goes into mb nr. 0 and issues an interrupt. All * rx ints are disabled in the interrupt handler and a napi poll is * scheduled. We read the mailbox, but do _not_ reenable the mb (to * receive another message). * * lower mbxs upper * ______^______ __^__ * / \ / \ * +-+-+-+-+-+-+-+-++-+-+-+-+ * |x|x|x|x|x|x|x|x|| | | | | * +-+-+-+-+-+-+-+-++-+-+-+-+ * 0 0 0 0 0 0 0 0 0 0 1 1 \ mail * 0 1 2 3 4 5 6 7 8 9 0 1 / box * * The variable priv->rx_next points to the next mailbox to read a * message from. As long we're in the lower mailboxes we just read the * mailbox but not reenable it. * * With completion of the last of the lower mailboxes, we reenable the * whole first group, but continue to look for filled mailboxes in the * upper mailboxes. Imagine the second group like overflow mailboxes, * which takes CAN messages if the lower goup is full. While in the * upper group we reenable the mailbox right after reading it. Giving * the chip more room to store messages. * * After finishing we look again in the lower group if we've still * quota. * */ static int at91_poll_rx(struct net_device *dev, int quota) { struct at91_priv *priv = netdev_priv(dev); u32 reg_sr = at91_read(priv, AT91_SR); const unsigned long *addr = (unsigned long *)®_sr; unsigned int mb; int received = 0; if (priv->rx_next > AT91_MB_RX_LOW_LAST && reg_sr & AT91_MB_RX_LOW_MASK) dev_info(dev->dev.parent, "order of incoming frames cannot be guaranteed\n"); again: for (mb = find_next_bit(addr, AT91_MB_RX_NUM, priv->rx_next); mb < AT91_MB_RX_NUM && quota > 0; reg_sr = at91_read(priv, AT91_SR), mb = find_next_bit(addr, AT91_MB_RX_NUM, ++priv->rx_next)) { at91_read_msg(dev, mb); /* reactivate mailboxes */ if (mb == AT91_MB_RX_LOW_LAST) /* all lower mailboxed, if just finished it */ at91_activate_rx_low(priv); else if (mb > AT91_MB_RX_LOW_LAST) /* only the mailbox we read */ at91_activate_rx_mb(priv, mb); received++; quota--; } /* upper group completed, look again in lower */ if (priv->rx_next > AT91_MB_RX_LOW_LAST && quota > 0 && mb >= AT91_MB_RX_NUM) { priv->rx_next = 0; goto again; } return received; } static void at91_poll_err_frame(struct net_device *dev, struct can_frame *cf, u32 reg_sr) { struct at91_priv *priv = netdev_priv(dev); /* CRC error */ if (reg_sr & AT91_IRQ_CERR) { dev_dbg(dev->dev.parent, "CERR irq\n"); dev->stats.rx_errors++; priv->can.can_stats.bus_error++; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; } /* Stuffing Error */ if (reg_sr & AT91_IRQ_SERR) { dev_dbg(dev->dev.parent, "SERR irq\n"); dev->stats.rx_errors++; priv->can.can_stats.bus_error++; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; cf->data[2] |= CAN_ERR_PROT_STUFF; } /* Acknowledgement Error */ if (reg_sr & AT91_IRQ_AERR) { dev_dbg(dev->dev.parent, "AERR irq\n"); dev->stats.tx_errors++; cf->can_id |= CAN_ERR_ACK; } /* Form error */ if (reg_sr & AT91_IRQ_FERR) { dev_dbg(dev->dev.parent, "FERR irq\n"); dev->stats.rx_errors++; priv->can.can_stats.bus_error++; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; cf->data[2] |= CAN_ERR_PROT_FORM; } /* Bit Error */ if (reg_sr & AT91_IRQ_BERR) { dev_dbg(dev->dev.parent, "BERR irq\n"); dev->stats.tx_errors++; priv->can.can_stats.bus_error++; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; cf->data[2] |= CAN_ERR_PROT_BIT; } } static int at91_poll_err(struct net_device *dev, int quota, u32 reg_sr) { struct sk_buff *skb; struct can_frame *cf; if (quota == 0) return 0; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return 