/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2007-2008 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include <linux/delay.h> #include <linux/rtnetlink.h> #include <linux/seq_file.h> #include "efx.h" #include "mdio_10g.h" #include "falcon.h" #include "phy.h" #include "falcon_hwdefs.h" #include "boards.h" #include "workarounds.h" #include "selftest.h" /* We expect these MMDs to be in the package. SFT9001 also has a * clause 22 extension MMD, but since it doesn't have all the generic * MMD registers it is pointless to include it here. */ #define TENXPRESS_REQUIRED_DEVS (MDIO_DEVS_PMAPMD | \ MDIO_DEVS_PCS | \ MDIO_DEVS_PHYXS | \ MDIO_DEVS_AN) #define SFX7101_LOOPBACKS ((1 << LOOPBACK_PHYXS) | \ (1 << LOOPBACK_PCS) | \ (1 << LOOPBACK_PMAPMD) | \ (1 << LOOPBACK_NETWORK)) #define SFT9001_LOOPBACKS ((1 << LOOPBACK_GPHY) | \ (1 << LOOPBACK_PHYXS) | \ (1 << LOOPBACK_PCS) | \ (1 << LOOPBACK_PMAPMD) | \ (1 << LOOPBACK_NETWORK)) /* We complain if we fail to see the link partner as 10G capable this many * times in a row (must be > 1 as sampling the autoneg. registers is racy) */ #define MAX_BAD_LP_TRIES (5) /* Extended control register */ #define PMA_PMD_XCONTROL_REG 49152 #define PMA_PMD_EXT_GMII_EN_LBN 1 #define PMA_PMD_EXT_GMII_EN_WIDTH 1 #define PMA_PMD_EXT_CLK_OUT_LBN 2 #define PMA_PMD_EXT_CLK_OUT_WIDTH 1 #define PMA_PMD_LNPGA_POWERDOWN_LBN 8 /* SFX7101 only */ #define PMA_PMD_LNPGA_POWERDOWN_WIDTH 1 #define PMA_PMD_EXT_CLK312_LBN 8 /* SFT9001 only */ #define PMA_PMD_EXT_CLK312_WIDTH 1 #define PMA_PMD_EXT_LPOWER_LBN 12 #define PMA_PMD_EXT_LPOWER_WIDTH 1 #define PMA_PMD_EXT_ROBUST_LBN 14 #define PMA_PMD_EXT_ROBUST_WIDTH 1 #define PMA_PMD_EXT_SSR_LBN 15 #define PMA_PMD_EXT_SSR_WIDTH 1 /* extended status register */ #define PMA_PMD_XSTATUS_REG 49153 #define PMA_PMD_XSTAT_MDIX_LBN 14 #define PMA_PMD_XSTAT_FLP_LBN (12) /* LED control register */ #define PMA_PMD_LED_CTRL_REG 49159 #define PMA_PMA_LED_ACTIVITY_LBN (3) /* LED function override register */ #define PMA_PMD_LED_OVERR_REG 49161 /* Bit positions for different LEDs (there are more but not wired on SFE4001)*/ #define PMA_PMD_LED_LINK_LBN (0) #define PMA_PMD_LED_SPEED_LBN (2) #define PMA_PMD_LED_TX_LBN (4) #define PMA_PMD_LED_RX_LBN (6) /* Override settings */ #define PMA_PMD_LED_AUTO (0) /* H/W control */ #define PMA_PMD_LED_ON (1) #define PMA_PMD_LED_OFF (2) #define PMA_PMD_LED_FLASH (3) #define PMA_PMD_LED_MASK 3 /* All LEDs under hardware control */ #define PMA_PMD_LED_FULL_AUTO (0) /* Green and Amber under hardware control, Red off */ #define PMA_PMD_LED_DEFAULT (PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN) #define PMA_PMD_SPEED_ENABLE_REG 49192 #define PMA_PMD_100TX_ADV_LBN 1 #define PMA_PMD_100TX_ADV_WIDTH 1 #define PMA_PMD_1000T_ADV_LBN 2 #define PMA_PMD_1000T_ADV_WIDTH 1 #define PMA_PMD_10000T_ADV_LBN 3 #define PMA_PMD_10000T_ADV_WIDTH 1 #define PMA_PMD_SPEED_LBN 4 #define PMA_PMD_SPEED_WIDTH 4 /* Cable diagnostics - SFT9001 only */ #define PMA_PMD_CDIAG_CTRL_REG 49213 #define CDIAG_CTRL_IMMED_LBN 15 #define CDIAG_CTRL_BRK_LINK_LBN 12 #define CDIAG_CTRL_IN_PROG_LBN 11 #define