/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ /* Copyright (c) 2001, 2002 by D-Link Corporation Written by Edward Peng.<edward_peng@dlink.com.tw> Created 03-May-2001, base on Linux' sundance.c. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #define DRV_NAME "DL2000/TC902x-based linux driver" #define DRV_VERSION "v1.19" #define DRV_RELDATE "2007/08/12" #include "dl2k.h" #include <linux/dma-mapping.h> static char version[] __devinitdata = KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n"; #define MAX_UNITS 8 static int mtu[MAX_UNITS]; static int vlan[MAX_UNITS]; static int jumbo[MAX_UNITS]; static char *media[MAX_UNITS]; static int tx_flow=-1; static int rx_flow=-1; static int copy_thresh; static int rx_coalesce=10; /* Rx frame count each interrupt */ static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ MODULE_AUTHOR ("Edward Peng"); MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); MODULE_LICENSE("GPL"); module_param_array(mtu, int, NULL, 0); module_param_array(media, charp, NULL, 0); module_param_array(vlan, int, NULL, 0); module_param_array(jumbo, int, NULL, 0); module_param(tx_flow, int, 0); module_param(rx_flow, int, 0); module_param(copy_thresh, int, 0); module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ /* Enable the default interrupts */ #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ UpdateStats | LinkEvent) #define EnableInt() \ writew(DEFAULT_INTR, ioaddr + IntEnable) static const int max_intrloop = 50; static const int multicast_filter_limit = 0x40; static int rio_open (struct net_device *dev); static void rio_timer (unsigned long data); static void rio_tx_timeout (struct net_device *dev); static void alloc_list (struct net_device *dev); static int start_xmit (struct sk_buff *skb, struct net_device *dev); static irqreturn_t rio_interrupt (int irq, void *dev_instance); static void rio_free_tx (struct net_device *dev, int irq); static void tx_error (struct net_device *dev, int tx_status); static int receive_packet (struct net_device *dev); static void rio_error (struct net_device *dev, int int_status); static int change_mtu (struct net_device *dev, int new_mtu); static void set_multicast (struct net_device *dev); static struct net_device_stats *get_stats (struct net_device *dev); static int clear_stats (struct net_device *dev); static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); static int rio_close (struct net_device *dev); static int find_miiphy (struct net_device *dev); static int parse_eeprom (struct net_device *dev); static int read_eeprom (long ioaddr, int eep_addr); static int mii_wait_link (struct net_device *dev, int wait); static int mii_set_media (struct net_device *dev); static int mii_get_media (struct net_device *dev); static int mii_set_media_pcs (struct net_device *dev); static int mii_get_media_pcs (struct net_device *dev); static int mii_read (struct net_device *dev, int phy_addr, int reg_num); static int mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data); static const struct ethtool_ops ethtool_ops; static const struct net_device_ops netdev_ops = { .ndo_open = rio_open, .ndo_start_xmit = start_xmit, .ndo_stop = rio_close, .ndo_get_stats = get_stats, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_set_multicast_list = set_multicast, .ndo_do_ioctl = rio_ioctl, .ndo_tx_timeout = rio_tx_timeout, .ndo_change_mtu = change_mtu, }; static int __devinit rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct netdev_private *np; static int card_idx; int chip_idx = ent->driver_data; int err, irq; long ioaddr; static int version_printed; void *ring_space; dma_addr_t ring_dma; if (!version_printed++) printk ("%s", version); err = pci_enable_device (pdev); if (err) return err; irq = pdev->irq; err = pci_request_regions (pdev, "dl2k"); if (err) goto err_out_disable; pci_set_master (pdev); dev = alloc_etherdev (sizeof (*np)); if (!dev) { err = -ENOMEM; goto err_out_res; } SET_NETDEV_DEV(dev, &pdev->dev); #ifdef MEM_MAPPING ioaddr = pci_resource_start (pdev, 1); ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE); if (!ioaddr) { err = -ENOMEM; goto err_out_dev; } #else ioaddr = pci_resource_start (pdev, 0); #endif dev->base_addr = ioaddr; dev->irq = irq; np = netdev_priv(dev); np->chip_id = chip_idx; np->pdev = pdev; spin_lock_init (&np->tx_lock); spin_lock_init (&np->rx_lock); /* Parse manual configuration */ np->an_enable = 1; np->tx_coalesce = 1; if (card_idx < MAX_UNITS) { if (media[card_idx] != NULL) { np->an_enable = 0; if (strcmp (media[card_idx], "auto") == 0 || strcmp (media[card_idx], "autosense") == 0 || strcmp (media[card_idx], "0") == 0 ) { np->an_enable = 2; } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || strcmp (media[card_idx], "4") == 0) { np->speed = 100; np->full_duplex = 1; } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || strcmp (media[card_idx], "3") == 0) { np->speed = 100; np->full_duplex = 0; } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || strcmp (media[card_idx], "2") == 0) { np->speed = 10; np->full_duplex = 1; } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || strcmp (media[card_idx], "1") == 0) { np->speed = 10; np->full_duplex = 0; } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || strcmp (media[card_idx], "6") == 0) { np->speed=1000; np->full_duplex=1; } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || strcmp (media[card_idx], "5") == 0) { np->speed = 1000; np->full_duplex = 0; } else { np->an_enable = 1; } } if (jumbo[card_idx] != 0) { np->jumbo = 1; dev->mtu = MAX_JUMBO; } else { np->jumbo = 0; if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) dev->mtu = mtu[card_idx]; } np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? vlan[card_idx] : 0; if (rx_coalesce > 0 && rx_timeout > 0) { np->rx_coalesce = rx_coalesce; np->rx_timeout = rx_timeout; np->coalesce = 1; } np->tx_flow = (tx_flow == 0) ? 