/* cnic.c: Broadcom CNIC core network driver. * * Copyright (c) 2006-2009 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Original skeleton written by: John(Zongxi) Chen (zongxi@broadcom.com) * Modified and maintained by: Michael Chan <mchan@broadcom.com> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/uio_driver.h> #include <linux/in.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/ethtool.h> #include <linux/if_vlan.h> #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) #define BCM_VLAN 1 #endif #include <net/ip.h> #include <net/tcp.h> #include <net/route.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <scsi/iscsi_if.h> #include "cnic_if.h" #include "bnx2.h" #include "cnic.h" #include "cnic_defs.h" #define DRV_MODULE_NAME "cnic" #define PFX DRV_MODULE_NAME ": " static char version[] __devinitdata = "Broadcom NetXtreme II CNIC Driver " DRV_MODULE_NAME " v" CNIC_MODULE_VERSION " (" CNIC_MODULE_RELDATE ")\n"; MODULE_AUTHOR("Michael Chan <mchan@broadcom.com> and John(Zongxi) " "Chen (zongxi@broadcom.com"); MODULE_DESCRIPTION("Broadcom NetXtreme II CNIC Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(CNIC_MODULE_VERSION); static LIST_HEAD(cnic_dev_list); static DEFINE_RWLOCK(cnic_dev_lock); static DEFINE_MUTEX(cnic_lock); static struct cnic_ulp_ops *cnic_ulp_tbl[MAX_CNIC_ULP_TYPE]; static int cnic_service_bnx2(void *, void *); static int cnic_ctl(void *, struct cnic_ctl_info *); static struct cnic_ops cnic_bnx2_ops = { .cnic_owner = THIS_MODULE, .cnic_handler = cnic_service_bnx2, .cnic_ctl = cnic_ctl, }; static void cnic_shutdown_bnx2_rx_ring(struct cnic_dev *); static void cnic_init_bnx2_tx_ring(struct cnic_dev *); static void cnic_init_bnx2_rx_ring(struct cnic_dev *); static int cnic_cm_set_pg(struct cnic_sock *); static int cnic_uio_open(struct uio_info *uinfo, struct inode *inode) { struct cnic_dev *dev = uinfo->priv; struct cnic_local *cp = dev->cnic_priv; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (cp->uio_dev != -1) return -EBUSY; cp->uio_dev = iminor(inode); cnic_init_bnx2_tx_ring(dev); cnic_init_bnx2_rx_ring(dev); return 0; } static int cnic_uio_close(struct uio_info *uinfo, struct inode *inode) { struct cnic_dev *dev = uinfo->priv; struct cnic_local *cp = dev->cnic_priv; cnic_shutdown_bnx2_rx_ring(dev); cp->uio_dev = -1; return 0; } static inline void cnic_hold(struct cnic_dev *dev) { atomic_inc(&dev->ref_count); } static inline void cnic_put(struct cnic_dev *dev) { atomic_dec(&dev->ref_count); } static inline void csk_hold(struct cnic_sock *csk) { atomic_inc(&csk->ref_count); } static inline void csk_put(struct cnic_sock *csk) { atomic_dec(&csk->ref_count); } static struct cnic_dev *cnic_from_netdev(struct net_device *netdev) { struct cnic_dev *cdev; read_lock(&cnic_dev_lock); list_for_each_entry(cdev, &cnic_dev_list, list) { if (netdev == cdev->netdev) { cnic_hold(cdev); read_unlock(&cnic_dev_lock); return cdev; } } read_unlock(&cnic_dev_lock); return NULL; } static inline void ulp_get(struct cnic_ulp_ops *ulp_ops) { atomic_inc(&ulp_ops->ref_count); } static inline void ulp_put(struct cnic_ulp_ops *ulp_ops) { atomic_dec(&ulp_ops->ref_count); } static void cnic_ctx_wr(struct cnic_dev *dev, u32 cid_addr, u32 off, u32 val) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; struct drv_ctl_info info; struct drv_ctl_io *io = &info.data.io; info.cmd = DRV_CTL_CTX_WR_CMD; io->cid_addr = cid_addr; io->offset = off; io->data = val; ethdev->drv_ctl(dev->netdev, &info); } static void cnic_reg_wr_ind(struct cnic_dev *dev, u32 off, u32 val) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; struct drv_ctl_info info; struct drv_ctl_io *io = &info.data.io; info.cmd = DRV_CTL_IO_WR_CMD; io->offset = off; io->data = val; ethdev->drv_ctl(dev->netdev, &info); } static u32 cnic_reg_rd_ind(struct cnic_dev *dev, u32 off) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; struct drv_ctl_info info; struct drv_ctl_io *io = &info.data.io; info.cmd = DRV_CTL_IO_RD_CMD; io->offset = off; ethdev->drv_ctl(dev->netdev, &info); return io->data; } static int cnic_in_use(struct cnic_sock *csk) { return test_bit(SK_F_INUSE, &csk->flags); } static void cnic_kwq_completion(struct cnic_dev *dev, u32 count) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; struct drv_ctl_info info; info.cmd = DRV_CTL_COMPLETION_CMD; info.data.comp.comp_count = count; ethdev->drv_ctl(dev->netdev, &info); } static int cnic_send_nlmsg(struct cnic_local *cp, u32 type, struct cnic_sock *csk) { struct iscsi_path path_req; char *buf = NULL; u16 len = 0; u32 msg_type = ISCSI_KEVENT_IF_DOWN; struct cnic_ulp_ops *ulp_ops; if (cp->uio_dev == -1) return -ENODEV; if (csk) { len = sizeof(path_req); buf = (char *) &path_req; memset(&path_req, 0, len); msg_type = ISCSI_KEVENT_PATH_REQ; path_req.handle = (u64) csk->l5_cid; if (test_bit(SK_F_IPV6, &csk->flags)) { memcpy(&path_req.dst.v6_addr, &csk->dst_ip[0], sizeof(struct in6_addr)); path_req.ip_addr_len = 16; } else { memcpy(&path_req.dst.v4_addr, &csk->dst_ip[0], sizeof(struct in_addr)); path_req.ip_addr_len = 4; } path_req.vlan_id = csk->vlan_id; path_req.pmtu = csk->mtu; } rcu_read_lock(); ulp_ops = rcu_dereference(cnic_ulp_tbl[CNIC_ULP_ISCSI]); if (ulp_ops) ulp_ops->iscsi_nl_send_msg(cp->dev, msg_type, buf, len); rcu_read_unlock(); return 0; } static int cnic_iscsi_nl_msg_recv(struct cnic_dev *dev, u32 msg_type, char *buf, u16 len) { int rc = -EINVAL; switch (msg_type) { case ISCSI_UEVENT_PATH_UPDATE: { struct cnic_local *cp; u32 l5_cid; struct cnic_sock *csk; struct iscsi_path *path_resp; if (len < sizeof(*path_resp)) break; path_resp = (struct iscsi_path *) buf; cp = dev->cnic_priv; l5_cid = (u32) path_resp->handle; if (l5_cid >= MAX_CM_SK_TBL_SZ) break; csk = &cp->csk_tbl[l5_cid]; csk_hold(csk); if (cnic_in_use(csk)) { memcpy(csk->ha, path_resp->mac_addr, 6); if (test_bit(SK_F_IPV6, &csk->flags)) memcpy(&csk->src_ip[0], &path_resp->src.v6_addr, sizeof(struct in6_addr)); else memcpy(&csk->src_ip[0], &path_resp->src.v4_addr, sizeof(struct in_addr)); if (is_valid_ether_addr(csk->ha)) cnic_cm_set_pg(csk); } csk_put(csk); rc = 0; } } return rc; } static int cnic_offld_prep(struct cnic_sock *csk) { if (test_and_set_bit(SK_F_OFFLD_SCHED, &csk->flags)) return 0; if (!test_bit(SK_F_CONNECT_START, &csk->flags)) { clear_bit(SK_F_OFFLD_SCHED, &csk->flags); return 0; } return 1; } static int cnic_close_prep(struct cnic_sock *csk) { clear_bit(SK_F_CONNECT_START, &csk->flags); smp_mb__after_clear_bit(); if (test_and_clear_bit(SK_F_OFFLD_COMPLETE, &csk->flags)) { while (test_and_set_bit(SK_F_OFFLD_SCHED, &csk->flags)) msleep(1); return 1; } return 0; } static int cnic_abort_prep(struct cnic_sock *csk) { clear_bit(SK_F_CONNECT_START, &csk->flags); smp_mb__after_clear_bit(); while (test_and_set_bit(SK_F_OFFLD_SCHED, &csk->flags)) msleep(1); if (test_and_clear_bit(SK_F_OFFLD_COMPLETE, &csk->flags)) { csk->state = L4_KCQE_OPCODE_VALUE_RESET_COMP; return 1; } return 0; } static void cnic_uio_stop(void) { struct cnic_dev *dev; read_lock(&cnic_dev_lock); list_for_each_entry(dev, &cnic_dev_list, list) { struct cnic_local *cp = dev->cnic_priv; if (cp->cnic_uinfo) cnic_send_nlmsg(cp, ISCSI_KEVENT_IF_DOWN, NULL); } read_unlock(&cnic_dev_lock); } int cnic_register_driver(int ulp_type, struct cnic_ulp_ops *ulp_ops) { struct cnic_dev *dev; if (ulp_type >= MAX_CNIC_ULP_TYPE) { printk(KERN_ERR PFX "cnic_register_driver: Bad type %d\n", ulp_type); return -EINVAL; } mutex_lock(&cnic_lock); if (cnic_ulp_tbl[ulp_type]) { printk(KERN_ERR PFX "cnic_register_driver: Type %d has already " "been registered\n", ulp_type); mutex_unlock(&cnic_lock); return -EBUSY; } read_lock(&cnic_dev_lock); list_for_each_entry(dev, &cnic_dev_list, list) { struct cnic_local *cp = dev->cnic_priv; clear_bit(ULP_F_INIT, &cp->ulp_flags[ulp_type]); } read_unlock(&cnic_dev_lock); atomic_set(&ulp_ops->ref_count, 0); rcu_assign_pointer(cnic_ulp_tbl[ulp_type], ulp_ops); mutex_unlock(&cnic_lock); /* Prevent race conditions with netdev_event */ rtnl_lock(); read_lock(&cnic_dev_lock); list_for_each_entry(dev, &cnic_dev_list, list) { struct cnic_local *cp = dev->cnic_priv; if (!test_and_set_bit(ULP_F_INIT, &cp->ulp_flags[ulp_type])) ulp_ops->cnic_init(dev); } read_unlock(&cnic_dev_lock); rtnl_unlock(); return 0; } int cnic_unregister_driver(int ulp_type) { struct cnic_dev *dev; struct cnic_ulp_ops *ulp_ops; int i = 0; if (ulp_type >= MAX_CNIC_ULP_TYPE) { printk(KERN_ERR PFX "cnic_unregister_driver: Bad type %d\n", ulp_type); return -EINVAL; } mutex_lock(&cnic_lock); ulp_ops = cnic_ulp_tbl[ulp_type]; if (!ulp_ops) { printk(KERN_ERR PFX "cnic_unregister_driver: Type %d has not " "been registered\n", ulp_type); goto out_unlock; } read_lock(&cnic_dev_lock); list_for_each_entry(dev, &cnic_dev_list, list) { struct cnic_local *cp = dev->cnic_priv; if (rcu_dereference(cp->ulp_ops[ulp_type])) { printk(KERN_ERR PFX "cnic_unregister_driver: Type %d " "still has devices registered\n", ulp_type); read_unlock(&cnic_dev_lock); goto out_unlock; } } read_unlock(&cnic_dev_lock); if (ulp_type == CNIC_ULP_ISCSI) cnic_uio_stop(); rcu_assign_pointer(cnic_ulp_tbl[ulp_type], NULL); mutex_unlock(&cnic_lock); synchronize_rcu(); while ((atomic_read(&ulp_ops->ref_count) != 0) && (i < 20)) { msleep(100); i++; } if (atomic_read(&ulp_ops->ref_count) != 0) printk(KERN_WARNING PFX "%s: Failed waiting for ref count to go" " to zero.\n", dev->netdev->name); return 0; out_unlock: mutex_unlock(&cnic_lock); return -EINVAL; } static int cnic_start_hw(struct cnic_dev *); static void cnic_stop_hw(struct cnic_dev *); static int cnic_register_device(struct cnic_dev *dev, int ulp_type, void *ulp_ctx) { struct cnic_local *cp = dev->cnic_priv; struct cnic_ulp_ops *ulp_ops; if (ulp_type >= MAX_CNIC_ULP_TYPE) { printk(KERN_ERR PFX "cnic_register_device: Bad type %d\n", ulp_type); return -EINVAL; } mutex_lock(&cnic_lock); if (cnic_ulp_tbl[ulp_type] == NULL) { printk(KERN_ERR PFX "cnic_register_device: Driver with type %d " "has not been registered\n", ulp_type); mutex_unlock(&cnic_lock); return -EAGAIN; } if (rcu_dereference(cp->ulp_ops[ulp_type])) { printk(KERN_ERR PFX "cnic_register_device: Type %d has already " "been registered to this device\n", ulp_type); mutex_unlock(&cnic_lock); return -EBUSY; } clear_bit(ULP_F_START, &cp->ulp_flags[ulp_type]); cp->ulp_handle[ulp_type] = ulp_ctx; ulp_ops = cnic_ulp_tbl[ulp_type]; rcu_assign_pointer(cp->ulp_ops[ulp_type], ulp_ops); cnic_hold(dev); if (test_bit(CNIC_F_CNIC_UP, &dev->flags)) if (!test_and_set_bit(ULP_F_START, &cp->ulp_flags[ulp_type])) ulp_ops->cnic_start(cp->ulp_handle[ulp_type]); mutex_unlock(&cnic_lock); return 0; } EXPORT_SYMBOL(cnic_register_driver); static int cnic_unregister_device(struct cnic_dev *dev, int ulp_type) { struct cnic_local *cp = dev->cnic_priv; int i = 0; if (ulp_type >= MAX_CNIC_ULP_TYPE) { printk(KERN_ERR PFX "cnic_unregister_device: Bad type %d\n", ulp_type); return -EINVAL; } mutex_lock(&cnic_lock); if (rcu_dereference(cp->ulp_ops[ulp_type])) { rcu_assign_pointer(cp->ulp_ops[ulp_type], NULL); cnic_put(dev); } else { printk(KERN_ERR PFX "cnic_unregister_device: device not " "registered to this ulp type %d\n", ulp_type); mutex_unlock(&cnic_lock); return -EINVAL; } mutex_unlock(&cnic_lock); synchronize_rcu(); while (test_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[ulp_type]) && i < 20) { msleep(100); i++; } if (test_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[ulp_type])) printk(KERN_WARNING PFX "%s: Failed waiting for ULP up call" " to complete.\n", dev->netdev->name); return 0; } EXPORT_SYMBOL(cnic_unregister_driver); static int cnic_init_id_tbl(struct cnic_id_tbl *id_tbl, u32 size, u32 start_id) { id_tbl->start = start_id; id_tbl->max = size; id_tbl->next = 0; spin_lock_init(&id_tbl->lock); id_tbl->table = kzalloc(DIV_ROUND_UP(size, 32) * 4, GFP_KERNEL); if (!id_tbl->table) return -ENOMEM; return 0; } static void cnic_free_id_tbl(struct cnic_id_tbl *id_tbl) { kfree(id_tbl->table); id_tbl->table = NULL; } static int cnic_alloc_id(struct cnic_id_tbl *id_tbl, u32 id) { int ret = -1; id -= id_tbl->start; if (id >= id_tbl->max) return ret; spin_lock(&id_tbl->lock); if (!test_bit(id, id_tbl->table)) { set_bit(id, id_tbl->table); ret = 0; } spin_unlock(&id_tbl->lock); return ret; } /* Returns -1 if not successful */ static u32 cnic_alloc_new_id(struct cnic_id_tbl *id_tbl) { u32 id; spin_lock(&id_tbl->lock); id = find_next_zero_bit(id_tbl->table, id_tbl->max, id_tbl->next); if (id >= id_tbl->max) { id = -1; if (id_tbl->next != 0) { id = find_first_zero_bit(id_tbl->table, id_tbl->next); if (id >= id_tbl->next) id = -1; } } if (id < id_tbl->max) { set_bit(id, id_tbl->table); id_tbl->next = (id + 1) & (id_tbl->max - 1); id += id_tbl->start; } spin_unlock(&id_tbl->lock); return id; } static void cnic_free_id(struct cnic_id_tbl *id_tbl, u32 id) { if (id == -1) return; id -= id_tbl->start; if (id >= id_tbl->max) return; clear_bit(id, id_tbl->table); } static void cnic_free_dma(struct cnic_dev *dev, struct cnic_dma *dma) { int i; if (!dma->pg_arr) return; for (i = 0; i < dma->num_pages; i++) { if (dma->pg_arr[i]) { pci_free_consistent(dev->pcidev, BCM_PAGE_SIZE, dma->pg_arr[i], dma->pg_map_arr[i]); dma->pg_arr[i] = NULL; } } if (dma->pgtbl) { pci_free_consistent(dev->pcidev, dma->pgtbl_size, dma->pgtbl, dma->pgtbl_map); dma->pgtbl = NULL; } kfree(dma->pg_arr); dma->pg_arr = NULL; dma->num_pages = 0; } static void cnic_setup_page_tbl(struct cnic_dev *dev, struct cnic_dma *dma) { int i; u32 *page_table = dma->pgtbl; for (i = 0; i < dma->num_pages; i++) { /* Each entry needs to be in big endian format. */ *page_table = (u32) ((u64) dma->pg_map_arr[i] >> 32); page_table++; *page_table = (u32) dma->pg_map_arr[i]; page_table++; } } static int cnic_alloc_dma(struct cnic_dev *dev, struct cnic_dma *dma, int pages, int use_pg_tbl) { int i, size; struct cnic_local *cp = dev->cnic_priv; size = pages * (sizeof(void *) + sizeof(dma_addr_t)); dma->pg_arr = kzalloc(size, GFP_ATOMIC); if (dma->pg_arr == NULL) return -ENOMEM; dma->pg_map_arr = (dma_addr_t *) (dma->pg_arr + pages); dma->num_pages = pages; for (i = 0; i < pages; i++) { dma->pg_arr[i] = pci_alloc_consistent(dev->pcidev, BCM_PAGE_SIZE, &dma->pg_map_arr[i]); if (dma->pg_arr[i] == NULL) goto error; } if (!use_pg_tbl) return 0; dma->pgtbl_size = ((pages * 8) + BCM_PAGE_SIZE - 1) & ~(BCM_PAGE_SIZE - 1); dma->pgtbl = pci_alloc_consistent(dev->pcidev, dma->pgtbl_size, &dma->pgtbl_map); if (dma->pgtbl == NULL) goto error; cp->setup_pgtbl(dev, dma); return 0; error: cnic_free_dma(dev, dma); return -ENOMEM; } static void cnic_free_resc(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; int i = 0; if (cp->cnic_uinfo) { while (cp->uio_dev != -1 && i < 15) { msleep(100); i++; } uio_unregister_device(cp->cnic_uinfo); kfree(cp->cnic_uinfo); cp->cnic_uinfo = NULL; } if (cp->l2_buf) { pci_free_consistent(dev->pcidev, cp->l2_buf_size, cp->l2_buf, cp->l2_buf_map); cp->l2_buf = NULL; } if (cp->l2_ring) { pci_free_consistent(dev->pcidev, cp->l2_ring_size, cp->l2_ring, cp->l2_ring_map); cp->l2_ring = NULL; } for (i = 0; i < cp->ctx_blks; i++) { if (cp->ctx_arr[i].ctx) { pci_free_consistent(dev->pcidev, cp->ctx_blk_size, cp->ctx_arr[i].ctx, cp->ctx_arr[i].mapping); cp->ctx_arr[i].ctx = NULL; } } kfree(cp->ctx_arr); cp->ctx_arr = NULL; cp->ctx_blks = 0; cnic_free_dma(dev, &cp->gbl_buf_info); cnic_free_dma(dev, &cp->conn_buf_info); cnic_free_dma(dev, &cp->kwq_info); cnic_free_dma(dev, &cp->kcq_info); kfree(cp->iscsi_tbl); cp->iscsi_tbl = NULL; kfree(cp->ctx_tbl); cp->ctx_tbl = NULL; cnic_free_id_tbl(&cp->cid_tbl); } static int cnic_alloc_context(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; if (CHIP_NUM(cp) == CHIP_NUM_5709) { int i, k, arr_size; cp->ctx_blk_size = BCM_PAGE_SIZE; cp->cids_per_blk = BCM_PAGE_SIZE / 128; arr_size = BNX2_MAX_CID / cp->cids_per_blk * sizeof(struct cnic_ctx); cp->ctx_arr = kzalloc(arr_size, GFP_KERNEL); if (cp->ctx_arr == NULL) return -ENOMEM; k = 0; for (i = 0; i < 2; i++) { u32 j, reg, off, lo, hi; if (i == 