CDIAG_CTRL_LEN_UNIT_LBN 10 #define CDIAG_CTRL_LEN_METRES 1 #define PMA_PMD_CDIAG_RES_REG 49174 #define CDIAG_RES_A_LBN 12 #define CDIAG_RES_B_LBN 8 #define CDIAG_RES_C_LBN 4 #define CDIAG_RES_D_LBN 0 #define CDIAG_RES_WIDTH 4 #define CDIAG_RES_OPEN 2 #define CDIAG_RES_OK 1 #define CDIAG_RES_INVALID 0 /* Set of 4 registers for pairs A-D */ #define PMA_PMD_CDIAG_LEN_REG 49175 /* Serdes control registers - SFT9001 only */ #define PMA_PMD_CSERDES_CTRL_REG 64258 /* Set the 156.25 MHz output to 312.5 MHz to drive Falcon's XMAC */ #define PMA_PMD_CSERDES_DEFAULT 0x000f /* Misc register defines - SFX7101 only */ #define PCS_CLOCK_CTRL_REG 55297 #define PLL312_RST_N_LBN 2 #define PCS_SOFT_RST2_REG 55302 #define SERDES_RST_N_LBN 13 #define XGXS_RST_N_LBN 12 #define PCS_TEST_SELECT_REG 55303 /* PRM 10.5.8 */ #define CLK312_EN_LBN 3 /* PHYXS registers */ #define PHYXS_XCONTROL_REG 49152 #define PHYXS_RESET_LBN 15 #define PHYXS_RESET_WIDTH 1 #define PHYXS_TEST1 (49162) #define LOOPBACK_NEAR_LBN (8) #define LOOPBACK_NEAR_WIDTH (1) /* Boot status register */ #define PCS_BOOT_STATUS_REG 53248 #define PCS_BOOT_FATAL_ERROR_LBN 0 #define PCS_BOOT_PROGRESS_LBN 1 #define PCS_BOOT_PROGRESS_WIDTH 2 #define PCS_BOOT_PROGRESS_INIT 0 #define PCS_BOOT_PROGRESS_WAIT_MDIO 1 #define PCS_BOOT_PROGRESS_CHECKSUM 2 #define PCS_BOOT_PROGRESS_JUMP 3 #define PCS_BOOT_DOWNLOAD_WAIT_LBN 3 #define PCS_BOOT_CODE_STARTED_LBN 4 /* 100M/1G PHY registers */ #define GPHY_XCONTROL_REG 49152 #define GPHY_ISOLATE_LBN 10 #define GPHY_ISOLATE_WIDTH 1 #define GPHY_DUPLEX_LBN 8 #define GPHY_DUPLEX_WIDTH 1 #define GPHY_LOOPBACK_NEAR_LBN 14 #define GPHY_LOOPBACK_NEAR_WIDTH 1 #define C22EXT_STATUS_REG 49153 #define C22EXT_STATUS_LINK_LBN 2 #define C22EXT_STATUS_LINK_WIDTH 1 #define C22EXT_MSTSLV_CTRL 49161 #define C22EXT_MSTSLV_CTRL_ADV_1000_HD_LBN 8 #define C22EXT_MSTSLV_CTRL_ADV_1000_FD_LBN 9 #define C22EXT_MSTSLV_STATUS 49162 #define C22EXT_MSTSLV_STATUS_LP_1000_HD_LBN 10 #define C22EXT_MSTSLV_STATUS_LP_1000_FD_LBN 11 /* Time to wait between powering down the LNPGA and turning off the power * rails */ #define LNPGA_PDOWN_WAIT (HZ / 5) struct tenxpress_phy_data { enum efx_loopback_mode loopback_mode; enum efx_phy_mode phy_mode; int bad_lp_tries; }; static ssize_t show_phy_short_reach(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); int reg; reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, MDIO_PMA_10GBT_TXPWR); return sprintf(buf, "%d\n", !!(reg & MDIO_PMA_10GBT_TXPWR_SHORT)); } static ssize_t set_phy_short_reach(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); rtnl_lock(); efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_PMA_10GBT_TXPWR, MDIO_PMA_10GBT_TXPWR_SHORT, count != 0 && *buf != '0'); efx_reconfigure_port(efx); rtnl_unlock(); return count; } static DEVICE_ATTR(phy_short_reach, 0644, show_phy_short_reach, set_phy_short_reach); int sft9001_wait_boot(struct efx_nic *efx) { unsigned long timeout = jiffies + HZ + 1; int boot_stat; for (;;) { boot_stat = efx_mdio_read(efx, MDIO_MMD_PCS, PCS_BOOT_STATUS_REG); if (boot_stat >= 0) { EFX_LOG(efx, "PHY boot status = %#x\n", boot_stat); switch (boot_stat & ((1 << PCS_BOOT_FATAL_ERROR_LBN) | (3 << PCS_BOOT_PROGRESS_LBN) | (1 << PCS_BOOT_DOWNLOAD_WAIT_LBN) | (1 << PCS_BOOT_CODE_STARTED_LBN))) { case ((1 << PCS_BOOT_FATAL_ERROR_LBN) | (PCS_BOOT_PROGRESS_CHECKSUM << PCS_BOOT_PROGRESS_LBN)): case ((1 << PCS_BOOT_FATAL_ERROR_LBN) | (PCS_BOOT_PROGRESS_INIT << PCS_BOOT_PROGRESS_LBN) | (1 << PCS_BOOT_DOWNLOAD_WAIT_LBN)): return -EINVAL; case ((PCS_BOOT_PROGRESS_WAIT_MDIO << PCS_BOOT_PROGRESS_LBN) | (1 << PCS_BOOT_DOWNLOAD_WAIT_LBN)): return (efx->phy_mode & PHY_MODE_SPECIAL) ? 0 : -EIO; case ((PCS_BOOT_PROGRESS_JUMP << PCS_BOOT_PROGRESS_LBN) | (1 << PCS_BOOT_CODE_STARTED_LBN)): case ((PCS_BOOT_PROGRESS_JUMP << PCS_BOOT_PROGRESS_LBN) | (1 << PCS_BOOT_DOWNLOAD_WAIT_LBN) | (1 << PCS_BOOT_CODE_STARTED_LBN)): return (efx->phy_mode & PHY_MODE_SPECIAL) ? -EIO : 0; default: if (boot_stat & (1 << PCS_BOOT_FATAL_ERROR_LBN)) return -EIO; break; } } if (time_after_eq(jiffies, timeout)) return -ETIMEDOUT; msleep(50); } } static int tenxpress_init(struct efx_nic *efx) { int reg; if (efx->phy_type == PHY_TYPE_SFX7101) { /* Enable 312.5 MHz clock */ efx_mdio_write(efx, MDIO_MMD_PCS, PCS_TEST_SELECT_REG, 1 << CLK312_EN_LBN); } else { /* Enable 312.5 MHz clock and GMII */ reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG); reg |= ((1 << PMA_PMD_EXT_GMII_EN_LBN) | (1 << PMA_PMD_EXT_CLK_OUT_LBN) | (1 << PMA_PMD_EXT_CLK312_LBN) | (1 << PMA_PMD_EXT_ROBUST_LBN)); efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, reg); efx_mdio_set_flag(efx, MDIO_MMD_C22EXT, GPHY_XCONTROL_REG, 1 << GPHY_ISOLATE_LBN, false); } /* Set the LEDs up as: Green = Link, Amber = Link/Act, Red = Off */ if (efx->phy_type == PHY_TYPE_SFX7101) { efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_CTRL_REG, 1 << PMA_PMA_LED_ACTIVITY_LBN, true); efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG, PMA_PMD_LED_DEFAULT); } return 0; } static int tenxpress_phy_init(struct efx_nic *efx) { struct tenxpress_phy_data *phy_data; int rc = 0; phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL); if (!phy_data) return -ENOMEM; efx->phy_data = phy_data; phy_data->phy_mode = efx->phy_mode; if (!(efx->phy_mode & PHY_MODE_SPECIAL)) { if (efx->phy_type == PHY_TYPE_SFT9001A) { int reg; reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG); reg |= (1 << PMA_PMD_EXT_SSR_LBN); efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, reg); mdelay(200); } rc = efx_mdio_wait_reset_mmds(efx, TENXPRESS_REQUIRED_DEVS); if (rc < 0) goto fail; rc = efx_mdio_check_mmds(efx, TENXPRESS_REQUIRED_DEVS, 0); if (rc < 0) goto fail; } rc = tenxpress_init(efx); if (rc < 0) goto fail; if (efx->phy_type == PHY_TYPE_SFT9001B) { rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_short_reach); if (rc) goto fail; } schedule_timeout_uninterruptible(HZ / 5); /* 200ms */ /* Let XGXS and SerDes out of reset */ falcon_reset_xaui(efx); return 0; fail: kfree(efx->phy_data); efx->phy_data = NULL; return rc; } /* Perform a "special software reset" on the PHY. The caller is * responsible for saving and restoring the PHY hardware registers * properly, and masking/unmasking