0 : 1; np->rx_flow = (rx_flow == 0) ? 0 : 1; if (tx_coalesce < 1) tx_coalesce = 1; else if (tx_coalesce > TX_RING_SIZE-1) tx_coalesce = TX_RING_SIZE - 1; } dev->netdev_ops = &netdev_ops; dev->watchdog_timeo = TX_TIMEOUT; SET_ETHTOOL_OPS(dev, ðtool_ops); #if 0 dev->features = NETIF_F_IP_CSUM; #endif pci_set_drvdata (pdev, dev); ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); if (!ring_space) goto err_out_iounmap; np->tx_ring = (struct netdev_desc *) ring_space; np->tx_ring_dma = ring_dma; ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); if (!ring_space) goto err_out_unmap_tx; np->rx_ring = (struct netdev_desc *) ring_space; np->rx_ring_dma = ring_dma; /* Parse eeprom data */ parse_eeprom (dev); /* Find PHY address */ err = find_miiphy (dev); if (err) goto err_out_unmap_rx; /* Fiber device? */ np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0; np->link_status = 0; /* Set media and reset PHY */ if (np->phy_media) { /* default Auto-Negotiation for fiber deivices */ if (np->an_enable == 2) { np->an_enable = 1; } mii_set_media_pcs (dev); } else { /* Auto-Negotiation is mandatory for 1000BASE-T, IEEE 802.3ab Annex 28D page 14 */ if (np->speed == 1000) np->an_enable = 1; mii_set_media (dev); } err = register_netdev (dev); if (err) goto err_out_unmap_rx; card_idx++; printk (KERN_INFO "%s: %s, %pM, IRQ %d\n", dev->name, np->name, dev->dev_addr, irq); if (tx_coalesce > 1) printk(KERN_INFO "tx_coalesce:\t%d packets\n", tx_coalesce); if (np->coalesce) printk(KERN_INFO "rx_coalesce:\t%d packets\n" "rx_timeout: \t%d ns\n", np->rx_coalesce, np->rx_timeout*640); if (np->vlan) printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); return 0; err_out_unmap_rx: pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); err_out_unmap_tx: pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); err_out_iounmap: #ifdef MEM_MAPPING iounmap ((void *) ioaddr); err_out_dev: #endif free_netdev (dev); err_out_res: pci_release_regions (pdev); err_out_disable: pci_disable_device (pdev); return err; } static int find_miiphy (struct net_device *dev) { int i, phy_found = 0; struct netdev_private *np; long ioaddr; np = netdev_priv(dev); ioaddr = dev->base_addr; np->phy_addr = 1; for (i = 31; i >= 0; i--) { int mii_status = mii_read (dev, i, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phy_addr = i; phy_found++; } } if (!phy_found) { printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); return -ENODEV; } return 0; } static int parse_eeprom (struct net_device *dev) { int i, j; long ioaddr = dev->base_addr; u8 sromdata[256]; u8 *psib; u32 crc; PSROM_t psrom = (PSROM_t) sromdata; struct netdev_private *np = netdev_priv(dev); int cid, next; #ifdef MEM_MAPPING ioaddr = pci_resource_start (np->pdev, 0); #endif /* Read eeprom */ for (i = 0; i < 128; i++) { ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i)); } #ifdef MEM_MAPPING ioaddr = dev->base_addr; #endif if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */ /* Check CRC */ crc = ~ether_crc_le (256 - 4, sromdata); if (psrom->crc != crc) { printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name); return -1; } } /* Set MAC address */ for (i = 0; i < 6; i++) dev->dev_addr[i] = psrom->mac_addr[i]; if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) { return 0; } /* Parse Software Information Block */ i = 0x30; psib = (u8 *) sromdata; do { cid = psib[i++]; next = psib[i++]; if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { printk (KERN_ERR "Cell data error\n"); return -1; } switch (cid) { case 0: /* Format version */ break; case 1: /* End of cell */ return 0; case 2: /* Duplex Polarity */ np->duplex_polarity = psib[i]; writeb (readb (ioaddr + PhyCtrl) | psib[i], ioaddr + PhyCtrl); break; case 3: /* Wake Polarity */ np->wake_polarity = psib[i]; break; case 9: /* Adapter description */ j = (next - i > 255) ? 255 : next - i; memcpy (np->name, &(psib[i]), j); break; case 4: case 5: case 6: case 7: case 8: /* Reversed */ break; default: /* Unknown cell */ return -1; } i = next; } while (1); return 0; } static int rio_open (struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); long ioaddr = dev->base_addr; int i; u16 macctrl; i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev); if (i) return i; /* Reset all logic functions */ writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset, ioaddr + ASICCtrl + 2); mdelay(10); /* DebugCtrl bit 4, 5, 9 must set */ writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl); /* Jumbo frame */ if (np->jumbo != 0) writew (MAX_JUMBO+14, ioaddr + MaxFrameSize); alloc_list (dev); /* Get station address */ for (i = 0; i < 6; i++) writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i); set_multicast (dev); if (np->coalesce) { writel (np->rx_coalesce | np->rx_timeout << 16, ioaddr + RxDMAIntCtrl); } /* Set RIO to poll every N*320nsec. */ writeb (0x20, ioaddr + RxDMAPollPeriod); writeb (0xff, ioaddr + TxDMAPollPeriod); writeb (0x30, ioaddr + RxDMABurstThresh); writeb (0x30, ioaddr + RxDMAUrgentThresh); writel (0x0007ffff, ioaddr + RmonStatMask); /* clear statistics */ clear_stats (dev); /* VLAN supported */ if (np->vlan) { /* priority field in RxDMAIntCtrl */ writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, ioaddr + RxDMAIntCtrl); /* VLANId */ writew (np->vlan, ioaddr + VLANId); /* Length/Type should be 0x8100 */ writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag); /* Enable AutoVLANuntagging, but disable AutoVLANtagging. VLAN information tagged by TFC' VID, CFI fields. */ writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging, ioaddr + MACCtrl); } init_timer (&np->timer); np->timer.expires = jiffies + 1*HZ; np->timer.data = (unsigned long) dev; np->timer.function = &rio_timer; add_timer (&np->timer); /* Start Tx/Rx */ writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl); macctrl = 0; macctrl |= (np->vlan) ? AutoVLANuntagging : 0; macctrl |= (np->full_duplex) ? DuplexSelect : 0; macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; writew(macctrl, ioaddr + MACCtrl); netif_start_queue (dev); /* Enable default interrupts */ EnableInt (); return 0; } static void rio_timer (unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = netdev_priv(dev); unsigned int entry; int next_tick = 1*HZ; unsigned long flags; spin_lock_irqsave(&np->rx_lock, flags); /* Recover rx ring exhausted error */ if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { printk(KERN_INFO "Try to recover rx ring exhausted...\n"); /* Re-allocate skbuffs to fill the descriptor ring */ for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { struct sk_buff *skb; entry = np->old_rx % RX_RING_SIZE; /* Dropped packets don't need to re-allocate */ if (np->rx_skbuff[entry] == NULL) { skb = netdev_alloc_skb (dev, np->rx_buf_sz); if (skb == NULL) { np->rx_ring[entry].fraginfo = 0; printk (KERN_INFO "%s: Still unable to re-allocate Rx skbuff.#%d\n", dev->name, entry); break; } np->rx_skbuff[entry] = skb; /* 16 byte align the IP header */ skb_reserve (skb, 2); np->rx_ring[entry].fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); } np->rx_ring[entry].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); np->rx_ring[entry].status = 0; } /* end for */ } /* end if */ spin_unlock_irqrestore (&np->rx_lock, flags); np->timer.expires = jiffies + next_tick; add_timer(&np->timer); } static void rio_tx_timeout (struct net_device *dev) { long ioaddr = dev->base_addr; printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", dev->name, readl (ioaddr + TxStatus)); rio_free_tx(dev, 0); dev->if_port = 0; dev->trans_start = jiffies; /* prevent tx timeout */ } /* allocate and initialize Tx and Rx descriptors */ static void alloc_list (struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); int i; np->cur_rx = np->cur_tx = 0; np->old_rx = np->old_tx = 0; np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = NULL; np->tx_ring[i].status = cpu_to_le64 (TFDDone); np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma + ((i+1)%TX_RING_SIZE) * sizeof (struct netdev_desc)); } /* Initialize Rx descriptors */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma + ((i + 1) % RX_RING_SIZE) * sizeof (struct netdev_desc)); np->rx_ring[i].status = 0; np->rx_ring[i].fraginfo = 0; np->rx_skbuff[i] = NULL; } /* Allocate the rx buffers */ for (i = 0; i < RX_RING_SIZE; i++) { /* Allocated fixed size of skbuff */ struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) { printk (KERN_ERR "%s: alloc_list: allocate Rx buffer error! ", dev->name); break; } skb_reserve (skb, 2); /* 16 byte align the IP header. */ /* Rubicon now supports 40 bits of addressing space. */ np->rx_ring[i].fraginfo = cpu_to_le64 ( pci_map_single ( np->pdev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); } /* Set RFDListPtr */ writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0); writel (0, dev->base_addr + RFDListPtr1); return; } static int start_xmit (struct sk_buff *skb, struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); struct netdev_desc *txdesc; unsigned entry; u32 ioaddr; u64 tfc_vlan_tag = 0; if (np->link_status == 0) { /* Link Down */ dev_kfree_skb(skb); return NETDEV_TX_OK; } ioaddr = dev->base_addr; entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; txdesc = &np->tx_ring[entry]; #if 0 if (skb->ip_summed == CHECKSUM_PARTIAL) { txdesc->status |= cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | IPChecksumEnable); } #endif if (np->vlan) { tfc_vlan_tag = VLANTagInsert | ((u64)np->vlan << 32) | ((u64)skb->priority << 45); } txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48); /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode * Work around: Always use 1 descriptor in 10Mbps mode */ if (entry % np->tx_coalesce == 0 || np->speed == 10) txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | WordAlignDisable | TxDMAIndicate | (1 << FragCountShift)); else txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | WordAlignDisable | (1 << FragCountShift)); /* TxDMAPollNow */ writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl); /* Schedule ISR */ writel(10000, ioaddr + CountDown); np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE < TX_QUEUE_LEN - 1 && np->speed != 10) { /* do nothing */ } else if (!netif_queue_stopped(dev)) { netif_stop_queue (dev); } /* The first TFDListPtr */ if (readl (dev->base_addr + TFDListPtr0) == 0) { writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc), dev->base_addr + TFDListPtr0); writel (0, dev->base_addr + TFDListPtr1); } return NETDEV_TX_OK; } static irqreturn_t rio_interrupt (int irq, void *dev_instance) { struct net_device *dev = dev_instance; struct netdev_private *np; unsigned int_status; long ioaddr; int cnt = max_intrloop; int handled = 0; ioaddr = dev->base_addr; np = netdev_priv(dev); while (1) { int_status = readw (ioaddr + IntStatus); writew (int_status, ioaddr + IntStatus); int_status &= DEFAULT_INTR; if (int_status == 0 || --cnt < 0) break; handled = 1; /* Processing received packets */ if (int_status & RxDMAComplete) receive_packet (dev); /* TxDMAComplete interrupt */ if ((int_status & (TxDMAComplete|IntRequested))) { int tx_status; tx_status = readl (ioaddr + TxStatus); if (tx_status & 0x01) tx_error (dev, tx_status); /* Free used tx skbuffs */ rio_free_tx (dev, 1); } /* Handle uncommon events */ if (int_status & (HostError | LinkEvent | UpdateStats)) rio_error (dev, int_status); } if (np->cur_tx != np->old_tx) writel (100, ioaddr + CountDown); return IRQ_RETVAL(handled); } static inline dma_addr_t desc_to_dma(struct netdev_desc *desc) { return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48); } static void rio_free_tx (struct net_device *dev, int irq) { struct netdev_private *np = netdev_priv(dev); int entry = np->old_tx % TX_RING_SIZE; int tx_use = 0; unsigned long flag = 0; if (irq) spin_lock(&np->tx_lock); else spin_lock_irqsave(&np->tx_lock, flag); /* Free used tx skbuffs */ while (entry != np->cur_tx) { struct sk_buff *skb; if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone))) break; skb = np->tx_skbuff[entry]; pci_unmap_single (np->pdev, desc_to_dma(&np->tx_ring[entry]), skb->len, PCI_DMA_TODEVICE); if (irq) dev_kfree_skb_irq (skb); else dev_kfree_skb (skb); np->tx_skbuff[entry] = NULL; entry = (entry + 1) % TX_RING_SIZE; tx_use++; } if (irq) spin_unlock(&np->tx_lock); else spin_unlock_irqrestore(&np->tx_lock, flag); np->old_tx = entry; /* If the ring is no longer full, clear tx_full and call netif_wake_queue() */ if (netif_queue_stopped(dev) && ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE < TX_QUEUE_LEN - 1 || np->speed == 10)) { netif_wake_queue (dev); } } static void tx_error (struct net_device *dev, int tx_status) { struct netdev_private *np; long ioaddr = dev->base_addr; int frame_id; int i; np = netdev_priv(dev); frame_id = (tx_status & 0xffff0000); printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", dev->name, tx_status, frame_id); np->stats.tx_errors++; /* Ttransmit Underrun */ if (tx_status & 0x10) { np->stats.tx_fifo_errors++; writew (readw (ioaddr + TxStartThresh) + 0x10, ioaddr + TxStartThresh); /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ writew (TxReset | DMAReset | FIFOReset | NetworkReset, ioaddr + ASICCtrl + 2); /* Wait for ResetBusy bit clear */ for (i = 50; i > 0; i--) { if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) break; mdelay (1); } rio_free_tx (dev, 1); /* Reset TFDListPtr */ writel (np->tx_ring_dma + np->old_tx * sizeof (struct netdev_desc), dev->base_addr + TFDListPtr0); writel (0, dev->base_addr + TFDListPtr1); /* Let TxStartThresh stay default value */ } /* Late Collision */ if (tx_status & 0x04) { np->stats.tx_fifo_errors++; /* TxReset and clear FIFO */ writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2); /* Wait reset done */ for (i = 50; i > 0; i--) { if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) break; mdelay (1); } /* Let TxStartThresh stay default value */ } /* Maximum Collisions */ #ifdef ETHER_STATS if (tx_status & 0x08) np->stats.collisions16++; #else if (tx_status & 0x08) np->stats.collisions++; #endif /* Restart the Tx */ writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl); } static int receive_packet (struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); int entry = np->cur_rx % RX_RING_SIZE; int cnt = 30; /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ while (1) { struct netdev_desc *desc = &np->rx_ring[entry]; int pkt_len; u64 frame_status; if (!(desc->status & cpu_to_le64(RFDDone)) || !(desc->status & cpu_to_le64(FrameStart)) || !(desc->status & cpu_to_le64(FrameEnd))) break; /* Chip omits the CRC. */ frame_status = le64_to_cpu(desc->status); pkt_len = frame_status & 0xffff; if (--cnt < 0) break; /* Update rx error statistics, drop packet. */ if (frame_status & RFS_Errors) { np->stats.rx_errors++; if (frame_status & (RxRuntFrame | RxLengthError)) np->stats.rx_length_errors++; if (frame_status & RxFCSError) np->stats.rx_crc_errors++; if (frame_status & RxAlignmentError && np->speed != 1000) np->stats.rx_frame_errors++; if (frame_status & RxFIFOOverrun) np->stats.rx_fifo_errors++; } else { struct sk_buff *skb; /* Small skbuffs for short packets */ if (pkt_len > copy_thresh) { pci_unmap_single (np->pdev, desc_to_dma(desc), np->rx_buf_sz, PCI_DMA_FROMDEVICE); skb_put (skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; } else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) { pci_dma_sync_single_for_cpu(np->pdev, desc_to_dma(desc), np->rx_buf_sz, PCI_DMA_FROMDEVICE); /* 16 byte align the IP header */ skb_reserve (skb, 2); skb_copy_to_linear_data (skb, np->rx_skbuff[entry]->data, pkt_len); skb_put (skb, pkt_len); pci_dma_sync_single_for_device(np->pdev, desc_to_dma(desc), np->rx_buf_sz, PCI_DMA_FROMDEVICE); } skb->protocol = eth_type_trans (skb, dev); #if 0 /* Checksum done by hw, but csum value unavailable. */ if (np->pdev->pci_rev_id >= 0x0c && !