0) off = BNX2_PG_CTX_MAP; else off = BNX2_ISCSI_CTX_MAP; reg = cnic_reg_rd_ind(dev, off); lo = reg >> 16; hi = reg & 0xffff; for (j = lo; j < hi; j += cp->cids_per_blk, k++) cp->ctx_arr[k].cid = j; } cp->ctx_blks = k; if (cp->ctx_blks >= (BNX2_MAX_CID / cp->cids_per_blk)) { cp->ctx_blks = 0; return -ENOMEM; } for (i = 0; i < cp->ctx_blks; i++) { cp->ctx_arr[i].ctx = pci_alloc_consistent(dev->pcidev, BCM_PAGE_SIZE, &cp->ctx_arr[i].mapping); if (cp->ctx_arr[i].ctx == NULL) return -ENOMEM; } } return 0; } static int cnic_alloc_l2_rings(struct cnic_dev *dev, int pages) { struct cnic_local *cp = dev->cnic_priv; cp->l2_ring_size = pages * BCM_PAGE_SIZE; cp->l2_ring = pci_alloc_consistent(dev->pcidev, cp->l2_ring_size, &cp->l2_ring_map); if (!cp->l2_ring) return -ENOMEM; cp->l2_buf_size = (cp->l2_rx_ring_size + 1) * cp->l2_single_buf_size; cp->l2_buf_size = PAGE_ALIGN(cp->l2_buf_size); cp->l2_buf = pci_alloc_consistent(dev->pcidev, cp->l2_buf_size, &cp->l2_buf_map); if (!cp->l2_buf) return -ENOMEM; return 0; } static int cnic_alloc_uio(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct uio_info *uinfo; int ret; uinfo = kzalloc(sizeof(*uinfo), GFP_ATOMIC); if (!uinfo) return -ENOMEM; uinfo->mem[0].addr = dev->netdev->base_addr; uinfo->mem[0].internal_addr = dev->regview; uinfo->mem[0].size = dev->netdev->mem_end - dev->netdev->mem_start; uinfo->mem[0].memtype = UIO_MEM_PHYS; uinfo->mem[1].addr = (unsigned long) cp->status_blk & PAGE_MASK; if (test_bit(CNIC_F_BNX2_CLASS, &dev->flags)) { if (cp->ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) uinfo->mem[1].size = BNX2_SBLK_MSIX_ALIGN_SIZE * 9; else uinfo->mem[1].size = BNX2_SBLK_MSIX_ALIGN_SIZE; uinfo->name = "bnx2_cnic"; } uinfo->mem[1].memtype = UIO_MEM_LOGICAL; uinfo->mem[2].addr = (unsigned long) cp->l2_ring; uinfo->mem[2].size = cp->l2_ring_size; uinfo->mem[2].memtype = UIO_MEM_LOGICAL; uinfo->mem[3].addr = (unsigned long) cp->l2_buf; uinfo->mem[3].size = cp->l2_buf_size; uinfo->mem[3].memtype = UIO_MEM_LOGICAL; uinfo->version = CNIC_MODULE_VERSION; uinfo->irq = UIO_IRQ_CUSTOM; uinfo->open = cnic_uio_open; uinfo->release = cnic_uio_close; uinfo->priv = dev; ret = uio_register_device(&dev->pcidev->dev, uinfo); if (ret) { kfree(uinfo); return ret; } cp->cnic_uinfo = uinfo; return 0; } static int cnic_alloc_bnx2_resc(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; int ret; ret = cnic_alloc_dma(dev, &cp->kwq_info, KWQ_PAGE_CNT, 1); if (ret) goto error; cp->kwq = (struct kwqe **) cp->kwq_info.pg_arr; ret = cnic_alloc_dma(dev, &cp->kcq_info, KCQ_PAGE_CNT, 1); if (ret) goto error; cp->kcq = (struct kcqe **) cp->kcq_info.pg_arr; ret = cnic_alloc_context(dev); if (ret) goto error; ret = cnic_alloc_l2_rings(dev, 2); if (ret) goto error; ret = cnic_alloc_uio(dev); if (ret) goto error; return 0; error: cnic_free_resc(dev); return ret; } static inline u32 cnic_kwq_avail(struct cnic_local *cp) { return cp->max_kwq_idx - ((cp->kwq_prod_idx - cp->kwq_con_idx) & cp->max_kwq_idx); } static int cnic_submit_bnx2_kwqes(struct cnic_dev *dev, struct kwqe *wqes[], u32 num_wqes) { struct cnic_local *cp = dev->cnic_priv; struct kwqe *prod_qe; u16 prod, sw_prod, i; if (!test_bit(CNIC_F_CNIC_UP, &dev->flags)) return -EAGAIN; /* bnx2 is down */ spin_lock_bh(&cp->cnic_ulp_lock); if (num_wqes > cnic_kwq_avail(cp) && !(cp->cnic_local_flags & CNIC_LCL_FL_KWQ_INIT)) { spin_unlock_bh(&cp->cnic_ulp_lock); return -EAGAIN; } cp->cnic_local_flags &= ~CNIC_LCL_FL_KWQ_INIT; prod = cp->kwq_prod_idx; sw_prod = prod & MAX_KWQ_IDX; for (i = 0; i < num_wqes; i++) { prod_qe = &cp->kwq[KWQ_PG(sw_prod)][KWQ_IDX(sw_prod)]; memcpy(prod_qe, wqes[i], sizeof(struct kwqe)); prod++; sw_prod = prod & MAX_KWQ_IDX; } cp->kwq_prod_idx = prod; CNIC_WR16(dev, cp->kwq_io_addr, cp->kwq_prod_idx); spin_unlock_bh(&cp->cnic_ulp_lock); return 0; } static void service_kcqes(struct cnic_dev *dev, int num_cqes) { struct cnic_local *cp = dev->cnic_priv; int i, j; i = 0; j = 1; while (num_cqes) { struct cnic_ulp_ops *ulp_ops; int ulp_type; u32 kcqe_op_flag = cp->completed_kcq[i]->kcqe_op_flag; u32 kcqe_layer = kcqe_op_flag & KCQE_FLAGS_LAYER_MASK; if (unlikely(kcqe_op_flag & KCQE_RAMROD_COMPLETION)) cnic_kwq_completion(dev, 1); while (j < num_cqes) { u32 next_op = cp->completed_kcq[i + j]->kcqe_op_flag; if ((next_op & KCQE_FLAGS_LAYER_MASK) != kcqe_layer) break; if (unlikely(next_op & KCQE_RAMROD_COMPLETION)) cnic_kwq_completion(dev, 1); j++; } if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L5_RDMA) ulp_type = CNIC_ULP_RDMA; else if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L5_ISCSI) ulp_type = CNIC_ULP_ISCSI; else if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L4) ulp_type = CNIC_ULP_L4; else if (kcqe_layer == KCQE_FLAGS_LAYER_MASK_L2) goto end; else { printk(KERN_ERR PFX "%s: Unknown type of KCQE(0x%x)\n", dev->netdev->name, kcqe_op_flag); goto end; } rcu_read_lock(); ulp_ops = rcu_dereference(cp->ulp_ops[ulp_type]); if (likely(ulp_ops)) { ulp_ops->indicate_kcqes(cp->ulp_handle[ulp_type], cp->completed_kcq + i, j); } rcu_read_unlock(); end: num_cqes -= j; i += j; j = 1; } return; } static u16 cnic_bnx2_next_idx(u16 idx) { return idx + 1; } static u16 cnic_bnx2_hw_idx(u16 idx) { return idx; } static int cnic_get_kcqes(struct cnic_dev *dev, u16 hw_prod, u16 *sw_prod) { struct cnic_local *cp = dev->cnic_priv; u16 i, ri, last; struct kcqe *kcqe; int kcqe_cnt = 0, last_cnt = 0; i = ri = last = *sw_prod; ri &= MAX_KCQ_IDX; while ((i != hw_prod) && (kcqe_cnt < MAX_COMPLETED_KCQE)) { kcqe = &cp->kcq[KCQ_PG(ri)][KCQ_IDX(ri)]; cp->completed_kcq[kcqe_cnt++] = kcqe; i = cp->next_idx(i); ri = i & MAX_KCQ_IDX; if (likely(!(kcqe->kcqe_op_flag & KCQE_FLAGS_NEXT))) { last_cnt = kcqe_cnt; last = i; } } *sw_prod = last; return last_cnt; } static void cnic_chk_bnx2_pkt_rings(struct cnic_local *cp) { u16 rx_cons = *cp->rx_cons_ptr; u16 tx_cons = *cp->tx_cons_ptr; if (cp->tx_cons != tx_cons || cp->rx_cons != rx_cons) { cp->tx_cons = tx_cons; cp->rx_cons = rx_cons; uio_event_notify(cp->cnic_uinfo); } } static int cnic_service_bnx2(void *data, void *status_blk) { struct cnic_dev *dev = data; struct status_block *sblk = status_blk; struct cnic_local *cp = dev->cnic_priv; u32 status_idx = sblk->status_idx; u16 hw_prod, sw_prod; int kcqe_cnt; if (unlikely(!test_bit(CNIC_F_CNIC_UP, &dev->flags))) return status_idx; cp->kwq_con_idx = *cp->kwq_con_idx_ptr; hw_prod = sblk->status_completion_producer_index; sw_prod = cp->kcq_prod_idx; while (sw_prod != hw_prod) { kcqe_cnt = cnic_get_kcqes(dev, hw_prod, &sw_prod); if (kcqe_cnt == 0) goto done; service_kcqes(dev, kcqe_cnt); /* Tell compiler that status_blk fields can change. */ barrier(); if (status_idx != sblk->status_idx) { status_idx = sblk->status_idx; cp->kwq_con_idx = *cp->kwq_con_idx_ptr; hw_prod = sblk->status_completion_producer_index; } else break; } done: CNIC_WR16(dev, cp->kcq_io_addr, sw_prod); cp->kcq_prod_idx = sw_prod; cnic_chk_bnx2_pkt_rings(cp); return status_idx; } static void cnic_service_bnx2_msix(unsigned long data) { struct cnic_dev *dev = (struct cnic_dev *) data; struct cnic_local *cp = dev->cnic_priv; struct status_block_msix *status_blk = cp->bnx2_status_blk; u32 status_idx = status_blk->status_idx; u16 hw_prod, sw_prod; int kcqe_cnt; cp->kwq_con_idx = status_blk->status_cmd_consumer_index; hw_prod = status_blk->status_completion_producer_index; sw_prod = cp->kcq_prod_idx; while (sw_prod != hw_prod) { kcqe_cnt = cnic_get_kcqes(dev, hw_prod, &sw_prod); if (kcqe_cnt == 0) goto done; service_kcqes(dev, kcqe_cnt); /* Tell compiler that status_blk fields can change. */ barrier(); if (status_idx != status_blk->status_idx) { status_idx = status_blk->status_idx; cp->kwq_con_idx = status_blk->status_cmd_consumer_index; hw_prod = status_blk->status_completion_producer_index; } else break; } done: CNIC_WR16(dev, cp->kcq_io_addr, sw_prod); cp->kcq_prod_idx = sw_prod; cnic_chk_bnx2_pkt_rings(cp); cp->last_status_idx = status_idx; CNIC_WR(dev, BNX2_PCICFG_INT_ACK_CMD, cp->int_num | BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | cp->last_status_idx); } static irqreturn_t cnic_irq(int irq, void *dev_instance) { struct cnic_dev *dev = dev_instance; struct cnic_local *cp = dev->cnic_priv; u16 prod = cp->kcq_prod_idx & MAX_KCQ_IDX; if (cp->ack_int) cp->ack_int(dev); prefetch(cp->status_blk); prefetch(&cp->kcq[KCQ_PG(prod)][KCQ_IDX(prod)]); if (likely(test_bit(CNIC_F_CNIC_UP, &dev->flags))) tasklet_schedule(&cp->cnic_irq_task); return IRQ_HANDLED; } static void cnic_ulp_stop(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; int if_type; if (cp->cnic_uinfo) cnic_send_nlmsg(cp, ISCSI_KEVENT_IF_DOWN, NULL); for (if_type = 0; if_type < MAX_CNIC_ULP_TYPE; if_type++) { struct cnic_ulp_ops *ulp_ops; mutex_lock(&cnic_lock); ulp_ops = cp->ulp_ops[if_type]; if (!ulp_ops) { mutex_unlock(&cnic_lock); continue; } set_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]); mutex_unlock(&cnic_lock); if (test_and_clear_bit(ULP_F_START, &cp->ulp_flags[if_type])) ulp_ops->cnic_stop(cp->ulp_handle[if_type]); clear_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]); } } static void cnic_ulp_start(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; int if_type; for (if_type = 0; if_type < MAX_CNIC_ULP_TYPE; if_type++) { struct cnic_ulp_ops *ulp_ops; mutex_lock(&cnic_lock); ulp_ops = cp->ulp_ops[if_type]; if (!ulp_ops || !ulp_ops->cnic_start) { mutex_unlock(&cnic_lock); continue; } set_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]); mutex_unlock(&cnic_lock); if (!test_and_set_bit(ULP_F_START, &cp->ulp_flags[if_type])) ulp_ops->cnic_start(cp->ulp_handle[if_type]); clear_bit(ULP_F_CALL_PENDING, &cp->ulp_flags[if_type]); } } static int cnic_ctl(void *data, struct cnic_ctl_info *info) { struct cnic_dev *dev = data; switch (info->cmd) { case CNIC_CTL_STOP_CMD: cnic_hold(dev); cnic_ulp_stop(dev); cnic_stop_hw(dev); cnic_put(dev); break; case CNIC_CTL_START_CMD: cnic_hold(dev); if (!cnic_start_hw(dev)) cnic_ulp_start(dev); cnic_put(dev); break; default: return -EINVAL; } return 0; } static void cnic_ulp_init(struct cnic_dev *dev) { int i; struct cnic_local *cp = dev->cnic_priv; for (i = 0; i < MAX_CNIC_ULP_TYPE_EXT; i++) { struct cnic_ulp_ops *ulp_ops; mutex_lock(&cnic_lock); ulp_ops = cnic_ulp_tbl[i]; if (!ulp_ops || !ulp_ops->cnic_init) { mutex_unlock(&cnic_lock); continue; } ulp_get(ulp_ops); mutex_unlock(&cnic_lock); if (!test_and_set_bit(ULP_F_INIT, &cp->ulp_flags[i])) ulp_ops->cnic_init(dev); ulp_put(ulp_ops); } } static void cnic_ulp_exit(struct cnic_dev *dev) { int i; struct cnic_local *cp = dev->cnic_priv; for (i = 0; i < MAX_CNIC_ULP_TYPE_EXT; i++) { struct cnic_ulp_ops *ulp_ops; mutex_lock(&cnic_lock); ulp_ops = cnic_ulp_tbl[i]; if (!ulp_ops || !ulp_ops->cnic_exit) { mutex_unlock(&cnic_lock); continue; } ulp_get(ulp_ops); mutex_unlock(&cnic_lock); if (test_and_clear_bit(ULP_F_INIT, &cp->ulp_flags[i])) ulp_ops->cnic_exit(dev); ulp_put(ulp_ops); } } static int cnic_cm_offload_pg(struct cnic_sock *csk) { struct cnic_dev *dev = csk->dev; struct l4_kwq_offload_pg *l4kwqe; struct kwqe *wqes[1]; l4kwqe = (struct l4_kwq_offload_pg *) &csk->kwqe1; memset(l4kwqe, 0, sizeof(*l4kwqe)); wqes[0] = (struct kwqe *) l4kwqe; l4kwqe->op_code = L4_KWQE_OPCODE_VALUE_OFFLOAD_PG; l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_OFFLOAD_PG_LAYER_CODE_SHIFT; l4kwqe->l2hdr_nbytes = ETH_HLEN; l4kwqe->da0 = csk->ha[0]; l4kwqe->da1 = csk->ha[1]; l4kwqe->da2 = csk->ha[2]; l4kwqe->da3 = csk->ha[3]; l4kwqe->da4 = csk->ha[4]; l4kwqe->da5 = csk->ha[5]; l4kwqe->sa0 = dev->mac_addr[0]; l4kwqe->sa1 = dev->mac_addr[1]; l4kwqe->sa2 = dev->mac_addr[2]; l4kwqe->sa3 = dev->mac_addr[3]; l4kwqe->sa4 = dev->mac_addr[4]; l4kwqe->sa5 = dev->mac_addr[5]; l4kwqe->etype = ETH_P_IP; l4kwqe->ipid_count = DEF_IPID_COUNT; l4kwqe->host_opaque = csk->l5_cid; if (csk->vlan_id) { l4kwqe->pg_flags |= L4_KWQ_OFFLOAD_PG_VLAN_TAGGING; l4kwqe->vlan_tag = csk->vlan_id; l4kwqe->l2hdr_nbytes += 4; } return dev->submit_kwqes(dev, wqes, 1); } static int cnic_cm_update_pg(struct cnic_sock *csk) { struct cnic_dev *dev = csk->dev; struct l4_kwq_update_pg *l4kwqe; struct kwqe *wqes[1]; l4kwqe = (struct l4_kwq_update_pg *) &csk->kwqe1; memset(l4kwqe, 0, sizeof(*l4kwqe)); wqes[0] = (struct kwqe *) l4kwqe; l4kwqe->opcode = L4_KWQE_OPCODE_VALUE_UPDATE_PG; l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_UPDATE_PG_LAYER_CODE_SHIFT; l4kwqe->pg_cid = csk->pg_cid; l4kwqe->da0 = csk->ha[0]; l4kwqe->da1 = csk->ha[1]; l4kwqe->da2 = csk->ha[2]; l4kwqe->da3 = csk->ha[3]; l4kwqe->da4 = csk->ha[4]; l4kwqe->da5 = csk->ha[5]; l4kwqe->pg_host_opaque = csk->l5_cid; l4kwqe->pg_valids = L4_KWQ_UPDATE_PG_VALIDS_DA; return dev->submit_kwqes(dev, wqes, 1); } static int cnic_cm_upload_pg(struct cnic_sock *csk) { struct cnic_dev *dev = csk->dev; struct l4_kwq_upload *l4kwqe; struct kwqe *wqes[1]; l4kwqe = (struct l4_kwq_upload *) &csk->kwqe1; memset(l4kwqe, 0, sizeof(*l4kwqe)); wqes[0] = (struct kwqe *) l4kwqe; l4kwqe->opcode = L4_KWQE_OPCODE_VALUE_UPLOAD_PG; l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_UPLOAD_LAYER_CODE_SHIFT; l4kwqe->cid = csk->pg_cid; return dev->submit_kwqes(dev, wqes, 1); } static int cnic_cm_conn_req(struct cnic_sock *csk) { struct cnic_dev *dev = csk->dev; struct l4_kwq_connect_req1 *l4kwqe1; struct l4_kwq_connect_req2 *l4kwqe2; struct l4_kwq_connect_req3 *l4kwqe3; struct kwqe *wqes[3]; u8 tcp_flags = 0; int num_wqes = 2; l4kwqe1 = (struct l4_kwq_connect_req1 *) &csk->kwqe1; l4kwqe2 = (struct l4_kwq_connect_req2 *) &csk->kwqe2; l4kwqe3 = (struct l4_kwq_connect_req3 *) &csk->kwqe3; memset(l4kwqe1, 0, sizeof(*l4kwqe1)); memset(l4kwqe2, 0, sizeof(*l4kwqe2)); memset(l4kwqe3, 0, sizeof(*l4kwqe3)); l4kwqe3->op_code = L4_KWQE_OPCODE_VALUE_CONNECT3; l4kwqe3->flags = L4_LAYER_CODE << L4_KWQ_CONNECT_REQ3_LAYER_CODE_SHIFT; l4kwqe3->ka_timeout = csk->ka_timeout; l4kwqe3->ka_interval = csk->ka_interval; l4kwqe3->ka_max_probe_count = csk->ka_max_probe_count; l4kwqe3->tos = csk->tos; l4kwqe3->ttl = csk->ttl; l4kwqe3->snd_seq_scale = csk->snd_seq_scale; l4kwqe3->pmtu = csk->mtu; l4kwqe3->rcv_buf = csk->rcv_buf; l4kwqe3->snd_buf = csk->snd_buf; l4kwqe3->seed = csk->seed; wqes[0] = (struct kwqe *) l4kwqe1; if (test_bit(SK_F_IPV6, &csk->flags)) { wqes[1] = (struct kwqe *) l4kwqe2; wqes[2] = (struct kwqe *) l4kwqe3; num_wqes = 3; l4kwqe1->conn_flags = L4_KWQ_CONNECT_REQ1_IP_V6; l4kwqe2->op_code = L4_KWQE_OPCODE_VALUE_CONNECT2; l4kwqe2->flags = L4_KWQ_CONNECT_REQ2_LINKED_WITH_NEXT | L4_LAYER_CODE << L4_KWQ_CONNECT_REQ2_LAYER_CODE_SHIFT; l4kwqe2->src_ip_v6_2 = be32_to_cpu(csk->src_ip[1]); l4kwqe2->src_ip_v6_3 = be32_to_cpu(csk->src_ip[2]); l4kwqe2->src_ip_v6_4 = be32_to_cpu(csk->src_ip[3]); l4kwqe2->dst_ip_v6_2 = be32_to_cpu(csk->dst_ip[1]); l4kwqe2->dst_ip_v6_3 = be32_to_cpu(csk->dst_ip[2]); l4kwqe2->dst_ip_v6_4 = be32_to_cpu(csk->dst_ip[3]); l4kwqe3->mss = l4kwqe3->pmtu - sizeof(struct ipv6hdr) - sizeof(struct tcphdr); } else { wqes[1] = (struct kwqe *) l4kwqe3; l4kwqe3->mss = l4kwqe3->pmtu - sizeof(struct iphdr) - sizeof(struct tcphdr); } l4kwqe1->op_code = L4_KWQE_OPCODE_VALUE_CONNECT1; l4kwqe1->flags = (L4_LAYER_CODE << L4_KWQ_CONNECT_REQ1_LAYER_CODE_SHIFT) | L4_KWQ_CONNECT_REQ3_LINKED_WITH_NEXT; l4kwqe1->cid = csk->cid; l4kwqe1->pg_cid = csk->pg_cid; l4kwqe1->src_ip = be32_to_cpu(csk->src_ip[0]); l4kwqe1->dst_ip = be32_to_cpu(csk->dst_ip[0]); l4kwqe1->src_port = be16_to_cpu(csk->src_port); l4kwqe1->dst_port = be16_to_cpu(csk->dst_port); if (csk->tcp_flags & SK_TCP_NO_DELAY_ACK) tcp_flags |= L4_KWQ_CONNECT_REQ1_NO_DELAY_ACK; if (csk->tcp_flags & SK_TCP_KEEP_ALIVE) tcp_flags |= L4_KWQ_CONNECT_REQ1_KEEP_ALIVE; if (csk->tcp_flags & SK_TCP_NAGLE) tcp_flags |= L4_KWQ_CONNECT_REQ1_NAGLE_ENABLE; if (csk->tcp_flags & SK_TCP_TIMESTAMP) tcp_flags |= L4_KWQ_CONNECT_REQ1_TIME_STAMP; if (csk->tcp_flags & SK_TCP_SACK) tcp_flags |= L4_KWQ_CONNECT_REQ1_SACK; if (csk->tcp_flags & SK_TCP_SEG_SCALING) tcp_flags |= L4_KWQ_CONNECT_REQ1_SEG_SCALING; l4kwqe1->tcp_flags = tcp_flags; return dev->submit_kwqes(dev, wqes, num_wqes); } static