LASI */ static int tenxpress_special_reset(struct efx_nic *efx) { int rc, reg; /* The XGMAC clock is driven from the SFC7101/SFT9001 312MHz clock, so * a special software reset can glitch the XGMAC sufficiently for stats * requests to fail. */ efx_stats_disable(efx); /* Initiate reset */ reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG); reg |= (1 << PMA_PMD_EXT_SSR_LBN); efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, reg); mdelay(200); /* Wait for the blocks to come out of reset */ rc = efx_mdio_wait_reset_mmds(efx, TENXPRESS_REQUIRED_DEVS); if (rc < 0) goto out; /* Try and reconfigure the device */ rc = tenxpress_init(efx); if (rc < 0) goto out; /* Wait for the XGXS state machine to churn */ mdelay(10); out: efx_stats_enable(efx); return rc; } static void sfx7101_check_bad_lp(struct efx_nic *efx, bool link_ok) { struct tenxpress_phy_data *pd = efx->phy_data; bool bad_lp; int reg; if (link_ok) { bad_lp = false; } else { /* Check that AN has started but not completed. */ reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_STAT1); if (!(reg & MDIO_AN_STAT1_LPABLE)) return; /* LP status is unknown */ bad_lp = !(reg & MDIO_AN_STAT1_COMPLETE); if (bad_lp) pd->bad_lp_tries++; } /* Nothing to do if all is well and was previously so. */ if (!pd->bad_lp_tries) return; /* Use the RX (red) LED as an error indicator once we've seen AN * failure several times in a row, and also log a message. */ if (!bad_lp || pd->bad_lp_tries == MAX_BAD_LP_TRIES) { reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG); reg &= ~(PMA_PMD_LED_MASK << PMA_PMD_LED_RX_LBN); if (!bad_lp) { reg |= PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN; } else { reg |= PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN; EFX_ERR(efx, "appears to be plugged into a port" " that is not 10GBASE-T capable. The PHY" " supports 10GBASE-T ONLY, so no link can" " be established\n"); } efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG, reg); pd->bad_lp_tries = bad_lp; } } static bool sfx7101_link_ok(struct efx_nic *efx) { return efx_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS); } static bool sft9001_link_ok(struct efx_nic *efx, struct ethtool_cmd *ecmd) { u32 reg; if (efx_phy_mode_disabled(efx->phy_mode)) return false; else if (efx->loopback_mode == LOOPBACK_GPHY) return true; else if (efx->loopback_mode) return efx_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS); /* We must use the same definition of link state as LASI, * otherwise we can miss a link state transition */ if (ecmd->speed == 10000) { reg = efx_mdio_read(efx, MDIO_MMD_PCS, MDIO_PCS_10GBRT_STAT1); return reg & MDIO_PCS_10GBRT_STAT1_BLKLK; } else { reg = efx_mdio_read(efx, MDIO_MMD_C22EXT, C22EXT_STATUS_REG); return reg & (1 << C22EXT_STATUS_LINK_LBN); } } static void tenxpress_ext_loopback(struct efx_nic *efx) { efx_mdio_set_flag(efx, MDIO_MMD_PHYXS, PHYXS_TEST1, 1 << LOOPBACK_NEAR_LBN, efx->loopback_mode == LOOPBACK_PHYXS); if (efx->phy_type != PHY_TYPE_SFX7101) efx_mdio_set_flag(efx, MDIO_MMD_C22EXT, GPHY_XCONTROL_REG, 1 << GPHY_LOOPBACK_NEAR_LBN, efx->loopback_mode == LOOPBACK_GPHY); } static void tenxpress_low_power(struct efx_nic *efx) { if (efx->phy_type == PHY_TYPE_SFX7101) efx_mdio_set_mmds_lpower( efx, !!