(frame_status & (TCPError | UDPError | IPError))) { skb->ip_summed = CHECKSUM_UNNECESSARY; } #endif netif_rx (skb); } entry = (entry + 1) % RX_RING_SIZE; } spin_lock(&np->rx_lock); np->cur_rx = entry; /* Re-allocate skbuffs to fill the descriptor ring */ entry = np->old_rx; while (entry != np->cur_rx) { struct sk_buff *skb; /* Dropped packets don't need to re-allocate */ if (np->rx_skbuff[entry] == NULL) { skb = netdev_alloc_skb(dev, np->rx_buf_sz); if (skb == NULL) { np->rx_ring[entry].fraginfo = 0; printk (KERN_INFO "%s: receive_packet: " "Unable to re-allocate Rx skbuff.#%d\n", dev->name, entry); break; } np->rx_skbuff[entry] = skb; /* 16 byte align the IP header */ skb_reserve (skb, 2); np->rx_ring[entry].fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); } np->rx_ring[entry].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); np->rx_ring[entry].status = 0; entry = (entry + 1) % RX_RING_SIZE; } np->old_rx = entry; spin_unlock(&np->rx_lock); return 0; } static void rio_error (struct net_device *dev, int int_status) { long ioaddr = dev->base_addr; struct netdev_private *np = netdev_priv(dev); u16 macctrl; /* Link change event */ if (int_status & LinkEvent) { if (mii_wait_link (dev, 10) == 0) { printk (KERN_INFO "%s: Link up\n", dev->name); if (np->phy_media) mii_get_media_pcs (dev); else mii_get_media (dev); if (np->speed == 1000) np->tx_coalesce = tx_coalesce; else np->tx_coalesce = 1; macctrl = 0; macctrl |= (np->vlan) ? AutoVLANuntagging : 0; macctrl |= (np->full_duplex) ? DuplexSelect : 0; macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; writew(macctrl, ioaddr + MACCtrl); np->link_status = 1; netif_carrier_on(dev); } else { printk (KERN_INFO "%s: Link off\n", dev->name); np->link_status = 0; netif_carrier_off(dev); } } /* UpdateStats statistics registers */ if (int_status & UpdateStats) { get_stats (dev); } /* PCI Error, a catastronphic error related to the bus interface occurs, set GlobalReset and HostReset to reset. */ if (int_status & HostError) { printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", dev->name, int_status); writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2); mdelay (500); } } static struct net_device_stats * get_stats (struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = netdev_priv(dev); #ifdef MEM_MAPPING int i; #endif unsigned int stat_reg; /* All statistics registers need to be acknowledged, else statistic overflow could cause problems */ np->stats.rx_packets += readl (ioaddr + FramesRcvOk); np->stats.tx_packets += readl (ioaddr + FramesXmtOk); np->stats.rx_bytes += readl (ioaddr + OctetRcvOk); np->stats.tx_bytes += readl (ioaddr + OctetXmtOk); np->stats.multicast = readl (ioaddr + McstFramesRcvdOk); np->stats.collisions += readl (ioaddr + SingleColFrames) + readl (ioaddr + MultiColFrames); /* detailed tx errors */ stat_reg = readw (ioaddr + FramesAbortXSColls); np->stats.tx_aborted_errors += stat_reg; np->stats.tx_errors += stat_reg; stat_reg = readw (ioaddr + CarrierSenseErrors); np->stats.tx_carrier_errors += stat_reg; np->stats.tx_errors += stat_reg; /* Clear all other statistic register. */ readl (ioaddr + McstOctetXmtOk); readw (ioaddr + BcstFramesXmtdOk); readl (ioaddr + McstFramesXmtdOk); readw (ioaddr + BcstFramesRcvdOk); readw (ioaddr + MacControlFramesRcvd); readw (ioaddr + FrameTooLongErrors); readw (ioaddr + InRangeLengthErrors); readw (ioaddr + FramesCheckSeqErrors); readw (ioaddr + FramesLostRxErrors); readl (ioaddr + McstOctetXmtOk); readl (ioaddr + BcstOctetXmtOk); readl (ioaddr + McstFramesXmtdOk); readl (ioaddr + FramesWDeferredXmt); readl (ioaddr + LateCollisions); readw (ioaddr + BcstFramesXmtdOk); readw (ioaddr + MacControlFramesXmtd); readw (ioaddr + FramesWEXDeferal); #ifdef MEM_MAPPING for (i = 0x100; i <= 0x150; i += 4) readl (ioaddr + i); #endif readw (ioaddr + TxJumboFrames); readw (ioaddr + RxJumboFrames); readw (ioaddr + TCPCheckSumErrors); readw (ioaddr + UDPCheckSumErrors); readw (ioaddr + IPCheckSumErrors); return &np->stats; } static int clear_stats (struct net_device *dev) { long ioaddr = dev->base_addr; #ifdef MEM_MAPPING int i; #endif /* All statistics registers need to be acknowledged, else statistic overflow could cause problems */ readl (ioaddr + FramesRcvOk); readl (ioaddr + FramesXmtOk); readl (ioaddr + OctetRcvOk); readl (ioaddr + OctetXmtOk); readl (ioaddr + McstFramesRcvdOk); readl (ioaddr + SingleColFrames); readl (ioaddr + MultiColFrames); readl (ioaddr + LateCollisions); /* detailed rx errors */ readw (ioaddr + FrameTooLongErrors); readw (ioaddr + InRangeLengthErrors); readw (ioaddr + FramesCheckSeqErrors); readw (ioaddr + FramesLostRxErrors); /* detailed tx errors */ readw (ioaddr + FramesAbortXSColls); readw (ioaddr + CarrierSenseErrors); /* Clear all other statistic register. */ readl (ioaddr + McstOctetXmtOk); readw (ioaddr + BcstFramesXmtdOk); readl (ioaddr + McstFramesXmtdOk); readw (ioaddr + BcstFramesRcvdOk); readw (ioaddr + MacControlFramesRcvd); readl (ioaddr + McstOctetXmtOk); readl (ioaddr + BcstOctetXmtOk); readl (ioaddr + McstFramesXmtdOk); readl (ioaddr + FramesWDeferredXmt); readw (ioaddr + BcstFramesXmtdOk); readw (ioaddr + MacControlFramesXmtd); readw (ioaddr + FramesWEXDeferal); #ifdef MEM_MAPPING for (i = 0x100; i <= 0x150; i += 4) readl (ioaddr + i); #endif readw (ioaddr + TxJumboFrames); readw (ioaddr + RxJumboFrames); readw (ioaddr + TCPCheckSumErrors); readw (ioaddr + UDPCheckSumErrors); readw (ioaddr + IPCheckSumErrors); return 0; } static int change_mtu (struct net_device *dev, int new_mtu) { struct netdev_private *np = netdev_priv(dev); int max = (np->jumbo) ? MAX_JUMBO : 1536; if ((new_mtu < 68) || (new_mtu > max)) { return -EINVAL; } dev->mtu = new_mtu; return 0; } static void set_multicast (struct net_device *dev) { long ioaddr = dev->base_addr; u32 hash_table[2]; u16 rx_mode = 0; struct netdev_private *np = netdev_priv(dev); hash_table[0] = hash_table[1] = 0; /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ hash_table[1] |= 0x02000000; if (dev->flags & IFF_PROMISC) { /* Receive all frames promiscuously. */ rx_mode = ReceiveAllFrames; } else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > multicast_filter_limit)) { /* Receive broadcast and multicast frames */ rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; } else if (dev->mc_count > 0) { int i; struct dev_mc_list *mclist; /* Receive broadcast frames and multicast frames filtering by Hashtable */ rx_mode = ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist=mclist->next) { int bit, index = 0; int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr); /* The inverted high significant 6 bits of CRC are used as an index to hashtable */ for (bit = 0; bit < 6; bit++) if (crc & (1 << (31 - bit))) index |= (1 << bit); hash_table[index / 32] |= (1 << (index % 32)); } } else { rx_mode = ReceiveBroadcast | ReceiveUnicast; } if (np->vlan) { /* ReceiveVLANMatch field in ReceiveMode */ rx_mode |= ReceiveVLANMatch; } writel (hash_table[0], ioaddr + HashTable0); writel (hash_table[1], ioaddr + HashTable1); writew (rx_mode, ioaddr + ReceiveMode); } static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct netdev_private *np = netdev_priv(dev); strcpy(info->driver, "dl2k"); strcpy(info->version, DRV_VERSION); strcpy(info->bus_info, pci_name(np->pdev)); } static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct netdev_private *np = netdev_priv(dev); if (np->phy_media) { /* fiber device */ cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE; cmd->port = PORT_FIBRE; cmd->transceiver = XCVR_INTERNAL; } else { /* copper device */ cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII; cmd->advertising = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| ADVERTISED_Autoneg | ADVERTISED_MII; cmd->port = PORT_MII; cmd->transceiver = XCVR_INTERNAL; } if ( np->link_status ) { cmd->speed = np->speed; cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; } else { cmd->speed = -1; cmd->duplex = -1; } if ( np->an_enable) cmd->autoneg = AUTONEG_ENABLE; else cmd->autoneg = AUTONEG_DISABLE; cmd->phy_address = np->phy_addr; return 0; } static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct netdev_private *np = netdev_priv(dev); netif_carrier_off(dev); if (cmd->autoneg == AUTONEG_ENABLE) { if (np->an_enable) return 0; else { np->an_enable = 1; mii_set_media(dev); return 0; } } else { np->an_enable = 0; if (np->speed == 1000) { cmd->speed = SPEED_100; cmd->duplex = DUPLEX_FULL; printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); } switch(cmd->speed + cmd->duplex) { case SPEED_10 + DUPLEX_HALF: np->speed = 10; np->full_duplex = 0; break; case SPEED_10 + DUPLEX_FULL: np->speed = 10; np->full_duplex = 1; break; case SPEED_100 + DUPLEX_HALF: np->speed = 100; np->full_duplex = 0; break; case SPEED_100 + DUPLEX_FULL: np->speed = 100; np->full_duplex = 1; break; case SPEED_1000 + DUPLEX_HALF:/* not supported */ case SPEED_1000 + DUPLEX_FULL:/* not supported */ default: return -EINVAL; } mii_set_media(dev); } return 0; } static u32 rio_get_link(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); return np->link_status; } static const struct ethtool_ops ethtool_ops = { .get_drvinfo = rio_get_drvinfo, .get_settings = rio_get_settings, .set_settings = rio_set_settings, .get_link = rio_get_link, }; static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) { int phy_addr; struct netdev_private *np = netdev_priv(dev); struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru; struct netdev_desc *desc; int i; phy_addr = np->phy_addr; switch (cmd) { case SIOCDEVPRIVATE: break; case SIOCDEVPRIVATE + 1: miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num); break; case SIOCDEVPRIVATE + 2: mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value); break; case SIOCDEVPRIVATE + 3: break; case SIOCDEVPRIVATE + 4: break; case SIOCDEVPRIVATE + 5: netif_stop_queue (dev); break; case SIOCDEVPRIVATE + 6: netif_wake_queue (dev); break; case SIOCDEVPRIVATE + 7: printk ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n", netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx, np->old_rx); break; case SIOCDEVPRIVATE + 8: printk("TX ring:\n"); for (i = 0; i < TX_RING_SIZE; i++) { desc = &np->tx_ring[i]; printk ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x", i, (u32) (np->tx_ring_dma + i * sizeof (*desc)), (u32)le64_to_cpu(desc->next_desc), (u32)le64_to_cpu(desc->status), (u32)(le64_to_cpu(desc->fraginfo) >> 32), (u32)le64_to_cpu(desc->fraginfo)); printk ("\n"); } printk ("\n"); break; default: return -EOPNOTSUPP; } return 0; } #define EEP_READ 0x0200 #define EEP_BUSY 0x8000 /* Read the EEPROM word */ /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ static int read_eeprom (long ioaddr, int eep_addr) { int i = 1000; outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl); while (i-- > 