int cnic_cm_close_req(struct cnic_sock *csk) { struct cnic_dev *dev = csk->dev; struct l4_kwq_close_req *l4kwqe; struct kwqe *wqes[1]; l4kwqe = (struct l4_kwq_close_req *) &csk->kwqe2; memset(l4kwqe, 0, sizeof(*l4kwqe)); wqes[0] = (struct kwqe *) l4kwqe; l4kwqe->op_code = L4_KWQE_OPCODE_VALUE_CLOSE; l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_CLOSE_REQ_LAYER_CODE_SHIFT; l4kwqe->cid = csk->cid; return dev->submit_kwqes(dev, wqes, 1); } static int cnic_cm_abort_req(struct cnic_sock *csk) { struct cnic_dev *dev = csk->dev; struct l4_kwq_reset_req *l4kwqe; struct kwqe *wqes[1]; l4kwqe = (struct l4_kwq_reset_req *) &csk->kwqe2; memset(l4kwqe, 0, sizeof(*l4kwqe)); wqes[0] = (struct kwqe *) l4kwqe; l4kwqe->op_code = L4_KWQE_OPCODE_VALUE_RESET; l4kwqe->flags = L4_LAYER_CODE << L4_KWQ_RESET_REQ_LAYER_CODE_SHIFT; l4kwqe->cid = csk->cid; return dev->submit_kwqes(dev, wqes, 1); } static int cnic_cm_create(struct cnic_dev *dev, int ulp_type, u32 cid, u32 l5_cid, struct cnic_sock **csk, void *context) { struct cnic_local *cp = dev->cnic_priv; struct cnic_sock *csk1; if (l5_cid >= MAX_CM_SK_TBL_SZ) return -EINVAL; csk1 = &cp->csk_tbl[l5_cid]; if (atomic_read(&csk1->ref_count)) return -EAGAIN; if (test_and_set_bit(SK_F_INUSE, &csk1->flags)) return -EBUSY; csk1->dev = dev; csk1->cid = cid; csk1->l5_cid = l5_cid; csk1->ulp_type = ulp_type; csk1->context = context; csk1->ka_timeout = DEF_KA_TIMEOUT; csk1->ka_interval = DEF_KA_INTERVAL; csk1->ka_max_probe_count = DEF_KA_MAX_PROBE_COUNT; csk1->tos = DEF_TOS; csk1->ttl = DEF_TTL; csk1->snd_seq_scale = DEF_SND_SEQ_SCALE; csk1->rcv_buf = DEF_RCV_BUF; csk1->snd_buf = DEF_SND_BUF; csk1->seed = DEF_SEED; *csk = csk1; return 0; } static void cnic_cm_cleanup(struct cnic_sock *csk) { if (csk->src_port) { struct cnic_dev *dev = csk->dev; struct cnic_local *cp = dev->cnic_priv; cnic_free_id(&cp->csk_port_tbl, csk->src_port); csk->src_port = 0; } } static void cnic_close_conn(struct cnic_sock *csk) { if (test_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags)) { cnic_cm_upload_pg(csk); clear_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags); } cnic_cm_cleanup(csk); } static int cnic_cm_destroy(struct cnic_sock *csk) { if (!cnic_in_use(csk)) return -EINVAL; csk_hold(csk); clear_bit(SK_F_INUSE, &csk->flags); smp_mb__after_clear_bit(); while (atomic_read(&csk->ref_count) != 1) msleep(1); cnic_cm_cleanup(csk); csk->flags = 0; csk_put(csk); return 0; } static inline u16 cnic_get_vlan(struct net_device *dev, struct net_device **vlan_dev) { if (dev->priv_flags & IFF_802_1Q_VLAN) { *vlan_dev = vlan_dev_real_dev(dev); return vlan_dev_vlan_id(dev); } *vlan_dev = dev; return 0; } static int cnic_get_v4_route(struct sockaddr_in *dst_addr, struct dst_entry **dst) { #if defined(CONFIG_INET) struct flowi fl; int err; struct rtable *rt; memset(&fl, 0, sizeof(fl)); fl.nl_u.ip4_u.daddr = dst_addr->sin_addr.s_addr; err = ip_route_output_key(&init_net, &rt, &fl); if (!err) *dst = &rt->u.dst; return err; #else return -ENETUNREACH; #endif } static int cnic_get_v6_route(struct sockaddr_in6 *dst_addr, struct dst_entry **dst) { #if defined(CONFIG_IPV6) || (defined(CONFIG_IPV6_MODULE) && defined(MODULE)) struct flowi fl; memset(&fl, 0, sizeof(fl)); ipv6_addr_copy(&fl.fl6_dst, &dst_addr->sin6_addr); if (ipv6_addr_type(&fl.fl6_dst) & IPV6_ADDR_LINKLOCAL) fl.oif = dst_addr->sin6_scope_id; *dst = ip6_route_output(&init_net, NULL, &fl); if (*dst) return 0; #endif return -ENETUNREACH; } static struct cnic_dev *cnic_cm_select_dev(struct sockaddr_in *dst_addr, int ulp_type) { struct cnic_dev *dev = NULL; struct dst_entry *dst; struct net_device *netdev = NULL; int err = -ENETUNREACH; if (dst_addr->sin_family == AF_INET) err = cnic_get_v4_route(dst_addr, &dst); else if (dst_addr->sin_family == AF_INET6) { struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; err = cnic_get_v6_route(dst_addr6, &dst); } else return NULL; if (err) return NULL; if (!dst->dev) goto done; cnic_get_vlan(dst->dev, &netdev); dev = cnic_from_netdev(netdev); done: dst_release(dst); if (dev) cnic_put(dev); return dev; } static int cnic_resolve_addr(struct cnic_sock *csk, struct cnic_sockaddr *saddr) { struct cnic_dev *dev = csk->dev; struct cnic_local *cp = dev->cnic_priv; return cnic_send_nlmsg(cp, ISCSI_KEVENT_PATH_REQ, csk); } static int cnic_get_route(struct cnic_sock *csk, struct cnic_sockaddr *saddr) { struct cnic_dev *dev = csk->dev; struct cnic_local *cp = dev->cnic_priv; int is_v6, err, rc = -ENETUNREACH; struct dst_entry *dst; struct net_device *realdev; u32 local_port; if (saddr->local.v6.sin6_family == AF_INET6 && saddr->remote.v6.sin6_family == AF_INET6) is_v6 = 1; else if (saddr->local.v4.sin_family == AF_INET && saddr->remote.v4.sin_family == AF_INET) is_v6 = 0; else return -EINVAL; clear_bit(SK_F_IPV6, &csk->flags); if (is_v6) { #if defined(CONFIG_IPV6) || (defined(CONFIG_IPV6_MODULE) && defined(MODULE)) set_bit(SK_F_IPV6, &csk->flags); err = cnic_get_v6_route(&saddr->remote.v6, &dst); if (err) return err; if (!dst || dst->error || !dst->dev) goto err_out; memcpy(&csk->dst_ip[0], &saddr->remote.v6.sin6_addr, sizeof(struct in6_addr)); csk->dst_port = saddr->remote.v6.sin6_port; local_port = saddr->local.v6.sin6_port; #else return rc; #endif } else { err = cnic_get_v4_route(&saddr->remote.v4, &dst); if (err) return err; if (!dst || dst->error || !dst->dev) goto err_out; csk->dst_ip[0] = saddr->remote.v4.sin_addr.s_addr; csk->dst_port = saddr->remote.v4.sin_port; local_port = saddr->local.v4.sin_port; } csk->vlan_id = cnic_get_vlan(dst->dev, &realdev); if (realdev != dev->netdev) goto err_out; if (local_port >= CNIC_LOCAL_PORT_MIN && local_port < CNIC_LOCAL_PORT_MAX) { if (cnic_alloc_id(&cp->csk_port_tbl, local_port)) local_port = 0; } else local_port = 0; if (!local_port) { local_port = cnic_alloc_new_id(&cp->csk_port_tbl); if (local_port == -1) { rc = -ENOMEM; goto err_out; } } csk->src_port = local_port; csk->mtu = dst_mtu(dst); rc = 0; err_out: dst_release(dst); return rc; } static void cnic_init_csk_state(struct cnic_sock *csk) { csk->state = 0; clear_bit(SK_F_OFFLD_SCHED, &csk->flags); clear_bit(SK_F_CLOSING, &csk->flags); } static int cnic_cm_connect(struct cnic_sock *csk, struct cnic_sockaddr *saddr) { int err = 0; if (!cnic_in_use(csk)) return -EINVAL; if (test_and_set_bit(SK_F_CONNECT_START, &csk->flags)) return -EINVAL; cnic_init_csk_state(csk); err = cnic_get_route(csk, saddr); if (err) goto err_out; err = cnic_resolve_addr(csk, saddr); if (!err) return 0; err_out: clear_bit(SK_F_CONNECT_START, &csk->flags); return err; } static int cnic_cm_abort(struct cnic_sock *csk) { struct cnic_local *cp = csk->dev->cnic_priv; u32 opcode; if (!cnic_in_use(csk)) return -EINVAL; if (cnic_abort_prep(csk)) return cnic_cm_abort_req(csk); /* Getting here means that we haven't started connect, or * connect was not successful. */ csk->state = L4_KCQE_OPCODE_VALUE_RESET_COMP; if (test_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags)) opcode = csk->state; else opcode = L5CM_RAMROD_CMD_ID_TERMINATE_OFFLOAD; cp->close_conn(csk, opcode); return 0; } static int cnic_cm_close(struct cnic_sock *csk) { if (!cnic_in_use(csk)) return -EINVAL; if (cnic_close_prep(csk)) { csk->state = L4_KCQE_OPCODE_VALUE_CLOSE_COMP; return cnic_cm_close_req(csk); } return 0; } static void cnic_cm_upcall(struct cnic_local *cp, struct cnic_sock *csk, u8 opcode) { struct cnic_ulp_ops *ulp_ops; int ulp_type = csk->ulp_type; rcu_read_lock(); ulp_ops = rcu_dereference(cp->ulp_ops[ulp_type]); if (ulp_ops) { if (opcode == L4_KCQE_OPCODE_VALUE_CONNECT_COMPLETE) ulp_ops->cm_connect_complete(csk); else if (opcode == L4_KCQE_OPCODE_VALUE_CLOSE_COMP) ulp_ops->cm_close_complete(csk); else if (opcode == L4_KCQE_OPCODE_VALUE_RESET_RECEIVED) ulp_ops->cm_remote_abort(csk); else if (opcode == L4_KCQE_OPCODE_VALUE_RESET_COMP) ulp_ops->cm_abort_complete(csk); else if (opcode == L4_KCQE_OPCODE_VALUE_CLOSE_RECEIVED) ulp_ops->cm_remote_close(csk); } rcu_read_unlock(); } static