(efx->phy_mode & PHY_MODE_LOW_POWER), TENXPRESS_REQUIRED_DEVS); else efx_mdio_set_flag( efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, 1 << PMA_PMD_EXT_LPOWER_LBN, !!(efx->phy_mode & PHY_MODE_LOW_POWER)); } static void tenxpress_phy_reconfigure(struct efx_nic *efx) { struct tenxpress_phy_data *phy_data = efx->phy_data; struct ethtool_cmd ecmd; bool phy_mode_change, loop_reset; if (efx->phy_mode & (PHY_MODE_OFF | PHY_MODE_SPECIAL)) { phy_data->phy_mode = efx->phy_mode; return; } tenxpress_low_power(efx); phy_mode_change = (efx->phy_mode == PHY_MODE_NORMAL && phy_data->phy_mode != PHY_MODE_NORMAL); loop_reset = (LOOPBACK_OUT_OF(phy_data, efx, efx->phy_op->loopbacks) || LOOPBACK_CHANGED(phy_data, efx, 1 << LOOPBACK_GPHY)); if (loop_reset || phy_mode_change) { int rc; efx->phy_op->get_settings(efx, &ecmd); if (loop_reset || phy_mode_change) { tenxpress_special_reset(efx); /* Reset XAUI if we were in 10G, and are staying * in 10G. If we're moving into and out of 10G * then xaui will be reset anyway */ if (EFX_IS10G(efx)) falcon_reset_xaui(efx); } rc = efx->phy_op->set_settings(efx, &ecmd); WARN_ON(rc); } efx_mdio_transmit_disable(efx); efx_mdio_phy_reconfigure(efx); tenxpress_ext_loopback(efx); phy_data->loopback_mode = efx->loopback_mode; phy_data->phy_mode = efx->phy_mode; if (efx->phy_type == PHY_TYPE_SFX7101) { efx->link_speed = 10000; efx->link_fd = true; efx->link_up = sfx7101_link_ok(efx); } else { efx->phy_op->get_settings(efx, &ecmd); efx->link_speed = ecmd.speed; efx->link_fd = ecmd.duplex == DUPLEX_FULL; efx->link_up = sft9001_link_ok(efx, &ecmd); } efx->link_fc = efx_mdio_get_pause(efx); } /* Poll PHY for interrupt */ static void tenxpress_phy_poll(struct efx_nic *efx) { struct tenxpress_phy_data *phy_data = efx->phy_data; bool change = false; if (efx->phy_type == PHY_TYPE_SFX7101) { bool link_ok = sfx7101_link_ok(efx); if (link_ok != efx->link_up) { change = true; } else { unsigned int link_fc = efx_mdio_get_pause(efx); if (link_fc != efx->link_fc) change = true; } sfx7101_check_bad_lp(efx, link_ok); } else if (efx->loopback_mode) { bool link_ok = sft9001_link_ok(efx, NULL); if (link_ok != efx->link_up) change = true; } else { int status = efx_mdio_read(efx, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT); if (status & MDIO_PMA_LASI_LSALARM) change = true; } if (change) falcon_sim_phy_event(efx); if (phy_data->phy_mode != PHY_MODE_NORMAL) return; } static void tenxpress_phy_fini(struct efx_nic *efx) { int reg; if (efx->phy_type == PHY_TYPE_SFT9001B) device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_short_reach); if (efx->phy_type == PHY_TYPE_SFX7101) { /* Power down the LNPGA */ reg = (1 << PMA_PMD_LNPGA_POWERDOWN_LBN); efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, reg); /* Waiting here ensures that the board fini, which can turn * off the power to the PHY, won't get run until the LNPGA * powerdown has been given long enough to complete. */ schedule_timeout_uninterruptible(LNPGA_PDOWN_WAIT); /* 