/****************************************************************************** * * (C)Copyright 1998,1999 SysKonnect, * a business unit of Schneider & Koch & Co. Datensysteme GmbH. * * See the file "skfddi.c" for further information. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * The information in this file is provided "AS IS" without warranty. * ******************************************************************************/ /* * FBI board dependent Driver for SMT and LLC */ #include "h/types.h" #include "h/fddi.h" #include "h/smc.h" #include "h/supern_2.h" #include "h/skfbiinc.h" #include <linux/bitrev.h> #ifndef lint static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ; #endif /* * PCM active state */ #define PC8_ACTIVE 8 #define LED_Y_ON 0x11 /* Used for ring up/down indication */ #define LED_Y_OFF 0x10 #define MS2BCLK(x) ((x)*12500L) /* * valid configuration values are: */ #ifdef ISA const int opt_ints[] = {8, 3, 4, 5, 9, 10, 11, 12, 15} ; const int opt_iops[] = {8, 0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340}; const int opt_dmas[] = {4, 3, 5, 6, 7} ; const int opt_eproms[] = {15, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ; #endif #ifdef EISA const int opt_ints[] = {5, 9, 10, 11} ; const int opt_dmas[] = {0, 5, 6, 7} ; const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ; #endif #ifdef MCA int opt_ints[] = {3, 11, 10, 9} ; /* FM1 */ int opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ; #endif /* MCA */ /* * xPOS_ID:xxxx * | \ / * | \/ * | --------------------- the patched POS_ID of the Adapter * | xxxx = (Vendor ID low byte, * | Vendor ID high byte, * | Device ID low byte, * | Device ID high byte) * +------------------------------ the patched oem_id must be * 'S' for SK or 'I' for IBM * this is a short id for the driver. */ #ifndef MULT_OEM #ifndef OEM_CONCEPT #ifndef MCA const u_char oem_id[] = "xPOS_ID:xxxx" ; #else const u_char oem_id[] = "xPOSID1:xxxx" ; /* FM1 card id. */ #endif #else /* OEM_CONCEPT */ #ifndef MCA const u_char oem_id[] = OEM_ID ; #else const u_char oem_id[] = OEM_ID1 ; /* FM1 card id. */ #endif /* MCA */ #endif /* OEM_CONCEPT */ #define ID_BYTE0 8 #define OEMID(smc,i) oem_id[ID_BYTE0 + i] #else /* MULT_OEM */ const struct s_oem_ids oem_ids[] = { #include "oemids.h" {0} }; #define OEMID(smc,i) smc->hw.oem_id->oi_id[i] #endif /* MULT_OEM */ /* Prototypes of external functions */ #ifdef AIX extern int AIX_vpdReadByte() ; #endif /* Prototype of a local function. */ static void smt_stop_watchdog(struct s_smc *smc); #ifdef MCA static int read_card_id() ; static void DisableSlotAccess() ; static void EnableSlotAccess() ; #ifdef AIX extern int attach_POS_addr() ; extern int detach_POS_addr() ; extern u_char read_POS() ; extern void write_POS() ; extern int AIX_vpdReadByte() ; #else #define read_POS(smc,a1,a2) ((u_char) inp(a1)) #define write_POS(smc,a1,a2,a3) outp((a1),(a3)) #endif #endif /* MCA */ /* * FDDI card reset */ static void card_start(struct s_smc *smc) { int i ; #ifdef PCI u_char rev_id ; u_short word; #endif smt_stop_watchdog(smc) ; #ifdef ISA outpw(CSR_A,0) ; /* reset for all chips */ for (i = 10 ; i ; i--) /* delay for PLC's */ (void)inpw(ISR_A) ; OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ; /* counter 2, mode 2 */ OUT_82c54_TIMER(2,97) ; /* LSB */ OUT_82c54_TIMER(2,0) ; /* MSB ( 15.6 us ) */ outpw(CSR_A,CS_CRESET) ; #endif #ifdef EISA outpw(CSR_A,0) ; /* reset for all chips */ for (i = 10 ; i ; i--) /* delay for PLC's */ (void)inpw(ISR_A) ; outpw(CSR_A,CS_CRESET) ; smc->hw.led = (2<<6) ; outpw(CSR_A,CS_CRESET | smc->hw.led) ; #endif #ifdef MCA outp(ADDR(CARD_DIS),0) ; /* reset for all chips */ for (i = 10 ; i ; i--) /* delay for PLC's */ (void)inpw(ISR_A) ; outp(ADDR(CARD_EN),0) ; /* first I/O after reset must not be a access to FORMAC or PLC */ /* * bus timeout (MCA) */ OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ; /* counter 2, mode 3 */ OUT_82c54_TIMER(2,(2*24)) ; /* 3.9 us * 2 square wave */ OUT_82c54_TIMER(2,0) ; /* MSB */ /* POS 102 indicated an activ Check Line or Buss Error monitoring */ if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) { outp(ADDR(IRQ_CHCK_EN),0) ; } if (!((i = inpw(CSR_A)) & CS_SAS)) { if (!(i & CS_BYSTAT)) { outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */ } } outpw(LEDR_A,LED_1) ; /* yellow */ #endif /* MCA */ #ifdef PCI /* * make sure no transfer activity is pending */ outpw(FM_A(FM_MDREG1),FM_MINIT) ; outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; /* * now reset everything */ outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */ i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */ SK_UNUSED(i) ; /* Make LINT happy. */ outp(ADDR(B0_CTRL), CTRL_RST_CLR) ; /* * Reset all bits in the PCI STATUS register */ outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */ word = inpw(PCI_C(PCI_STATUS)) ; outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ; outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */ /* * Release the reset of all the State machines * Release Master_Reset * Release HPI_SM_Reset */ outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ; /* * determine the adapter type * Note: Do it here, because some drivers may call card_start() once * at very first before any other initialization functions is * executed. */ rev_id = inp(PCI_C(PCI_REV_ID)) ; if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) { smc->hw.hw_is_64bit = TRUE ; } else { smc->hw.hw_is_64bit = FALSE ; } /* * Watermark initialization */ if (!smc->hw.hw_is_64bit) { outpd(ADDR(B4_R1_F), RX_WATERMARK) ; outpd(ADDR(B5_XA_F), TX_WATERMARK) ; outpd(ADDR(B5_XS_F), TX_WATERMARK) ; } outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */ outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */ /* init the timer value for the watch dog 2,5 minutes */ outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ; /* initialize the ISR mask */ smc->hw.is_imask = ISR_MASK ; smc->hw.hw_state = STOPPED ; #endif GET_PAGE(0) ; /* necessary for BOOT */ } void card_stop(struct s_smc *smc) { smt_stop_watchdog(smc) ; smc->hw.mac_ring_is_up = 0 ; /* ring down */ #ifdef ISA outpw(CSR_A,0) ; /* reset for all chips */ #endif #ifdef EISA outpw(CSR_A,0) ; /* reset for all chips */ #endif #ifdef MCA outp(ADDR(CARD_DIS),0) ; /* reset for all chips */ #endif #ifdef PCI /* * make sure no transfer activity is pending */ outpw(FM_A(FM_MDREG1),FM_MINIT) ; outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; /* * now reset everything */ outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */ outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */ outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */ smc->hw.hw_state = STOPPED ; #endif } /*--------------------------- ISR handling ----------------------------------*/ void mac1_irq(struct s_smc *smc, u_short stu, u_short stl) { int restart_tx = 0 ; again: #ifndef PCI #ifndef ISA /* * FORMAC+ bug modified the queue pointer if many read/write accesses happens!? */ if (stl & (FM_SPCEPDS | /* parit/coding err. syn.q.