int cnic_cm_set_pg(struct cnic_sock *csk) { if (cnic_offld_prep(csk)) { if (test_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags)) cnic_cm_update_pg(csk); else cnic_cm_offload_pg(csk); } return 0; } static void cnic_cm_process_offld_pg(struct cnic_dev *dev, struct l4_kcq *kcqe) { struct cnic_local *cp = dev->cnic_priv; u32 l5_cid = kcqe->pg_host_opaque; u8 opcode = kcqe->op_code; struct cnic_sock *csk = &cp->csk_tbl[l5_cid]; csk_hold(csk); if (!cnic_in_use(csk)) goto done; if (opcode == L4_KCQE_OPCODE_VALUE_UPDATE_PG) { clear_bit(SK_F_OFFLD_SCHED, &csk->flags); goto done; } csk->pg_cid = kcqe->pg_cid; set_bit(SK_F_PG_OFFLD_COMPLETE, &csk->flags); cnic_cm_conn_req(csk); done: csk_put(csk); } static void cnic_cm_process_kcqe(struct cnic_dev *dev, struct kcqe *kcqe) { struct cnic_local *cp = dev->cnic_priv; struct l4_kcq *l4kcqe = (struct l4_kcq *) kcqe; u8 opcode = l4kcqe->op_code; u32 l5_cid; struct cnic_sock *csk; if (opcode == L4_KCQE_OPCODE_VALUE_OFFLOAD_PG || opcode == L4_KCQE_OPCODE_VALUE_UPDATE_PG) { cnic_cm_process_offld_pg(dev, l4kcqe); return; } l5_cid = l4kcqe->conn_id; if (opcode & 0x80) l5_cid = l4kcqe->cid; if (l5_cid >= MAX_CM_SK_TBL_SZ) return; csk = &cp->csk_tbl[l5_cid]; csk_hold(csk); if (!cnic_in_use(csk)) { csk_put(csk); return; } switch (opcode) { case L4_KCQE_OPCODE_VALUE_CONNECT_COMPLETE: if (l4kcqe->status == 0) set_bit(SK_F_OFFLD_COMPLETE, &csk->flags); smp_mb__before_clear_bit(); clear_bit(SK_F_OFFLD_SCHED, &csk->flags); cnic_cm_upcall(cp, csk, opcode); break; case L4_KCQE_OPCODE_VALUE_RESET_RECEIVED: if (test_and_clear_bit(SK_F_OFFLD_COMPLETE, &csk->flags)) csk->state = opcode; /* fall through */ case L4_KCQE_OPCODE_VALUE_CLOSE_COMP: case L4_KCQE_OPCODE_VALUE_RESET_COMP: cp->close_conn(csk, opcode); break; case L4_KCQE_OPCODE_VALUE_CLOSE_RECEIVED: cnic_cm_upcall(cp, csk, opcode); break; } csk_put(csk); } static void cnic_cm_indicate_kcqe(void *data, struct kcqe *kcqe[], u32 num) { struct cnic_dev *dev = data; int i; for (i = 0; i < num; i++) cnic_cm_process_kcqe(dev, kcqe[i]); } static struct cnic_ulp_ops cm_ulp_ops = { .indicate_kcqes = cnic_cm_indicate_kcqe, }; static void cnic_cm_free_mem(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; kfree(cp->csk_tbl); cp->csk_tbl = NULL; cnic_free_id_tbl(&cp->csk_port_tbl); } static int cnic_cm_alloc_mem(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; cp->csk_tbl = kzalloc(sizeof(struct cnic_sock) * MAX_CM_SK_TBL_SZ, GFP_KERNEL); if (!cp->csk_tbl) return -ENOMEM; if (cnic_init_id_tbl(&cp->csk_port_tbl, CNIC_LOCAL_PORT_RANGE, CNIC_LOCAL_PORT_MIN)) { cnic_cm_free_mem(dev); return -ENOMEM; } return 0; } static int cnic_ready_to_close(struct cnic_sock *csk, u32 opcode) { if ((opcode == csk->state) || (opcode == L4_KCQE_OPCODE_VALUE_RESET_RECEIVED && csk->state == L4_KCQE_OPCODE_VALUE_CLOSE_COMP)) { if (!test_and_set_bit(SK_F_CLOSING, &csk->flags)) return 1; } return 0; } static void cnic_close_bnx2_conn(struct cnic_sock *csk, u32 opcode) { struct cnic_dev *dev = csk->dev; struct cnic_local *cp = dev->cnic_priv; clear_bit(SK_F_CONNECT_START, &csk->flags); if (cnic_ready_to_close(csk, opcode)) { cnic_close_conn(csk); cnic_cm_upcall(cp, csk, opcode); } } static void cnic_cm_stop_bnx2_hw(struct cnic_dev *dev) { } static int cnic_cm_init_bnx2_hw(struct cnic_dev *dev) { u32 seed; get_random_bytes(&seed, 4); cnic_ctx_wr(dev, 45, 0, seed); return 0; } static int cnic_cm_open(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; int err; err = cnic_cm_alloc_mem(dev); if (err) return err; err = cp->start_cm(dev); if (err) goto err_out; dev->cm_create = cnic_cm_create; dev->cm_destroy = cnic_cm_destroy; dev->cm_connect = cnic_cm_connect; dev->cm_abort = cnic_cm_abort; dev->cm_close = cnic_cm_close; dev->cm_select_dev = cnic_cm_select_dev; cp->ulp_handle[CNIC_ULP_L4] = dev; rcu_assign_pointer(cp->ulp_ops[CNIC_ULP_L4], &cm_ulp_ops); return 0; err_out: cnic_cm_free_mem(dev); return err; } static int cnic_cm_shutdown(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; int i; cp->stop_cm(dev); if (!cp->csk_tbl) return 0; for (i = 0; i < MAX_CM_SK_TBL_SZ; i++) { struct cnic_sock *csk = &cp->csk_tbl[i]; clear_bit(SK_F_INUSE, &csk->flags); cnic_cm_cleanup(csk); } cnic_cm_free_mem(dev); return 0; } static void cnic_init_context(struct cnic_dev *dev, u32 cid) { struct cnic_local *cp = dev->cnic_priv; u32 cid_addr; int i; if (CHIP_NUM(cp) == CHIP_NUM_5709) return; cid_addr = GET_CID_ADDR(cid); for (i = 0; i < CTX_SIZE; i += 4) cnic_ctx_wr(dev, cid_addr, i, 0); } static int cnic_setup_5709_context(struct cnic_dev *dev, int valid) { struct cnic_local *cp = dev->cnic_priv; int ret = 0, i; u32 valid_bit = valid ? BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID : 0; if (CHIP_NUM(cp) != CHIP_NUM_5709) return 0; for (i = 0; i < cp->ctx_blks; i++) { int j; u32 idx = cp->ctx_arr[i].cid / cp->cids_per_blk; u32 val; memset(cp->ctx_arr[i].ctx, 0, BCM_PAGE_SIZE); CNIC_WR(dev, BNX2_CTX_HOST_PAGE_TBL_DATA0, (cp->ctx_arr[i].mapping & 0xffffffff) | valid_bit); CNIC_WR(dev, BNX2_CTX_HOST_PAGE_TBL_DATA1, (u64) cp->ctx_arr[i].mapping >> 32); CNIC_WR(dev, BNX2_CTX_HOST_PAGE_TBL_CTRL, idx | BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); for (j = 0; j < 10; j++) { val = CNIC_RD(dev, BNX2_CTX_HOST_PAGE_TBL_CTRL); if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ)) break; udelay(5); } if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) { ret = -EBUSY; break; } } return ret; } static void cnic_free_irq(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) { cp->disable_int_sync(dev); tasklet_disable(&cp->cnic_irq_task); free_irq(ethdev->irq_arr[0].vector, dev); } } static int cnic_init_bnx2_irq(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) { int err, i = 0; int sblk_num = cp->status_blk_num; u32 base = ((sblk_num - 1) * BNX2_HC_SB_CONFIG_SIZE) + BNX2_HC_SB_CONFIG_1; CNIC_WR(dev, base, BNX2_HC_SB_CONFIG_1_ONE_SHOT); CNIC_WR(dev, base + BNX2_HC_COMP_PROD_TRIP_OFF, (2 << 16) | 8); CNIC_WR(dev, base + BNX2_HC_COM_TICKS_OFF, (64 << 16) | 220); CNIC_WR(dev, base + BNX2_HC_CMD_TICKS_OFF, (64 << 16) | 220); cp->bnx2_status_blk = cp->status_blk; cp->last_status_idx = cp->bnx2_status_blk->status_idx; tasklet_init(&cp->cnic_irq_task, &cnic_service_bnx2_msix, (unsigned long) dev); err = request_irq(ethdev->irq_arr[0].vector, cnic_irq, 0, "cnic", dev); if (err) { tasklet_disable(&cp->cnic_irq_task); return err; } while (cp->bnx2_status_blk->status_completion_producer_index && i < 10) { CNIC_WR(dev, BNX2_HC_COALESCE_NOW, 1 << (11 + sblk_num)); udelay(10); i++; barrier(); } if (cp->bnx2_status_blk->status_completion_producer_index) { cnic_free_irq(dev); goto failed; } } else { struct status_block *sblk = cp->status_blk; u32 hc_cmd = CNIC_RD(dev, BNX2_HC_COMMAND); int i = 0; while (sblk->status_completion_producer_index && i < 10) { CNIC_WR(dev, BNX2_HC_COMMAND, hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); udelay(10); i++; barrier(); } if (sblk->status_completion_producer_index) goto failed; } return 0; failed: printk(KERN_ERR PFX "%s: " "KCQ index not resetting to 0.\n", dev->netdev->name); return -EBUSY; } static void cnic_enable_bnx2_int(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; if (!(ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX)) return; CNIC_WR(dev, BNX2_PCICFG_INT_ACK_CMD, cp->int_num | BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | cp->last_status_idx); } static void cnic_disable_bnx2_int_sync(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; if (!(ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX)) return; CNIC_WR(dev, BNX2_PCICFG_INT_ACK_CMD, cp->int_num | BNX2_PCICFG_INT_ACK_CMD_MASK_INT); CNIC_RD(dev, BNX2_PCICFG_INT_ACK_CMD); synchronize_irq(ethdev->irq_arr[0].vector); } static void cnic_init_bnx2_tx_ring(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; u32 cid_addr, tx_cid, sb_id; u32 val, offset0, offset1, offset2, offset3; int i; struct tx_bd *txbd; dma_addr_t buf_map; struct status_block *s_blk = cp->status_blk; sb_id = cp->status_blk_num; tx_cid = 20; cnic_init_context(dev, tx_cid); cnic_init_context(dev, tx_cid + 1); cp->tx_cons_ptr = &s_blk->status_tx_quick_consumer_index2; if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) { struct status_block_msix *sblk = cp->status_blk; tx_cid = TX_TSS_CID + sb_id - 1; cnic_init_context(dev, tx_cid); CNIC_WR(dev, BNX2_TSCH_TSS_CFG, (sb_id << 24) | (TX_TSS_CID << 7)); cp->tx_cons_ptr = &sblk->status_tx_quick_consumer_index; } cp->tx_cons = *cp->tx_cons_ptr; cid_addr = GET_CID_ADDR(tx_cid); if (CHIP_NUM(cp) == CHIP_NUM_5709) { u32 cid_addr2 = GET_CID_ADDR(tx_cid + 4) + 0x40; for (i = 0; i < PHY_CTX_SIZE; i += 4) cnic_ctx_wr(dev, cid_addr2, i, 0); offset0 = BNX2_L2CTX_TYPE_XI; offset1 = BNX2_L2CTX_CMD_TYPE_XI; offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI; offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI; } else { offset0 = BNX2_L2CTX_TYPE; offset1 = BNX2_L2CTX_CMD_TYPE; offset2 = BNX2_L2CTX_TBDR_BHADDR_HI; offset3 = BNX2_L2CTX_TBDR_BHADDR_LO; } val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2; cnic_ctx_wr(dev, cid_addr, offset0, val); val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); cnic_ctx_wr(dev, cid_addr, offset1, val); txbd = (struct tx_bd *) cp->l2_ring; buf_map = cp->l2_buf_map; for (i = 0; i < MAX_TX_DESC_CNT; i++, txbd++) { txbd->tx_bd_haddr_hi = (u64) buf_map >> 32; txbd->tx_bd_haddr_lo = (u64) buf_map & 0xffffffff; } val = (u64) cp->l2_ring_map >> 32; cnic_ctx_wr(dev, cid_addr, offset2, val); txbd->tx_bd_haddr_hi = val; val = (u64) cp->l2_ring_map & 0xffffffff; cnic_ctx_wr(dev, cid_addr, offset3, val); txbd->tx_bd_haddr_lo = val; } static void cnic_init_bnx2_rx_ring(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; u32 cid_addr, sb_id, val, coal_reg, coal_val; int i; struct rx_bd *rxbd; struct status_block *s_blk = cp->status_blk; sb_id = cp->status_blk_num; cnic_init_context(dev, 2); cp->rx_cons_ptr = &s_blk->status_rx_quick_consumer_index2; coal_reg = BNX2_HC_COMMAND; coal_val = CNIC_RD(dev, coal_reg); if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) { struct status_block_msix *sblk = cp->status_blk; cp->rx_cons_ptr = &sblk->status_rx_quick_consumer_index; coal_reg = BNX2_HC_COALESCE_NOW; coal_val = 1 << (11 + sb_id); } i = 0; while (!(*cp->rx_cons_ptr != 0) && i < 10) { CNIC_WR(dev, coal_reg, coal_val); udelay(10); i++; barrier(); } cp->rx_cons = *cp->rx_cons_ptr; cid_addr = GET_CID_ADDR(2); val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | BNX2_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8); cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_CTX_TYPE, val); if (sb_id == 0) val = 2 << BNX2_L2CTX_STATUSB_NUM_SHIFT; else val = BNX2_L2CTX_STATUSB_NUM(sb_id); cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_HOST_BDIDX, val); rxbd = (struct rx_bd *) (cp->l2_ring + BCM_PAGE_SIZE); for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) { dma_addr_t buf_map; int n = (i % cp->l2_rx_ring_size) + 1; buf_map = cp->l2_buf_map + (n * cp->l2_single_buf_size); rxbd->rx_bd_len = cp->l2_single_buf_size; rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END; rxbd->rx_bd_haddr_hi = (u64) buf_map >> 32; rxbd->rx_bd_haddr_lo = (u64) buf_map & 0xffffffff; } val = (u64) (cp->l2_ring_map + BCM_PAGE_SIZE) >> 32; cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val); rxbd->rx_bd_haddr_hi = val; val = (u64) (cp->l2_ring_map + BCM_PAGE_SIZE) & 0xffffffff; cnic_ctx_wr(dev, cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val); rxbd->rx_bd_haddr_lo = val; val = cnic_reg_rd_ind(dev, BNX2_RXP_SCRATCH_RXP_FLOOD); cnic_reg_wr_ind(dev, BNX2_RXP_SCRATCH_RXP_FLOOD, val | (1 << 2)); } static void cnic_shutdown_bnx2_rx_ring(struct cnic_dev *dev) { struct kwqe *wqes[1], l2kwqe; memset(&l2kwqe, 0, sizeof(l2kwqe)); wqes[0] = &l2kwqe; l2kwqe.kwqe_op_flag = (L2_LAYER_CODE << KWQE_FLAGS_LAYER_SHIFT) | (L2_KWQE_OPCODE_VALUE_FLUSH << KWQE_OPCODE_SHIFT) | 2; dev->submit_kwqes(dev, wqes, 1); } static void cnic_set_bnx2_mac(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; u32 val; val = cp->func << 2; cp->shmem_base = cnic_reg_rd_ind(dev, BNX2_SHM_HDR_ADDR_0 + val); val = cnic_reg_rd_ind(dev, cp->shmem_base + BNX2_PORT_HW_CFG_ISCSI_MAC_UPPER); dev->mac_addr[0] = (u8) (val >> 8); dev->mac_addr[1] = (u8) val; CNIC_WR(dev, BNX2_EMAC_MAC_MATCH4, val); val = cnic_reg_rd_ind(dev, cp->shmem_base + BNX2_PORT_HW_CFG_ISCSI_MAC_LOWER); dev->mac_addr[2] = (u8) (val >> 24); dev->mac_addr[3] = (u8) (val >> 16); dev->mac_addr[4] = (u8) (val >> 8); dev->mac_addr[5] = (u8) val; CNIC_WR(dev, BNX2_EMAC_MAC_MATCH5, val); val = 4 | BNX2_RPM_SORT_USER2_BC_EN; if (CHIP_NUM(cp) != CHIP_NUM_5709) val |= BNX2_RPM_SORT_USER2_PROM_VLAN; CNIC_WR(dev, BNX2_RPM_SORT_USER2, 0x0); CNIC_WR(dev, BNX2_RPM_SORT_USER2, val); CNIC_WR(dev, BNX2_RPM_SORT_USER2, val | BNX2_RPM_SORT_USER2_ENA); } static int cnic_start_bnx2_hw(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; struct status_block *sblk = cp->status_blk; u32 val; int err; cnic_set_bnx2_mac(dev); val = CNIC_RD(dev, BNX2_MQ_CONFIG); val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE; if (BCM_PAGE_BITS > 12) val |= (12 - 8) << 4; else val |= (BCM_PAGE_BITS - 8) << 4; CNIC_WR(dev, BNX2_MQ_CONFIG, val); CNIC_WR(dev, BNX2_HC_COMP_PROD_TRIP, (2 << 16) | 8); CNIC_WR(dev, BNX2_HC_COM_TICKS, (64 << 16) | 220); CNIC_WR(dev, BNX2_HC_CMD_TICKS, (64 << 16) | 220); err = cnic_setup_5709_context(dev, 1); if (err) return err; cnic_init_context(dev, KWQ_CID); cnic_init_context(dev, KCQ_CID); cp->kwq_cid_addr = GET_CID_ADDR(KWQ_CID); cp->kwq_io_addr = MB_GET_CID_ADDR(KWQ_CID) + L5_KRNLQ_HOST_QIDX; cp->max_kwq_idx = MAX_KWQ_IDX; cp->kwq_prod_idx = 0; cp->kwq_con_idx = 0; cp->cnic_local_flags |= CNIC_LCL_FL_KWQ_INIT; if (CHIP_NUM(cp) == CHIP_NUM_5706 || CHIP_NUM(cp) == CHIP_NUM_5708) cp->kwq_con_idx_ptr = &sblk->status_rx_quick_consumer_index15; else cp->kwq_con_idx_ptr = &sblk->status_cmd_consumer_index; /* Initialize the kernel work queue context. */ val = KRNLQ_TYPE_TYPE_KRNLQ | KRNLQ_SIZE_TYPE_SIZE | (BCM_PAGE_BITS - 8) | KRNLQ_FLAGS_QE_SELF_SEQ; cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_TYPE, val); val = (BCM_PAGE_SIZE / sizeof(struct kwqe) - 1) << 16; cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_QE_SELF_SEQ_MAX, val); val = ((BCM_PAGE_SIZE / sizeof(struct kwqe)) << 16) | KWQ_PAGE_CNT; cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_PGTBL_NPAGES, val); val = (u32) ((u64) cp->kwq_info.pgtbl_map >> 32); cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_PGTBL_HADDR_HI, val); val = (u32) cp->kwq_info.pgtbl_map; cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_PGTBL_HADDR_LO, val); cp->kcq_cid_addr = GET_CID_ADDR(KCQ_CID); cp->kcq_io_addr = MB_GET_CID_ADDR(KCQ_CID) + L5_KRNLQ_HOST_QIDX; cp->kcq_prod_idx = 0; /* Initialize the kernel complete queue context. */ val = KRNLQ_TYPE_TYPE_KRNLQ | KRNLQ_SIZE_TYPE_SIZE | (BCM_PAGE_BITS - 8) | KRNLQ_FLAGS_QE_SELF_SEQ; cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_TYPE, val); val = (BCM_PAGE_SIZE / sizeof(struct kcqe) - 1) << 16; cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_QE_SELF_SEQ_MAX, val); val = ((BCM_PAGE_SIZE / sizeof(struct kcqe)) << 16) | KCQ_PAGE_CNT; cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_PGTBL_NPAGES, val); val = (u32) ((u64) cp->kcq_info.pgtbl_map >> 32); cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_PGTBL_HADDR_HI, val); val = (u32) cp->kcq_info.pgtbl_map; cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_PGTBL_HADDR_LO, val); cp->int_num = 0; if (ethdev->drv_state & CNIC_DRV_STATE_USING_MSIX) { u32 sb_id = cp->status_blk_num; u32 sb = BNX2_L2CTX_STATUSB_NUM(sb_id); cp->int_num = sb_id << BNX2_PCICFG_INT_ACK_CMD_INT_NUM_SHIFT; cnic_ctx_wr(dev, cp->kwq_cid_addr, L5_KRNLQ_HOST_QIDX, sb); cnic_ctx_wr(dev, cp->kcq_cid_addr, L5_KRNLQ_HOST_QIDX, sb); } /* Enable Commnad Scheduler notification when we write to the * host producer index of the kernel contexts. */ CNIC_WR(dev, BNX2_MQ_KNL_CMD_MASK1, 