200 ms */ } kfree(efx->phy_data); efx->phy_data = NULL; } /* Set the RX and TX LEDs and Link LED flashing. The other LEDs * (which probably aren't wired anyway) are left in AUTO mode */ void tenxpress_phy_blink(struct efx_nic *efx, bool blink) { int reg; if (blink) reg = (PMA_PMD_LED_FLASH << PMA_PMD_LED_TX_LBN) | (PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN) | (PMA_PMD_LED_FLASH << PMA_PMD_LED_LINK_LBN); else reg = PMA_PMD_LED_DEFAULT; efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG, reg); } static const char *const sfx7101_test_names[] = { "bist" }; static int sfx7101_run_tests(struct efx_nic *efx, int *results, unsigned flags) { int rc; if (!(flags & ETH_TEST_FL_OFFLINE)) return 0; /* BIST is automatically run after a special software reset */ rc = tenxpress_special_reset(efx); results[0] = rc ? -1 : 1; return rc; } static const char *const sft9001_test_names[] = { "bist", "cable.pairA.status", "cable.pairB.status", "cable.pairC.status", "cable.pairD.status", "cable.pairA.length", "cable.pairB.length", "cable.pairC.length", "cable.pairD.length", }; static int sft9001_run_tests(struct efx_nic *efx, int *results, unsigned flags) { struct ethtool_cmd ecmd; int rc = 0, rc2, i, ctrl_reg, res_reg; if (flags & ETH_TEST_FL_OFFLINE) efx->phy_op->get_settings(efx, &ecmd); /* Initialise cable diagnostic results to unknown failure */ for (i = 1; i < 9; ++i) results[i] = -1; /* Run cable diagnostics; wait up to 5 seconds for them to complete. * A cable fault is not a self-test failure, but a timeout is. */ ctrl_reg = ((1 << CDIAG_CTRL_IMMED_LBN) | (CDIAG_CTRL_LEN_METRES << CDIAG_CTRL_LEN_UNIT_LBN)); if (flags & ETH_TEST_FL_OFFLINE) { /* Break the link in order to run full diagnostics. We * must reset the PHY to resume normal service. */ ctrl_reg |= (1 << CDIAG_CTRL_BRK_LINK_LBN); } efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_CDIAG_CTRL_REG, ctrl_reg); i = 0; while (efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_CDIAG_CTRL_REG) & (1 << CDIAG_CTRL_IN_PROG_LBN)) { if (++i == 50) { rc = -ETIMEDOUT; goto out; } msleep(100); } res_reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_CDIAG_RES_REG); for (i = 0; i < 4; i++) { int pair_res = (res_reg >> (CDIAG_RES_A_LBN - i * CDIAG_RES_WIDTH)) & ((1 << CDIAG_RES_WIDTH) - 1); int len_reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_CDIAG_LEN_REG + i); if (pair_res == CDIAG_RES_OK) results[1 + i] = 1; else if (pair_res == CDIAG_RES_INVALID) results[1 + i] = -1; else results[1 + i] = -pair_res; if (pair_res != CDIAG_RES_INVALID && pair_res != CDIAG_RES_OPEN && len_reg != 0xffff) results[5 + i] = len_reg; } out: if (flags & ETH_TEST_FL_OFFLINE) { /* Reset, running the BIST and then resuming normal service. */ rc2 = tenxpress_special_reset(efx); results[0] = rc2 ? -1 : 1; if (!rc) rc = rc2; rc2 = efx->phy_op->set_settings(efx, &ecmd); if (!rc) rc = rc2; } return rc; } static void tenxpress_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) { u32 adv = 0, lpa = 0; int reg; if (efx->phy_type != PHY_TYPE_SFX7101) { reg = efx_mdio_read(efx, MDIO_MMD_C22EXT, C22EXT_MSTSLV_CTRL); if (reg & (1 << C22EXT_MSTSLV_CTRL_ADV_1000_FD_LBN)) adv |= ADVERTISED_1000baseT_Full; reg = efx_mdio_read(efx, MDIO_MMD_C22EXT, C22EXT_MSTSLV_STATUS); if (reg & (1 << C22EXT_MSTSLV_STATUS_LP_1000_HD_LBN)) lpa |= ADVERTISED_1000baseT_Half; if (reg & (1 << C22EXT_MSTSLV_STATUS_LP_1000_FD_LBN)) lpa |= ADVERTISED_1000baseT_Full; } reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL); if (reg & MDIO_AN_10GBT_CTRL_ADV10G) adv |= ADVERTISED_10000baseT_Full; reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_AN_10GBT_STAT); if (reg & MDIO_AN_10GBT_STAT_LP10G) lpa |= ADVERTISED_10000baseT_Full; mdio45_ethtool_gset_npage(&efx->mdio, ecmd, adv, lpa); if (efx->phy_type != PHY_TYPE_SFX7101) { ecmd->supported |= (SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full); if (ecmd->speed != SPEED_10000) { ecmd->eth_tp_mdix = (efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_XSTATUS_REG) & (1 << PMA_PMD_XSTAT_MDIX_LBN)) ? ETH_TP_MDI_X : ETH_TP_MDI; } } /* In loopback, the PHY automatically brings up the correct interface, * but doesn't advertise the correct speed. So override it */ if (efx->loopback_mode == LOOPBACK_GPHY) ecmd->speed = SPEED_1000; else if (LOOPBACK_MASK(efx) & efx->phy_op->loopbacks) ecmd->speed = SPEED_10000; } static int tenxpress_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) { if (!ecmd->autoneg) return -EINVAL; return efx_mdio_set_settings(efx, ecmd); } static void sfx7101_set_npage_adv(struct efx_nic *efx, u32 advertising) { efx_mdio_set_flag(efx, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL, MDIO_AN_10GBT_CTRL_ADV10G, advertising & ADVERTISED_10000baseT_Full); } static void sft9001_set_npage_adv(struct efx_nic *efx, u32 advertising) { efx_mdio_set_flag(efx, MDIO_MMD_C22EXT, C22EXT_MSTSLV_CTRL, 1 << C22EXT_MSTSLV_CTRL_ADV_1000_FD_LBN, advertising & ADVERTISED_1000baseT_Full); efx_mdio_set_flag(efx, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL, MDIO_AN_10GBT_CTRL_ADV10G, advertising & ADVERTISED_10000baseT_Full); } struct efx_phy_operations falcon_sfx7101_phy_ops = { .macs = EFX_XMAC, .init = tenxpress_phy_init, .reconfigure = tenxpress_phy_reconfigure, .poll = tenxpress_phy_poll, .fini = tenxpress_phy_fini, .clear_interrupt = efx_port_dummy_op_void, .get_settings = tenxpress_get_settings, .set_settings = tenxpress_set_settings, .set_npage_adv = sfx7101_set_npage_adv, .num_tests = ARRAY_SIZE(sfx7101_test_names), .test_names = sfx7101_test_names, .run_tests = sfx7101_run_tests, .mmds = TENXPRESS_REQUIRED_DEVS, .loopbacks = SFX7101_LOOPBACKS, }; struct efx_phy_operations falcon_sft9001_phy_ops = { .macs = EFX_GMAC | EFX_XMAC, .init = tenxpress_phy_init, .reconfigure = tenxpress_phy_reconfigure, .poll = tenxpress_phy_poll, .fini = tenxpress_phy_fini, .clear_interrupt = efx_port_dummy_op_void, .get_settings = tenxpress_get_settings, .set_settings = tenxpress_set_settings, .set_npage_adv = sft9001_set_npage_adv, .num_tests = ARRAY_SIZE(sft9001_test_names), .test_names = sft9001_test_names, .run_tests = sft9001_run_tests, .mmds = TENXPRESS_REQUIRED_DEVS, .loopbacks = SFT9001_LOOPBACKS, };