*/ FM_SPCEPDA0 | /* parit/coding err. a.q.0 */ FM_SPCEPDA1 | /* parit/coding err. a.q.1 */ FM_SPCEPDA2)) { /* parit/coding err. a.q.2 */ SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ; } if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/ FM_STBURA0 | /* tx buffer underrun a.q.0 */ FM_STBURA1 | /* tx buffer underrun a.q.1 */ FM_STBURA2)) { /* tx buffer underrun a.q.2 */ SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; } #endif if ( (stu & (FM_SXMTABT | /* transmit abort */ #ifdef SYNC FM_STXABRS | /* syn. tx abort */ #endif /* SYNC */ FM_STXABRA0)) || /* asyn. tx abort */ (stl & (FM_SQLCKS | /* lock for syn. q. */ FM_SQLCKA0)) ) { /* lock for asyn. q. */ formac_tx_restart(smc) ; /* init tx */ restart_tx = 1 ; stu = inpw(FM_A(FM_ST1U)) ; stl = inpw(FM_A(FM_ST1L)) ; stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; if (stu || stl) goto again ; } #ifndef SYNC if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */ FM_STEFRMA0)) { /* end of frame asyn tx */ /* free tx_queue */ smc->hw.n_a_send = 0 ; if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) { start_next_send(smc); } restart_tx = 1 ; } #else /* SYNC */ if (stu & (FM_STEFRMA0 | /* end of asyn tx */ FM_STEFRMS)) { /* end of sync tx */ restart_tx = 1 ; } #endif /* SYNC */ if (restart_tx) llc_restart_tx(smc) ; } #else /* PCI */ /* * parity error: note encoding error is not possible in tag mode */ if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/ FM_SPCEPDA0 | /* parity err. a.q.0 */ FM_SPCEPDA1)) { /* parity err. a.q.1 */ SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ; } /* * buffer underrun: can only occur if a tx threshold is specified */ if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/ FM_STBURA0 | /* tx buffer underrun a.q.0 */ FM_STBURA1)) { /* tx buffer underrun a.q.2 */ SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; } if ( (stu & (FM_SXMTABT | /* transmit abort */ FM_STXABRS | /* syn. tx abort */ FM_STXABRA0)) || /* asyn. tx abort */ (stl & (FM_SQLCKS | /* lock for syn. q. */ FM_SQLCKA0)) ) { /* lock for asyn. q. */ formac_tx_restart(smc) ; /* init tx */ restart_tx = 1 ; stu = inpw(FM_A(FM_ST1U)) ; stl = inpw(FM_A(FM_ST1L)) ; stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; if (stu || stl) goto again ; } if (stu & (FM_STEFRMA0 | /* end of asyn tx */ FM_STEFRMS)) { /* end of sync tx */ restart_tx = 1 ; } if (restart_tx) llc_restart_tx(smc) ; } #endif /* PCI */ /* * interrupt source= plc1 * this function is called in nwfbisr.asm */ void plc1_irq(struct s_smc *smc) { u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ; #if (defined(ISA) || defined(EISA)) /* reset PLC Int. bits */ outpw(PLC1_I,inpw(PLC1_I)) ; #endif plc_irq(smc,PB,st) ; } /* * interrupt source= plc2 * this function is called in nwfbisr.asm */ void plc2_irq(struct s_smc *smc) { u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ; #if (defined(ISA) || defined(EISA)) /* reset PLC Int. bits */ outpw(PLC2_I,inpw(PLC2_I)) ; #endif plc_irq(smc,PA,st) ; } /* * interrupt source= timer */ void timer_irq(struct s_smc *smc) { hwt_restart(smc); smc->hw.t_stop = smc->hw.t_start; smt_timer_done(smc) ; } /* * return S-port (PA or PB) */ int pcm_get_s_port(struct s_smc *smc) { SK_UNUSED(smc) ; return(PS) ; } /* * Station Label = "FDDI-XYZ" where * * X = connector type * Y = PMD type * Z = port