0; at91_poll_err_frame(dev, cf, reg_sr); netif_receive_skb(skb); dev->last_rx = jiffies; dev->stats.rx_packets++; dev->stats.rx_bytes += cf->can_dlc; return 1; } static int at91_poll(struct napi_struct *napi, int quota) { struct net_device *dev = napi->dev; const struct at91_priv *priv = netdev_priv(dev); u32 reg_sr = at91_read(priv, AT91_SR); int work_done = 0; if (reg_sr & AT91_IRQ_MB_RX) work_done += at91_poll_rx(dev, quota - work_done); /* * The error bits are clear on read, * so use saved value from irq handler. */ reg_sr |= priv->reg_sr; if (reg_sr & AT91_IRQ_ERR_FRAME) work_done += at91_poll_err(dev, quota - work_done, reg_sr); if (work_done < quota) { /* enable IRQs for frame errors and all mailboxes >= rx_next */ u32 reg_ier = AT91_IRQ_ERR_FRAME; reg_ier |= AT91_IRQ_MB_RX & ~AT91_MB_RX_MASK(priv->rx_next); napi_complete(napi); at91_write(priv, AT91_IER, reg_ier); } return work_done; } /* * theory of operation: * * priv->tx_echo holds the number of the oldest can_frame put for * transmission into the hardware, but not yet ACKed by the CAN tx * complete IRQ. * * We iterate from priv->tx_echo to priv->tx_next and check if the * packet has been transmitted, echo it back to the CAN framework. If * we discover a not yet transmitted package, stop looking for more. * */ static void at91_irq_tx(struct net_device *dev, u32 reg_sr) { struct at91_priv *priv = netdev_priv(dev); u32 reg_msr; unsigned int mb; /* masking of reg_sr not needed, already done by at91_irq */ for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) { mb = get_tx_echo_mb(priv); /* no event in mailbox? */ if (!(reg_sr & (1 << mb))) break; /* Disable irq for this TX mailbox */ at91_write(priv, AT91_IDR, 1 << mb); /* * only echo if mailbox signals us a transfer * complete (MSR_MRDY). Otherwise it's a tansfer * abort. "can_bus_off()" takes care about the skbs * parked in the echo queue. */ reg_msr = at91_read(priv, AT91_MSR(mb)); if (likely(reg_msr & AT91_MSR_MRDY && ~reg_msr & AT91_MSR_MABT)) { /* _NOTE_: substract AT91_MB_TX_FIRST offset from mb! */ can_get_echo_skb(dev, mb - AT91_MB_TX_FIRST); dev->stats.tx_packets++; } } /* * restart queue if we don't have a wrap around but restart if * we get a TX int for the last can frame directly before a * wrap around. */ if ((priv->tx_next & AT91_NEXT_MASK) != 0 || (priv->tx_echo & AT91_NEXT_MASK) == 0) netif_wake_queue(dev); } static void at91_irq_err_state(struct net_device *dev, struct can_frame *cf, enum can_state new_state) { struct at91_priv *priv = netdev_priv(dev); u32 reg_idr, reg_ier, reg_ecr; u8 tec, rec; reg_ecr = at91_read(priv, AT91_ECR); rec = reg_ecr & 0xff; tec = reg_ecr >> 16; switch (priv->can.state) { case CAN_STATE_ERROR_ACTIVE: /* * from: ERROR_ACTIVE * to : ERROR_WARNING, ERROR_PASSIVE, BUS_OFF * => : there was a warning int */ if (new_state >= CAN_STATE_ERROR_WARNING && new_state <= CAN_STATE_BUS_OFF) { dev_dbg(dev->dev.parent, "Error Warning IRQ\n"); priv->can.can_stats.error_warning++; cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (tec > rec) ? CAN_ERR_CRTL_TX_WARNING : CAN_ERR_CRTL_RX_WARNING; } case CAN_STATE_ERROR_WARNING: /* fallthrough */ /* * from: ERROR_ACTIVE, ERROR_WARNING * to : ERROR_PASSIVE, BUS_OFF * => : error passive int */ if (new_state >= CAN_STATE_ERROR_PASSIVE && new_state <= CAN_STATE_BUS_OFF) { dev_dbg(dev->dev.parent, "Error Passive IRQ\n"); priv->can.can_stats.error_passive++; cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (tec > rec) ? CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE; } break; case CAN_STATE_BUS_OFF: /* * from: BUS_OFF * to : ERROR_ACTIVE, ERROR_WARNING, ERROR_PASSIVE */ if (new_state <= CAN_STATE_ERROR_PASSIVE) { cf->can_id |= CAN_ERR_RESTARTED; dev_dbg(dev->dev.parent, "restarted\n"); priv->can.can_stats.restarts++; netif_carrier_on(dev); netif_wake_queue(dev); } break; default: break; } /* process state changes depending on the new state */ switch (new_state) { case CAN_STATE_ERROR_ACTIVE: /* * actually we want to enable AT91_IRQ_WARN here, but * it screws up the system under certain * circumstances. so just enable AT91_IRQ_ERRP, thus * the "fallthrough" */ dev_dbg(dev->dev.parent, "Error Active\n"); cf->can_id |= CAN_ERR_PROT; cf->data[2] = CAN_ERR_PROT_ACTIVE; case CAN_STATE_ERROR_WARNING: /* fallthrough */ reg_idr = AT91_IRQ_ERRA | AT91_IRQ_WARN | AT91_IRQ_BOFF; reg_ier = AT91_IRQ_ERRP; break; case CAN_STATE_ERROR_PASSIVE: reg_idr = AT91_IRQ_ERRA | AT91_IRQ_WARN | AT91_IRQ_ERRP; reg_ier = AT91_IRQ_BOFF; break; case CAN_STATE_BUS_OFF: reg_idr = AT91_IRQ_ERRA | AT91_IRQ_ERRP | AT91_IRQ_WARN | AT91_IRQ_BOFF; reg_ier = 0; cf->can_id |= CAN_ERR_BUSOFF; dev_dbg(dev->dev.parent, "bus-off\n"); netif_carrier_off(dev); priv->can.can_stats.bus_off++; /* turn off chip, if restart is disabled */ if (!priv->can.restart_ms) { at91_chip_stop(dev, CAN_STATE_BUS_OFF); return; } break; default: break; } at91_write(priv, AT91_IDR, reg_idr); at91_write(priv, AT91_IER, reg_ier); } static void at91_irq_err(struct net_device *dev) { struct at91_priv *priv = netdev_priv(dev); struct sk_buff *skb; struct can_frame *cf; enum can_state new_state; u32 reg_sr; reg_sr = at91_read(priv, AT91_SR); /* we need to look at the unmasked reg_sr */ if (unlikely(reg_sr & AT91_IRQ_BOFF)) new_state = CAN_STATE_BUS_OFF; else if (unlikely(reg_sr & AT91_IRQ_ERRP)) new_state = CAN_STATE_ERROR_PASSIVE; else if (unlikely(reg_sr & AT91_IRQ_WARN)) new_state = CAN_STATE_ERROR_WARNING; else if (likely(reg_sr & AT91_IRQ_ERRA)) new_state = CAN_STATE_ERROR_ACTIVE; else { dev_err(dev->dev.parent, "BUG! hardware in undefined state\n"); return; } /* state hasn't changed */ if (likely(new_state == priv->can.state)) return; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return; at91_irq_err_state(dev, cf, new_state); netif_rx(skb); dev->last_rx = jiffies; dev->stats.rx_packets++; dev->stats.rx_bytes += cf->can_dlc; priv->can.state = new_state; } /* * interrupt handler */ static irqreturn_t at91_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct at91_priv *priv = netdev_priv(dev); irqreturn_t handled = IRQ_NONE; u32 reg_sr, reg_imr; reg_sr = at91_read(priv, AT91_SR); reg_imr = at91_read(priv, AT91_IMR); /* Ignore masked interrupts */ reg_sr &= reg_imr; if (!reg_sr) goto exit; handled = IRQ_HANDLED; /* Receive or error interrupt? -> napi */ if (reg_sr & (AT91_IRQ_MB_RX | AT91_IRQ_ERR_FRAME)) { /* * The error bits are clear on read, * save for later use. */ priv->reg_sr = reg_sr; at91_write(priv, AT91_IDR, AT91_IRQ_MB_RX | AT91_IRQ_ERR_FRAME); napi_schedule(&priv->napi); } /* Transmission complete interrupt */ if (reg_sr & AT91_IRQ_MB_TX) at91_irq_tx(dev, reg_sr); at91_irq_err(dev); exit: return handled; } static int at91_open(struct net_device *dev) { struct at91_priv *priv = netdev_priv(dev); int err; clk_enable(priv->clk); /* check or determine and set bittime */ err = open_candev(dev); if (err) goto out; /* register interrupt handler */ if (request_irq(dev->irq, at91_irq, IRQF_SHARED, dev->name, dev)) { err = -EAGAIN; goto out_close; } /* start chip and queuing */ at91_chip_start(dev); napi_enable(&priv->napi); netif_start_queue(dev); return 0; out_close: close_candev(dev); out: clk_disable(priv->clk); return err; } /* * stop CAN bus activity */ static int at91_close(struct net_device *dev) { struct at91_priv *priv = netdev_priv(dev); netif_stop_queue(dev); napi_disable(&priv->napi); at91_chip_stop(dev, CAN_STATE_STOPPED); free_irq(dev->irq, dev); clk_disable(priv->clk); close_candev(dev); return 0; } static int at91_set_mode(struct net_device *dev, enum can_mode mode) { switch (mode) { case CAN_MODE_START: at91_chip_start(dev); netif_wake_queue(dev); break; default: return -EOPNOTSUPP; } return 0; } static const struct net_device_ops at91_netdev_ops = { .ndo_open = at91_open, .ndo_stop = at91_close, .ndo_start_xmit = at91_start_xmit, }; static int __init at91_can_probe(struct platform_device *pdev) { struct net_device *dev; struct at91_priv *priv; struct resource *res; struct clk *clk; void __iomem *addr; int err, irq; clk = clk_get(&pdev->dev, "can_clk"); if (IS_ERR(clk)) { dev_err(&pdev->dev, "no clock defined\n"); err = -ENODEV; goto exit; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || !irq) { err = -ENODEV; goto exit_put; } if (!request_mem_region(res->start, resource_size(res), pdev->name)) { err = -EBUSY; goto exit_put; } addr = ioremap_nocache(res->start, resource_size(res)); if (!addr) { err = -ENOMEM; goto exit_release; } dev = alloc_candev(sizeof(struct at91_priv), AT91_MB_TX_NUM); if (!dev) { err = -ENOMEM; goto exit_iounmap; } dev->netdev_ops = &at91_netdev_ops; dev->irq = irq; dev->flags |= IFF_ECHO; priv = netdev_priv(dev); priv->can.clock.freq = clk_get_rate(clk); priv->can.bittiming_const = &at91_bittiming_const; priv->can.do_set_bittiming = at91_set_bittiming; priv->can.do_set_mode = at91_set_mode; priv->reg_base = addr; priv->dev = dev; priv->clk = clk; priv->pdata = pdev->dev.platform_data; netif_napi_add(dev, &priv->napi, at91_poll, AT91_NAPI_WEIGHT); dev_set_drvdata(&pdev->dev, dev); SET_NETDEV_DEV(dev, &pdev->dev); err = register_candev(dev); if (err) { dev_err(&pdev->dev, "registering netdev failed\n"); goto exit_free; } dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%d)\n", priv->reg_base, dev->irq); return 0; exit_free: free_netdev(dev); exit_iounmap: iounmap(addr); exit_release: release_mem_region(res->start, resource_size(res)); exit_put: clk_put(clk); exit: return err; } static int __devexit at91_can_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct at91_priv *priv = netdev_priv(dev); struct resource *res; unregister_netdev(dev); platform_set_drvdata(pdev, NULL); free_netdev(dev); iounmap(priv->reg_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); clk_put(priv->clk); return 0; } static struct platform_driver at91_can_driver = { .probe = at91_can_probe, .remove = __devexit_p(at91_can_remove), .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, }; static int __init at91_can_module_init(void) { printk(KERN_INFO "%s netdevice driver\n", DRV_NAME); return platform_driver_register(&at91_can_driver); } static void __exit at91_can_module_exit(void) { platform_driver_unregister(&at91_can_driver); printk(KERN_INFO "%s: driver removed\n", DRV_NAME); } module_init(at91_can_module_init); module_exit(at91_can_module_exit); MODULE_AUTHOR("Marc Kleine-Budde "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION(DRV_NAME " CAN netdevice driver");