2); /* Enable Command Scheduler notification when we write to either * the Send Queue or Receive Queue producer indexes of the kernel * bypass contexts. */ CNIC_WR(dev, BNX2_MQ_KNL_BYP_CMD_MASK1, 7); CNIC_WR(dev, BNX2_MQ_KNL_BYP_WRITE_MASK1, 7); /* Notify COM when the driver post an application buffer. */ CNIC_WR(dev, BNX2_MQ_KNL_RX_V2P_MASK2, 0x2000); /* Set the CP and COM doorbells. These two processors polls the * doorbell for a non zero value before running. This must be done * after setting up the kernel queue contexts. */ cnic_reg_wr_ind(dev, BNX2_CP_SCRATCH + 0x20, 1); cnic_reg_wr_ind(dev, BNX2_COM_SCRATCH + 0x20, 1); cnic_init_bnx2_tx_ring(dev); cnic_init_bnx2_rx_ring(dev); err = cnic_init_bnx2_irq(dev); if (err) { printk(KERN_ERR PFX "%s: cnic_init_irq failed\n", dev->netdev->name); cnic_reg_wr_ind(dev, BNX2_CP_SCRATCH + 0x20, 0); cnic_reg_wr_ind(dev, BNX2_COM_SCRATCH + 0x20, 0); return err; } return 0; } static int cnic_register_netdev(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; int err; if (!ethdev) return -ENODEV; if (ethdev->drv_state & CNIC_DRV_STATE_REGD) return 0; err = ethdev->drv_register_cnic(dev->netdev, cp->cnic_ops, dev); if (err) printk(KERN_ERR PFX "%s: register_cnic failed\n", dev->netdev->name); return err; } static void cnic_unregister_netdev(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; if (!ethdev) return; ethdev->drv_unregister_cnic(dev->netdev); } static int cnic_start_hw(struct cnic_dev *dev) { struct cnic_local *cp = dev->cnic_priv; struct cnic_eth_dev *ethdev = cp->ethdev; int err; if (test_bit(CNIC_F_CNIC_UP, &dev->flags)) return -EALREADY; dev->regview = ethdev->io_base; cp->chip_id = ethdev->chip_id; pci_dev_get(dev->pcidev); cp->func = PCI_FUNC(dev->pcidev->devfn); cp->status_blk = ethdev->irq_arr[0].status_blk; cp->status_blk_num = ethdev->irq_arr[0].status_blk_num; err = cp->alloc_resc(dev); if (err) { printk(KERN_ERR PFX "%s: allocate resource failure\n", dev->netdev->name); goto err1; } err = cp->start_hw(dev); if (err) goto err1; err = cnic_cm_open(dev); if (err) goto err1; set_bit(CNIC_F_CNIC_UP, &dev->flags); cp->enable_int(dev); return 0; err1: cp->free_resc(dev); pci_dev_put(dev->pcidev); return err; } static void cnic_stop_bnx2_hw(struct cnic_dev *dev) { cnic_disable_bnx2_int_sync(dev); cnic_reg_wr_ind(dev, BNX2_CP_SCRATCH + 0x20, 0); cnic_reg_wr_ind(dev, BNX2_COM_SCRATCH + 0x20, 0); cnic_init_context(dev, KWQ_CID); cnic_init_context(dev, KCQ_CID); cnic_setup_5709_context(dev, 0); cnic_free_irq(dev); cnic_free_resc(dev); } static void cnic_stop_hw(struct cnic_dev *dev) { if (test_bit(CNIC_F_CNIC_UP, &dev->flags)) { struct cnic_local *cp = dev->cnic_priv; clear_bit(CNIC_F_CNIC_UP, &dev->flags); rcu_assign_pointer(cp->ulp_ops[CNIC_ULP_L4], NULL); synchronize_rcu(); cnic_cm_shutdown(dev); cp->stop_hw(dev); pci_dev_put(dev->pcidev); } } static void cnic_free_dev(struct cnic_dev *dev) { int i = 0; while ((atomic_read(&dev->ref_count) != 0) && i < 10) { msleep(100); i++; } if (atomic_read(&dev->ref_count) != 0) printk(KERN_ERR PFX "%s: Failed waiting for ref count to go" " to zero.\n", dev->netdev->name); printk(KERN_INFO PFX "Removed CNIC device: %s\n", dev->netdev->name); dev_put(dev->netdev); kfree(dev); } static struct cnic_dev *cnic_alloc_dev(struct net_device *dev, struct pci_dev *pdev) { struct cnic_dev *cdev; struct cnic_local *cp; int alloc_size; alloc_size = sizeof(struct cnic_dev) + sizeof(struct cnic_local); cdev = kzalloc(alloc_size , GFP_KERNEL); if (cdev == NULL) { printk(KERN_ERR PFX "%s: allocate dev struct failure\n", dev->name); return NULL; } cdev->netdev = dev; cdev->cnic_priv = (char *)cdev + sizeof(struct cnic_dev); cdev->register_device = cnic_register_device; cdev->unregister_device = cnic_unregister_device; cdev->iscsi_nl_msg_recv = cnic_iscsi_nl_msg_recv; cp = cdev->cnic_priv; cp->dev = cdev; cp->uio_dev = -1; cp->l2_single_buf_size = 0x400; cp->l2_rx_ring_size = 3; spin_lock_init(&cp->cnic_ulp_lock); printk(KERN_INFO PFX "Added CNIC device: %s\n", dev->name); return cdev; } static struct cnic_dev *init_bnx2_cnic(struct net_device *dev) { struct pci_dev *pdev; struct cnic_dev *cdev; struct cnic_local *cp; struct cnic_eth_dev *ethdev = NULL; struct cnic_eth_dev *(*probe)(struct net_device *) = NULL; probe = symbol_get(bnx2_cnic_probe); if (probe) { ethdev = (*probe)(dev); symbol_put(bnx2_cnic_probe); } if (!ethdev) return NULL; pdev = ethdev->pdev; if (!pdev) return NULL; dev_hold(dev); pci_dev_get(pdev); if (pdev->device == PCI_DEVICE_ID_NX2_5709 || pdev->device == PCI_DEVICE_ID_NX2_5709S) { u8 rev; pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); if (rev < 0x10) { pci_dev_put(pdev); goto cnic_err; } } pci_dev_put(pdev); cdev = cnic_alloc_dev(dev, pdev); if (cdev == NULL) goto cnic_err; set_bit(CNIC_F_BNX2_CLASS, &cdev->flags); cdev->submit_kwqes = cnic_submit_bnx2_kwqes; cp = cdev->cnic_priv; cp->ethdev = ethdev; cdev->pcidev = pdev; cp->cnic_ops = &cnic_bnx2_ops; cp->start_hw = cnic_start_bnx2_hw; cp->stop_hw = cnic_stop_bnx2_hw; cp->setup_pgtbl = cnic_setup_page_tbl; cp->alloc_resc = cnic_alloc_bnx2_resc; cp->free_resc = cnic_free_resc; cp->start_cm = cnic_cm_init_bnx2_hw; cp->stop_cm = cnic_cm_stop_bnx2_hw; cp->enable_int = cnic_enable_bnx2_int; cp->disable_int_sync = cnic_disable_bnx2_int_sync; cp->close_conn = cnic_close_bnx2_conn; cp->next_idx = cnic_bnx2_next_idx; cp->hw_idx = cnic_bnx2_hw_idx; return cdev; cnic_err: dev_put(dev); return NULL; } static struct cnic_dev *is_cnic_dev(struct net_device *dev) { struct ethtool_drvinfo drvinfo; struct cnic_dev *cdev = NULL; if (dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) { memset(&drvinfo, 0, sizeof(drvinfo)); dev->ethtool_ops->get_drvinfo(dev, &drvinfo); if (!strcmp(drvinfo.driver, "bnx2")) cdev = init_bnx2_cnic(dev); if (cdev) { write_lock(&cnic_dev_lock); list_add(&cdev->list, &cnic_dev_list); write_unlock(&cnic_dev_lock); } } return cdev; } /** * netdev event handler */ static int cnic_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *netdev = ptr; struct cnic_dev *dev; int if_type; int new_dev = 0; dev = cnic_from_netdev(netdev); if (!dev && (event == NETDEV_REGISTER || event == NETDEV_UP)) { /* Check for the hot-plug device */ dev = is_cnic_dev(netdev); if (dev) { new_dev = 1; cnic_hold(dev); } } if (dev) { struct cnic_local *cp = dev->cnic_priv; if (new_dev) cnic_ulp_init(dev); else if (event == NETDEV_UNREGISTER) cnic_ulp_exit(dev); if (event == NETDEV_UP) { if (cnic_register_netdev(dev) != 0) { cnic_put(dev); goto done; } if (!cnic_start_hw(dev)) cnic_ulp_start(dev); } rcu_read_lock(); for (if_type = 0; if_type < MAX_CNIC_ULP_TYPE; if_type++) { struct cnic_ulp_ops *ulp_ops; void *ctx; ulp_ops = rcu_dereference(cp->ulp_ops[if_type]); if (!ulp_ops || !ulp_ops->indicate_netevent) continue; ctx = cp->ulp_handle[if_type]; ulp_ops->indicate_netevent(ctx, event); } rcu_read_unlock(); if (event == NETDEV_GOING_DOWN) { cnic_ulp_stop(dev); cnic_stop_hw(dev); cnic_unregister_netdev(dev); } else if (event == NETDEV_UNREGISTER) { write_lock(&cnic_dev_lock); list_del_init(&dev->list); write_unlock(&cnic_dev_lock); cnic_put(dev); cnic_free_dev(dev); goto done; } cnic_put(dev); } done: return NOTIFY_DONE; } static struct notifier_block cnic_netdev_notifier = { .notifier_call = cnic_netdev_event }; static void cnic_release(void) { struct cnic_dev *dev; while (!list_empty(&cnic_dev_list)) { dev = list_entry(cnic_dev_list.next, struct cnic_dev, list); if (test_bit(CNIC_F_CNIC_UP, &dev->flags)) { cnic_ulp_stop(dev); cnic_stop_hw(dev); } cnic_ulp_exit(dev); cnic_unregister_netdev(dev); list_del_init(&dev->list); cnic_free_dev(dev); } } static int __init cnic_init(void) { int rc = 0; printk(KERN_INFO "%s", version); rc = register_netdevice_notifier(&cnic_netdev_notifier); if (rc) { cnic_release(); return rc; } return 0; } static void __exit cnic_exit(void) { unregister_netdevice_notifier(&cnic_netdev_notifier); cnic_release(); return; } module_init(cnic_init); module_exit(cnic_exit);