type */ #define STATION_LABEL_CONNECTOR_OFFSET 5 #define STATION_LABEL_PMD_OFFSET 6 #define STATION_LABEL_PORT_OFFSET 7 void read_address(struct s_smc *smc, u_char *mac_addr) { char ConnectorType ; char PmdType ; int i ; #if (defined(ISA) || defined(MCA)) for (i = 0; i < 4 ;i++) { /* read mac address from board */ smc->hw.fddi_phys_addr.a[i] = bitrev8(inpw(PR_A(i+SA_MAC))); } for (i = 4; i < 6; i++) { smc->hw.fddi_phys_addr.a[i] = bitrev8(inpw(PR_A(i+SA_MAC+PRA_OFF))); } #endif #ifdef EISA /* * Note: We get trouble on an Alpha machine if we make a inpw() * instead of inp() */ for (i = 0; i < 4 ;i++) { /* read mac address from board */ smc->hw.fddi_phys_addr.a[i] = bitrev8(inp(PR_A(i+SA_MAC))); } for (i = 4; i < 6; i++) { smc->hw.fddi_phys_addr.a[i] = bitrev8(inp(PR_A(i+SA_MAC+PRA_OFF))); } #endif #ifdef PCI for (i = 0; i < 6; i++) { /* read mac address from board */ smc->hw.fddi_phys_addr.a[i] = bitrev8(inp(ADDR(B2_MAC_0+i))); } #endif #ifndef PCI ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ; PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ; #else ConnectorType = inp(ADDR(B2_CONN_TYP)) ; PmdType = inp(ADDR(B2_PMD_TYP)) ; #endif smc->y[PA].pmd_type[PMD_SK_CONN] = smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ; smc->y[PA].pmd_type[PMD_SK_PMD ] = smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ; if (mac_addr) { for (i = 0; i < 6 ;i++) { smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ; smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]); } return ; } smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ; for (i = 0; i < 6 ;i++) { smc->hw.fddi_canon_addr.a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]); } } /* * FDDI card soft reset */ void init_board(struct s_smc *smc, u_char *mac_addr) { card_start(smc) ; read_address(smc,mac_addr) ; #ifndef PCI if (inpw(CSR_A) & CS_SAS) #else if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL)) #endif smc->s.sas = SMT_SAS ; /* Single att. station */ else smc->s.sas = SMT_DAS ; /* Dual att. station */ #ifndef PCI if (inpw(CSR_A) & CS_BYSTAT) #else if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST)) #endif smc->mib.fddiSMTBypassPresent = 0 ; /* without opt. bypass */ else smc->mib.fddiSMTBypassPresent = 1 ; /* with opt. bypass */ } /* * insert or deinsert optical bypass (called by ECM) */ void sm_pm_bypass_req(struct s_smc *smc, int mode) { #if (defined(ISA) || defined(EISA)) int csra_v ; #endif DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ? "BP_INSERT" : "BP_DEINSERT",0) ; if (smc->s.sas != SMT_DAS) return ; #if (defined(ISA) || defined(EISA)) csra_v = inpw(CSR_A) & ~CS_BYPASS ; #ifdef EISA csra_v |= smc->hw.led ; #endif switch(mode) { case BP_INSERT : outpw(CSR_A,csra_v | CS_BYPASS) ; break ; case BP_DEINSERT : outpw(CSR_A,csra_v) ; break ; } #endif /* ISA / EISA */ #ifdef MCA switch(mode) { case BP_INSERT : outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */ break ; case BP_DEINSERT : outp(ADDR(BYPASS(STAT_BYP)),0) ; /* bypass station */ break ; } #endif #ifdef PCI switch(mode) { case BP_INSERT : outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */ break ; case BP_DEINSERT : outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */ break ; } #endif } /* * check if bypass connected */ int sm_pm_bypass_present(struct s_smc *smc) { #ifndef PCI return( (inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ; #else return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ; #endif } void plc_clear_irq(struct s_smc *smc, int p) { SK_UNUSED(p) ; #if (defined(ISA) || defined(EISA)) switch (p) { case PA : /* reset PLC Int. bits */ outpw(PLC2_I,inpw(PLC2_I)) ; break ; case PB : /* reset PLC Int. bits */ outpw(PLC1_I,inpw(PLC1_I)) ; break ; } #else SK_UNUSED(smc) ; #endif } /* * led_indication called by rmt_indication() and * pcm_state_change() * * Input: * smc: SMT context * led_event: * 0 Only switch green LEDs according to their respective PCM state * LED_Y_OFF just switch yellow LED off * LED_Y_ON just switch yello LED on */ static void led_indication(struct s_smc *smc, int led_event) { /* use smc->hw.mac_ring_is_up == TRUE * as indication for Ring Operational */ u_short led_state ; struct s_phy *phy ; struct fddi_mib_p *mib_a ; struct fddi_mib_p *mib_b ; phy = &smc->y[PA] ; mib_a = phy->mib ; phy = &smc->y[PB] ; mib_b = phy->mib ; #ifdef EISA /* Ring up = yellow led OFF*/ if (led_event == LED_Y_ON) { smc->hw.led |= CS_LED_1 ; } else if (led_event == LED_Y_OFF) { smc->hw.led &= ~CS_LED_1 ; } else { /* Link at Port A or B = green led ON */ if (mib_a->fddiPORTPCMState == PC8_ACTIVE || mib_b->fddiPORTPCMState == PC8_ACTIVE) { smc->hw.led |= CS_LED_0 ; } else { smc->hw.led &= ~CS_LED_0 ; } } #endif #ifdef MCA led_state = inpw(LEDR_A) ; /* Ring up = yellow led OFF*/ if (led_event == LED_Y_ON) { led_state |= LED_1 ; } else if (led_event == LED_Y_OFF) { led_state &= ~LED_1 ; } else { led_state &= ~(LED_2|LED_0) ; /* Link at Port A = green led A ON */ if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { led_state |= LED_2 ; } /* Link at Port B/S = green led B ON */ if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { led_state |= LED_0 ; } } outpw(LEDR_A, led_state) ; #endif /* MCA */ #ifdef PCI led_state = 0 ; /* Ring up = yellow led OFF*/ if (led_event == LED_Y_ON) { led_state |= LED_MY_ON ; } else if (led_event == LED_Y_OFF) { led_state |= LED_MY_OFF ; } else { /* PCM state changed */ /* Link at Port A/S = green led A ON */ if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { led_state |= LED_GA_ON ; } else { led_state |= LED_GA_OFF ; } /* Link at Port B = green led B ON */ if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { led_state |= LED_GB_ON ; } else { led_state |= LED_GB_OFF ; } } outp(ADDR(B0_LED), led_state) ; #endif /* PCI */ } void pcm_state_change(struct s_smc *smc, int plc, int p_state) { /* * the current implementation of pcm_state_change() in the driver * parts must be renamed to drv_pcm_state_change() which will be called * now after led_indication. */ DRV_PCM_STATE_CHANGE(smc,plc,p_state) ; led_indication(smc,0) ; } void rmt_indication(struct s_smc *smc, int i) { /* Call a driver special function if defined */ DRV_RMT_INDICATION(smc,i) ; led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ; } /* * llc_recover_tx called by init_tx (fplus.c) */ void llc_recover_tx(struct s_smc *smc) { #ifdef LOAD_GEN extern int load_gen_flag ; load_gen_flag = 0 ; #endif #ifndef SYNC smc->hw.n_a_send= 0 ; #else SK_UNUSED(smc) ; #endif } #ifdef MULT_OEM static int is_equal_num(char comp1[], char comp2[], int num) { int i ; for (i = 0 ; i < num ; i++) { if (comp1[i] != comp2[i]) return (0) ; } return (1) ; } /* is_equal_num */ /* * set the OEM ID defaults, and test the contents of the OEM data base * The default OEM is the first ACTIVE entry in the OEM data base * * returns: 0 success * 1 error in data base * 2 data base empty * 3 no active entry */ int