0) { if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) { return inw (ioaddr + EepromData); } } return 0; } enum phy_ctrl_bits { MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, MII_DUPLEX = 0x08, }; #define mii_delay() readb(ioaddr) static void mii_sendbit (struct net_device *dev, u32 data) { long ioaddr = dev->base_addr + PhyCtrl; data = (data) ? MII_DATA1 : 0; data |= MII_WRITE; data |= (readb (ioaddr) & 0xf8) | MII_WRITE; writeb (data, ioaddr); mii_delay (); writeb (data | MII_CLK, ioaddr); mii_delay (); } static int mii_getbit (struct net_device *dev) { long ioaddr = dev->base_addr + PhyCtrl; u8 data; data = (readb (ioaddr) & 0xf8) | MII_READ; writeb (data, ioaddr); mii_delay (); writeb (data | MII_CLK, ioaddr); mii_delay (); return ((readb (ioaddr) >> 1) & 1); } static void mii_send_bits (struct net_device *dev, u32 data, int len) { int i; for (i = len - 1; i >= 0; i--) { mii_sendbit (dev, data & (1 << i)); } } static int mii_read (struct net_device *dev, int phy_addr, int reg_num) { u32 cmd; int i; u32 retval = 0; /* Preamble */ mii_send_bits (dev, 0xffffffff, 32); /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ /* ST,OP = 0110'b for read operation */ cmd = (0x06 << 10 | phy_addr << 5 | reg_num); mii_send_bits (dev, cmd, 14); /* Turnaround */ if (mii_getbit (dev)) goto err_out; /* Read data */ for (i = 0; i < 16; i++) { retval |= mii_getbit (dev); retval <<= 1; } /* End cycle */ mii_getbit (dev); return (retval >> 1) & 0xffff; err_out: return 0; } static int mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) { u32 cmd; /* Preamble */ mii_send_bits (dev, 0xffffffff, 32); /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; mii_send_bits (dev, cmd, 32); /* End cycle */ mii_getbit (dev); return 0; } static int mii_wait_link (struct net_device *dev, int wait) { __u16 bmsr; int phy_addr; struct netdev_private *np; np = netdev_priv(dev); phy_addr = np->phy_addr; do { bmsr = mii_read (dev, phy_addr, MII_BMSR); if (bmsr & MII_BMSR_LINK_STATUS) return 0; mdelay (1); } while (--wait > 0); return -1; } static int mii_get_media (struct net_device *dev) { __u16 negotiate; __u16 bmsr; __u16 mscr; __u16 mssr; int phy_addr; struct netdev_private *np; np = netdev_priv(dev); phy_addr = np->phy_addr; bmsr = mii_read (dev, phy_addr, MII_BMSR); if (np->an_enable) { if (!(bmsr & MII_BMSR_AN_COMPLETE)) { /* Auto-Negotiation not completed */ return -1; } negotiate = mii_read (dev, phy_addr, MII_ANAR) & mii_read (dev, phy_addr, MII_ANLPAR); mscr = mii_read (dev, phy_addr, MII_MSCR); mssr = mii_read (dev, phy_addr, MII_MSSR); if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) { np->speed = 1000; np->full_duplex = 1; printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) { np->speed = 1000; np->full_duplex = 0; printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); } else if (negotiate & MII_ANAR_100BX_FD) { np->speed = 100; np->full_duplex = 1; printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); } else if (negotiate & MII_ANAR_100BX_HD) { np->speed = 100; np->full_duplex = 0; printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); } else if (negotiate & MII_ANAR_10BT_FD) { np->speed = 10; np->full_duplex = 1; printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); } else if (negotiate & MII_ANAR_10BT_HD) { np->speed = 10; np->full_duplex = 0; printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); } if (negotiate & MII_ANAR_PAUSE) { np->tx_flow &= 1; np->rx_flow &= 1; } else if (negotiate & MII_ANAR_ASYMMETRIC) { np->tx_flow = 0; np->rx_flow &= 1; } /* else tx_flow, rx_flow = user select */ } else { __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR); switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) { case MII_BMCR_SPEED_1000: printk (KERN_INFO "Operating at 1000 Mbps, "); break; case MII_BMCR_SPEED_100: printk (KERN_INFO "Operating at 100 Mbps, "); break; case 0: printk (KERN_INFO "Operating at 10 Mbps, "); } if (bmcr & MII_BMCR_DUPLEX_MODE) { printk (KERN_CONT "Full duplex\n"); } else { printk (KERN_CONT "Half duplex\n"); } } if (np->tx_flow) printk(KERN_INFO "Enable Tx Flow Control\n"); else printk(KERN_INFO "Disable Tx Flow Control\n"); if (np->rx_flow) printk(KERN_INFO "Enable Rx Flow Control\n"); else printk(KERN_INFO "Disable Rx Flow Control\n"); return 0; } static int mii_set_media (struct net_device *dev) { __u16 pscr; __u16 bmcr; __u16 bmsr; __u16 anar; int phy_addr; struct netdev_private *np; np = netdev_priv(dev); phy_addr = np->phy_addr; /* Does user set speed? */ if (np->an_enable) { /* Advertise capabilities */ bmsr = mii_read (dev, phy_addr, MII_BMSR); anar = mii_read (dev, phy_addr, MII_ANAR) & ~MII_ANAR_100BX_FD & ~MII_ANAR_100BX_HD & ~MII_ANAR_100BT4 & ~MII_ANAR_10BT_FD & ~MII_ANAR_10BT_HD; if (bmsr & MII_BMSR_100BX_FD) anar |= MII_ANAR_100BX_FD; if (bmsr & MII_BMSR_100BX_HD) anar |= MII_ANAR_100BX_HD; if (bmsr & MII_BMSR_100BT4) anar |= MII_ANAR_100BT4; if (bmsr & MII_BMSR_10BT_FD) anar |= MII_ANAR_10BT_FD; if (bmsr & MII_BMSR_10BT_HD) anar |= MII_ANAR_10BT_HD; anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC; mii_write (dev, phy_addr, MII_ANAR, anar); /* Enable Auto crossover */ pscr = mii_read (dev, phy_addr, MII_PHY_SCR); pscr |= 3 << 5; /* 11'b */ mii_write (dev, phy_addr, MII_PHY_SCR, pscr); /* Soft reset PHY */ mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET; mii_write (dev, phy_addr, MII_BMCR, bmcr); mdelay(1); } else { /* Force speed