set_oi_id_def(struct s_smc *smc) { int sel_id ; int i ; int act_entries ; i = 0 ; sel_id = -1 ; act_entries = FALSE ; smc->hw.oem_id = 0 ; smc->hw.oem_min_status = OI_STAT_ACTIVE ; /* check OEM data base */ while (oem_ids[i].oi_status) { switch (oem_ids[i].oi_status) { case OI_STAT_ACTIVE: act_entries = TRUE ; /* we have active IDs */ if (sel_id == -1) sel_id = i ; /* save the first active ID */ case OI_STAT_VALID: case OI_STAT_PRESENT: i++ ; break ; /* entry ok */ default: return (1) ; /* invalid oi_status */ } } if (i == 0) return (2) ; if (!act_entries) return (3) ; /* ok, we have a valid OEM data base with an active entry */ smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ; return (0) ; } #endif /* MULT_OEM */ #ifdef MCA /************************ * * BEGIN_MANUAL_ENTRY() * * exist_board * * Check if an MCA board is present in the specified slot. * * int exist_board( * struct s_smc *smc, * int slot) ; * In * smc - A pointer to the SMT Context struct. * * slot - The number of the slot to inspect. * Out * 0 = No adapter present. * 1 = Found FM1 adapter. * * Pseudo * Read MCA ID * for all valid OEM_IDs * compare with ID read * if equal, return 1 * return(0 * * Note * The smc pointer must be valid now. * * END_MANUAL_ENTRY() * ************************/ #define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff)) int exist_board(struct s_smc *smc, int slot) { #ifdef MULT_OEM SK_LOC_DECL(u_char,id[2]) ; int idi ; #endif /* MULT_OEM */ /* No longer valid. */ if (smc == NULL) return(0) ; #ifndef MULT_OEM if (read_card_id(smc, slot) == LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1))) return (1) ; /* Found FM adapter. */ #else /* MULT_OEM */ idi = read_card_id(smc, slot) ; id[0] = idi & 0xff ; id[1] = idi >> 8 ; smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) continue ; if (is_equal_num(&id[0],&OEMID(smc,0),2)) return (1) ; } #endif /* MULT_OEM */ return (0) ; /* No adapter found. */ } /************************ * * read_card_id * * Read the MCA card id from the specified slot. * In * smc - A pointer to the SMT Context struct. * CAVEAT: This pointer may be NULL and *must not* be used within this * function. It's only purpose is for drivers that need some information * for the inp() and outp() macros. * * slot - The number of the slot for which the card id is returned. * Out * Returns the card id read from the specified slot. If an illegal slot * number is specified, the function returns zero. * ************************/ static int read_card_id(struct s_smc *smc, int slot) /* struct s_smc *smc ; Do not use. */ { int card_id ; SK_UNUSED(smc) ; /* Make LINT happy. */ if ((slot < 1) || (slot > 15)) /* max 16 slots, 0 = motherboard */ return (0) ; /* Illegal slot number specified. */ EnableSlotAccess(smc, slot) ; card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) | (read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ; DisableSlotAccess(smc) ; return (card_id) ; } /************************ * * BEGIN_MANUAL_ENTRY() * * get_board_para * * Get adapter configuration information. Fill all board specific * parameters within the 'smc' structure. * * int get_board_para( * struct s_smc *smc, * int slot) ; * In * smc - A pointer to the SMT Context struct, to which this function will * write some adapter configuration data. * * slot - The number of the slot, in which the adapter is installed. * Out * 0 = No adapter present. * 1 = Ok. * 2 = Adapter present, but card enable bit not set. * * END_MANUAL_ENTRY() * ************************/ int get_board_para(struct s_smc *smc, int slot) { int val ; int i ; /* Check if adapter present & get type of adapter. */ switch (exist_board(smc, slot)) { case 0: /* Adapter not present. */ return (0) ; case 1: /* FM Rev. 1 */ smc->hw.rev = FM1_REV ; smc->hw.VFullRead = 0x0a ; smc->hw.VFullWrite = 0x05 ; smc->hw.DmaWriteExtraBytes = 8 ; /* 2 extra words. */ break ; } smc->hw.slot = slot ; EnableSlotAccess(smc, slot) ; if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) { DisableSlotAccess(smc) ; return (2) ; /* Card enable bit not set. */ } val = read_POS(smc,POS_104, slot - 1) ; /* I/O, IRQ */ #ifndef MEM_MAPPED_IO /* is defined by the operating system */ i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */ smc->hw.iop = (i + 1) * 0x0400 - 0x200 ; #endif i = ((val & POS_IRQSEL) >> 6) & 0x03 ; /* IRQ <0, 1> */ smc->hw.irq = opt_ints[i] ; /* FPROM base addr. */ i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ; smc->hw.eprom = opt_eproms[i] ; DisableSlotAccess(smc) ; /* before this, the smc->hw.iop must be set !!! */ smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ; return (1) ; } /* Enable access to specified MCA slot. */ static void EnableSlotAccess(struct s_smc *smc, int slot) { SK_UNUSED(slot) ; #ifndef AIX SK_UNUSED(smc) ; /* System mode. */ outp(POS_SYS_SETUP, POS_SYSTEM) ; /* Select slot. */ outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ; #else attach_POS_addr (smc) ; #endif } /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */ static void DisableSlotAccess(struct s_smc *smc) { #ifndef AIX SK_UNUSED(smc) ; outp(POS_CHANNEL_POS, 0) ; #else detach_POS_addr (smc) ; #endif } #endif /* MCA */ #ifdef EISA #ifndef MEM_MAPPED_IO #define SADDR(slot) (((slot)<<12)&0xf000) #else /* MEM_MAPPED_IO */ #define SADDR(slot) (smc->hw.iop) #endif /* MEM_MAPPED_IO */ /************************ * * BEGIN_MANUAL_ENTRY() * * exist_board * * Check if an EISA board is present in the specified slot. * * int exist_board( * struct s_smc *smc, * int slot) ; * In * smc - A pointer to the SMT Context struct. * * slot - The number of the slot to inspect. * Out * 0 = No adapter present. * 1 = Found adapter. * * Pseudo * Read EISA ID * for all valid OEM_IDs * compare with ID read * if equal, return 1 * return(0 * * Note * The smc pointer must be valid now. * ************************/ int exist_board(struct s_smc *smc, int slot) { int i ; #ifdef MULT_OEM SK_LOC_DECL(u_char,id[4]) ; #endif /* MULT_OEM */ /* No longer valid. */ if (smc == NULL) return(0); SK_UNUSED(slot) ; #ifndef MULT_OEM for (i = 0 ; i < 4 ; i++) { if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i)) return(0) ; } return(1) ; #else /* MULT_OEM */ for (i = 0 ; i < 4 ; i++) id[i] = inp(SADDR(slot)+PRA(i)) ; smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) continue ; if (is_equal_num(&id[0],&OEMID(smc,0),4)) return (1) ; } return (0) ; /* No adapter found. */ #endif /* MULT_OEM */ } int get_board_para(struct s_smc *smc, int slot) { int i ; if (!exist_board(smc,slot)) return(0) ; smc->hw.slot = slot ; #ifndef MEM_MAPPED_IO /* if defined by the operating system */ smc->hw.iop = SADDR(slot) ; #endif if (!