setting */ /* 1) Disable Auto crossover */ pscr = mii_read (dev, phy_addr, MII_PHY_SCR); pscr &= ~(3 << 5); mii_write (dev, phy_addr, MII_PHY_SCR, pscr); /* 2) PHY Reset */ bmcr = mii_read (dev, phy_addr, MII_BMCR); bmcr |= MII_BMCR_RESET; mii_write (dev, phy_addr, MII_BMCR, bmcr); /* 3) Power Down */ bmcr = 0x1940; /* must be 0x1940 */ mii_write (dev, phy_addr, MII_BMCR, bmcr); mdelay (100); /* wait a certain time */ /* 4) Advertise nothing */ mii_write (dev, phy_addr, MII_ANAR, 0); /* 5) Set media and Power Up */ bmcr = MII_BMCR_POWER_DOWN; if (np->speed == 100) { bmcr |= MII_BMCR_SPEED_100; printk (KERN_INFO "Manual 100 Mbps, "); } else if (np->speed == 10) { printk (KERN_INFO "Manual 10 Mbps, "); } if (np->full_duplex) { bmcr |= MII_BMCR_DUPLEX_MODE; printk (KERN_CONT "Full duplex\n"); } else { printk (KERN_CONT "Half duplex\n"); } #if 0 /* Set 1000BaseT Master/Slave setting */ mscr = mii_read (dev, phy_addr, MII_MSCR); mscr |= MII_MSCR_CFG_ENABLE; mscr &= ~MII_MSCR_CFG_VALUE = 0; #endif mii_write (dev, phy_addr, MII_BMCR, bmcr); mdelay(10); } return 0; } static int mii_get_media_pcs (struct net_device *dev) { __u16 negotiate; __u16 bmsr; int phy_addr; struct netdev_private *np; np = netdev_priv(dev); phy_addr = np->phy_addr; bmsr = mii_read (dev, phy_addr, PCS_BMSR); if (np->an_enable) { if (!(bmsr & MII_BMSR_AN_COMPLETE)) { /* Auto-Negotiation not completed */ return -1; } negotiate = mii_read (dev, phy_addr, PCS_ANAR) & mii_read (dev, phy_addr, PCS_ANLPAR); np->speed = 1000; if (negotiate & PCS_ANAR_FULL_DUPLEX) { printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); np->full_duplex = 1; } else { printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); np->full_duplex = 0; } if (negotiate & PCS_ANAR_PAUSE) { np->tx_flow &= 1; np->rx_flow &= 1; } else if (negotiate & PCS_ANAR_ASYMMETRIC) { np->tx_flow = 0; np->rx_flow &= 1; } /* else tx_flow, rx_flow = user select */ } else { __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR); printk (KERN_INFO "Operating at 1000 Mbps, "); if (bmcr & MII_BMCR_DUPLEX_MODE) { printk (KERN_CONT "Full duplex\n"); } else { printk (KERN_CONT "Half duplex\n"); } } if (np->tx_flow) printk(KERN_INFO "Enable Tx Flow Control\n"); else printk(KERN_INFO "Disable Tx Flow Control\n"); if (np->rx_flow) printk(KERN_INFO "Enable Rx Flow Control\n"); else printk(KERN_INFO "Disable Rx Flow Control\n"); return 0; } static int mii_set_media_pcs (struct net_device *dev) { __u16 bmcr; __u16 esr; __u16 anar; int phy_addr; struct netdev_private *np; np = netdev_priv(dev); phy_addr = np->phy_addr; /* Auto-Negotiation? */ if (np->an_enable) { /* Advertise capabilities */ esr = mii_read (dev, phy_addr, PCS_ESR); anar = mii_read (dev, phy_addr, MII_ANAR) & ~PCS_ANAR_HALF_DUPLEX & ~PCS_ANAR_FULL_DUPLEX; if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD)) anar |= PCS_ANAR_HALF_DUPLEX; if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD)) anar |= PCS_ANAR_FULL_DUPLEX; anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC; mii_write (dev, phy_addr, MII_ANAR, anar); /* Soft reset PHY */ mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET); bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET; mii_write (dev, phy_addr, MII_BMCR, bmcr); mdelay(1); } else { /* Force speed setting */ /* PHY Reset */ bmcr = MII_BMCR_RESET; mii_write (dev, phy_addr, MII_BMCR, bmcr); mdelay(10); if (np->full_duplex) { bmcr = MII_BMCR_DUPLEX_MODE; printk (KERN_INFO "Manual full duplex\n"); } else { bmcr = 0; printk (KERN_INFO "Manual half duplex\n"); } mii_write (dev, phy_addr, MII_BMCR, bmcr); mdelay(10); /* Advertise nothing */ mii_write (dev, phy_addr, MII_ANAR, 0); } return 0; } static int rio_close (struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = netdev_priv(dev); struct sk_buff *skb; int i; netif_stop_queue (dev); /* Disable interrupts */ writew (0, ioaddr + IntEnable); /* Stop Tx and Rx logics */ writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl); free_irq (dev->irq, dev); del_timer_sync (&np->timer); /* Free all the skbuffs in the queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].status = 0; np->rx_ring[i].fraginfo = 0; skb = np->rx_skbuff[i]; if (skb) { pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]), skb->len, PCI_DMA_FROMDEVICE); dev_kfree_skb (skb); np->rx_skbuff[i] = NULL; } } for (i = 0; i < TX_RING_SIZE; i++) { skb = np->tx_skbuff[i]; if (skb) { pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]), skb->len, PCI_DMA_TODEVICE); dev_kfree_skb (skb); np->tx_skbuff[i] = NULL; } } return 0; } static void __devexit rio_remove1 (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata (pdev); if (dev) { struct netdev_private *np = netdev_priv(dev); unregister_netdev (dev); pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); #ifdef MEM_MAPPING iounmap ((char *) (dev->base_addr)); #endif free_netdev (dev); pci_release_regions (pdev); pci_disable_device (pdev); } pci_set_drvdata (pdev, NULL); } static struct pci_driver rio_driver = { .name = "dl2k", .id_table = rio_pci_tbl, .probe = rio_probe1, .remove = __devexit_p(rio_remove1), }; static int __init rio_init (void) { return pci_register_driver(&rio_driver); } static void __exit rio_exit (void) { pci_unregister_driver (&rio_driver); } module_init (rio_init); module_exit (rio_exit); /* Compile command: gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c Read Documentation/networking/dl2k.txt for details. */