(inp(C0_A(0))&CFG_CARD_EN)) { return(2) ; /* CFG_CARD_EN bit not set! */ } smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ; smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ; if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f) smc->hw.eprom = opt_eproms[i] ; else smc->hw.eprom = 0 ; smc->hw.DmaWriteExtraBytes = 8 ; return(1) ; } #endif /* EISA */ #ifdef ISA #ifndef MULT_OEM const u_char sklogo[6] = SKLOGO_STR ; #define SIZE_SKLOGO(smc) sizeof(sklogo) #define SKLOGO(smc,i) sklogo[i] #else /* MULT_OEM */ #define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len #define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i] #endif /* MULT_OEM */ int exist_board(struct s_smc *smc, HW_PTR port) { int i ; #ifdef MULT_OEM int bytes_read ; u_char board_logo[15] ; SK_LOC_DECL(u_char,id[4]) ; #endif /* MULT_OEM */ /* No longer valid. */ if (smc == NULL) return(0); SK_UNUSED(smc) ; #ifndef MULT_OEM for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) { if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) { return(0) ; } } /* check MAC address (S&K or other) */ for (i = 0 ; i < 3 ; i++) { if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i)) return(0) ; } return(1) ; #else /* MULT_OEM */ smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ; bytes_read = 1 ; for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) continue ; /* Test all read bytes with current OEM_entry */ /* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */ for (i = 0; i < bytes_read; i++) { if (board_logo[i] != SKLOGO(smc,i)) break ; } /* If mismatch, switch to next OEM entry */ if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read)) continue ; --i ; while (bytes_read < SIZE_SKLOGO(smc)) { // inpw next byte SK_Logo i++ ; board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ; bytes_read++ ; if (board_logo[i] != SKLOGO(smc,i)) break ; } for (i = 0 ; i < 3 ; i++) id[i] = (u_char)inpw((PRA(i)+port)) ; if ((board_logo[i] == SKLOGO(smc,i)) && (bytes_read == SIZE_SKLOGO(smc))) { if (is_equal_num(&id[0],&OEMID(smc,0),3)) return(1); } } /* for */ return(0) ; #endif /* MULT_OEM */ } int get_board_para(struct s_smc *smc, int slot) { SK_UNUSED(smc) ; SK_UNUSED(slot) ; return(0) ; /* for ISA not supported */ } #endif /* ISA */ #ifdef PCI #ifdef USE_BIOS_FUN int exist_board(struct s_smc *smc, int slot) { u_short dev_id ; u_short ven_id ; int found ; int i ; found = FALSE ; /* make sure we returned with adatper not found*/ /* if an empty oemids.h was included */ #ifdef MULT_OEM smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) continue ; #endif ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ; dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ; for (i = 0; i < slot; i++) { if (pci_find_device(i,&smc->hw.pci_handle, dev_id,ven_id) != 0) { found = FALSE ; } else { found = TRUE ; } } if (found) { return(1) ; /* adapter was found */ } #ifdef MULT_OEM } #endif return(0) ; /* adapter was not found */ } #endif /* PCI */ #endif /* USE_BIOS_FUNC */ void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr) { int i ; for (i = 0 ; i < 6 ; i++) bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]); } void smt_start_watchdog(struct s_smc *smc) { SK_UNUSED(smc) ; /* Make LINT happy. */ #ifndef DEBUG #ifdef PCI if (smc->hw.wdog_used) { outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */ } #endif #endif /* DEBUG */ } static void smt_stop_watchdog(struct s_smc *smc) { SK_UNUSED(smc) ; /* Make LINT happy. */ #ifndef DEBUG #ifdef PCI if (smc->hw.wdog_used) { outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */ } #endif #endif /* DEBUG */ } #ifdef PCI void mac_do_pci_fix(struct s_smc *smc) { SK_UNUSED(smc) ; } #endif /* PCI */