/* * madgemc.c: Driver for the Madge Smart 16/4 MC16 MCA token ring card. * * Written 2000 by Adam Fritzler * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * This driver module supports the following cards: * - Madge Smart 16/4 Ringnode MC16 * - Madge Smart 16/4 Ringnode MC32 (??) * * Maintainer(s): * AF Adam Fritzler * * Modification History: * 16-Jan-00 AF Created * */ static const char version[] = "madgemc.c: v0.91 23/01/2000 by Adam Fritzler\n"; #include <linux/module.h> #include <linux/mca.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/trdevice.h> #include <asm/system.h> #include <asm/io.h> #include <asm/irq.h> #include "tms380tr.h" #include "madgemc.h" /* Madge-specific constants */ #define MADGEMC_IO_EXTENT 32 #define MADGEMC_SIF_OFFSET 0x08 struct card_info { /* * These are read from the BIA ROM. */ unsigned int manid; unsigned int cardtype; unsigned int cardrev; unsigned int ramsize; /* * These are read from the MCA POS registers. */ unsigned int burstmode:2; unsigned int fairness:1; /* 0 = Fair, 1 = Unfair */ unsigned int arblevel:4; unsigned int ringspeed:2; /* 0 = 4mb, 1 = 16, 2 = Auto/none */ unsigned int cabletype:1; /* 0 = RJ45, 1 = DB9 */ }; static int madgemc_open(struct net_device *dev); static int madgemc_close(struct net_device *dev); static int madgemc_chipset_init(struct net_device *dev); static void madgemc_read_rom(struct net_device *dev, struct card_info *card); static unsigned short madgemc_setnselout_pins(struct net_device *dev); static void madgemc_setcabletype(struct net_device *dev, int type); static int madgemc_mcaproc(char *buf, int slot, void *d); static void madgemc_setregpage(struct net_device *dev, int page); static void madgemc_setsifsel(struct net_device *dev, int val); static void madgemc_setint(struct net_device *dev, int val); static irqreturn_t madgemc_interrupt(int irq, void *dev_id); /* * These work around paging, however they don't guarentee you're on the * right page. */ #define SIFREADB(reg) (inb(dev->base_addr + ((reg<0x8)?reg:reg-0x8))) #define SIFWRITEB(val, reg) (outb(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8))) #define SIFREADW(reg) (inw(dev->base_addr + ((reg<0x8)?reg:reg-0x8))) #define SIFWRITEW(val, reg) (outw(val, dev->base_addr + ((reg<0x8)?reg:reg-0x8))) /* * Read a byte-length value from the register. */ static unsigned short madgemc_sifreadb(struct net_device *dev, unsigned short reg) { unsigned short ret; if (reg<0x8) ret = SIFREADB(reg); else { madgemc_setregpage(dev, 1); ret = SIFREADB(reg); madgemc_setregpage(dev, 0); } return ret; } /* * Write a byte-length value to a register. */ static void madgemc_sifwriteb(struct net_device *dev, unsigned short val, unsigned short reg) { if (reg<0x8) SIFWRITEB(val, reg); else { madgemc_setregpage(dev, 1); SIFWRITEB(val, reg); madgemc_setregpage(dev, 0); } return; } /* * Read a word-length value from a register */ static unsigned short madgemc_sifreadw(struct net_device *dev, unsigned short reg) { unsigned short ret; if (reg<0x8) ret = SIFREADW(reg); else { madgemc_setregpage(dev, 1); ret = SIFREADW(reg); madgemc_setregpage(dev, 0); } return ret; } /* * Write a word-length value to a register. */ static void madgemc_sifwritew(struct net_device *dev, unsigned short val, unsigned short reg) { if (reg<0x8) SIFWRITEW(val, reg); else { madgemc_setregpage(dev, 1); SIFWRITEW(val, reg); madgemc_setregpage(dev, 0); } return; } static struct net_device_ops madgemc_netdev_ops __read_mostly; static int __devinit madgemc_probe(struct device *device) { static int versionprinted; struct net_device *dev; struct net_local *tp; struct card_info *card; struct mca_device *mdev = to_mca_device(device); int ret = 0; if (versionprinted++ == 0) printk("%s", version); if(mca_device_claimed(mdev)) return -EBUSY; mca_device_set_claim(mdev, 1); dev = alloc_trdev(sizeof(struct net_local)); if (!dev) { printk("madgemc: unable to allocate dev space\n"); mca_device_set_claim(mdev, 0); ret = -ENOMEM; goto getout; } dev->netdev_ops = &madgemc_netdev_ops; card = kmalloc(sizeof(struct card_info), GFP_KERNEL); if (card==NULL) { printk("madgemc: unable to allocate card struct\n"); ret = -ENOMEM; goto getout1; } /* * Parse configuration information. This all comes * directly from the publicly available @002d.ADF. * Get it from Madge or your local ADF library. */ /* * Base address */ dev->base_addr = 0x0a20 + ((mdev->pos[2] & MC16_POS2_ADDR2)?0x0400:0) + ((mdev->pos[0] & MC16_POS0_ADDR1)?0x1000:0) + ((mdev->pos[3] & MC16_POS3_ADDR3)?0x2000:0); /* * Interrupt line */ switch(mdev->pos[0] >> 6) { /* upper two bits */ case 0x1: dev->irq = 3; break; case 0x2: dev->irq = 9; break; /* IRQ 2 = IRQ 9 */ case 0x3: dev->irq = 10; break; default: dev->irq = 0; break; } if (dev->irq == 0) { printk("%s: invalid IRQ\n", dev->name); ret = -EBUSY; goto getout2; } if (!request_region(dev->base_addr, MADGEMC_IO_EXTENT, "madgemc")) { printk(KERN_INFO "madgemc: unable to setup Smart MC in slot %d because of I/O base conflict at 0x%04lx\n", mdev->slot, dev->base_addr); dev->base_addr += MADGEMC_SIF_OFFSET; ret = -EBUSY; goto getout2; } dev->base_addr += MADGEMC_SIF_OFFSET; /* * Arbitration Level */ card->arblevel = ((mdev->pos[0] >> 1) & 0x7) + 8; /* * Burst mode and Fairness */ card->burstmode = ((mdev->pos[2] >> 6) & 0x3); card->fairness = ((mdev->pos[2] >> 4) & 0x1); /* * Ring Speed */ if ((mdev->pos[1] >> 2)&0x1) card->ringspeed = 2; /* not selected */ else if ((mdev->pos[2] >> 5) & 0x1) card->ringspeed = 1; /* 16Mb */ else card->ringspeed = 0; /* 4Mb */ /* * Cable type */ if ((mdev->pos[1] >> 6)&0x1) card->cabletype = 1; /* STP/DB9 */ else card->cabletype = 0; /* UTP/RJ-45 */ /* * ROM Info. This requires us to actually twiddle * bits on the card, so we must ensure above that * the base address is free of conflict (request_region above). */ madgemc_read_rom(dev, card); if (card->manid != 0x4d) { /* something went wrong */ printk(KERN_INFO "%s: Madge MC ROM read failed (unknown manufacturer ID %02x)\n", dev->name, card->manid); goto getout3; } if ((card->cardtype != 0x08) && (card->cardtype != 0x0d)) { printk(KERN_INFO "%s: Madge MC ROM read failed (unknown card ID %02x)\n", dev->name, card->cardtype); ret = -EIO; goto getout3; } /* All cards except Rev 0 and 1 MC16's have 256kb of RAM */ if ((card->cardtype == 0x08) && (card->cardrev <= 0x01)) card->ramsize = 128; else card->ramsize = 256; printk("%s: %s Rev %d at 0x%04lx IRQ %d\n", dev->name, (card->cardtype == 0x08)?MADGEMC16_CARDNAME: MADGEMC32_CARDNAME, card->cardrev, dev->base_addr, dev->irq); if (card->cardtype == 0x0d) printk("%s: Warning: MC32 support is experimental and highly untested\n", dev->name); if (card->ringspeed==2) { /* Unknown */ printk("%s: Warning: Ring speed not set in POS -- Please run the reference disk and set it!\n", dev->name); card->ringspeed = 1; /* default to 16mb */ } printk("%s: RAM Size: %dKB\n", dev->name, card->ramsize); printk("%s: Ring Speed: %dMb/sec on %s\n", dev->name, (card->ringspeed)?16:4, card->cabletype?"STP/DB9":"UTP/RJ-45"); printk("%s: Arbitration Level: %d\n", dev->name, card->arblevel); printk("%s: Burst Mode: ", dev->name); switch(card->burstmode) { case 0: printk("Cycle steal"); break; case 1: printk("Limited burst"); break; case 2: printk("Delayed release"); break; case 3: printk("Immediate release"); break; } printk(" (%s)\n", (card->fairness)?"Unfair":"Fair"); /* * Enable SIF before we assign the interrupt handler, * just in case we get spurious interrupts that need * handling. */ outb(0, dev->base_addr + MC_CONTROL_REG0); /* sanity */ madgemc_setsifsel(dev, 1); if (request_irq(dev->irq, madgemc_interrupt, IRQF_SHARED, "madgemc", dev)) { ret = -EBUSY; goto getout3; } madgemc_chipset_init(dev); /* enables interrupts! */ madgemc_setcabletype(dev, card->cabletype); /* Setup MCA structures */ mca_device_set_name(mdev, (card->cardtype == 0x08)?MADGEMC16_CARDNAME:MADGEMC32_CARDNAME); mca_set_adapter_procfn(mdev->slot, madgemc_mcaproc, dev); printk("%s: Ring Station Address: %pM\n", dev->name, dev->dev_addr); if (tmsdev_init(dev, device)) { printk("%s: unable to get memory for dev->priv.\n", dev->name); ret = -ENOMEM; goto getout4; } tp = netdev_priv(dev); /* * The MC16 is physically a 32bit card. However, Madge * insists on calling it 16bit, so I'll assume here that * they know what they're talking about. Cut off DMA * at 16mb. */ tp->setnselout = madgemc_setnselout_pins; tp->sifwriteb = madgemc_sifwriteb; tp->sifreadb = madgemc_sifreadb; tp->sifwritew = madgemc_sifwritew; tp->sifreadw = madgemc_sifreadw; tp->DataRate = (card->ringspeed)?SPEED_16:SPEED_4; memcpy(tp->ProductID, "Madge MCA 16/4 ", PROD_ID_SIZE + 1); tp->tmspriv = card; dev_set_drvdata(device, dev); if (register_netdev(dev) == 0) return 0; dev_set_drvdata(device, NULL); ret = -ENOMEM; getout4: free_irq(dev->irq, dev); getout3: release_region(dev->base_addr-MADGEMC_SIF_OFFSET, MADGEMC_IO_EXTENT); getout2: kfree(card); getout1: free_netdev(dev); getout: mca_device_set_claim(mdev, 0); return ret; } /* * Handle interrupts generated by the card * * The MicroChannel Madge cards need slightly more handling * after an interrupt than other TMS380 cards do. * * First we must make sure it was this card that generated the * interrupt (since interrupt sharing is allowed). Then, * because we're using level-triggered interrupts (as is * standard on MCA), we must toggle the interrupt line * on the card in order to claim and acknowledge the interrupt. * Once that is done, the interrupt should be handlable in * the normal tms380tr_interrupt() routine. * * There's two ways we can check to see if the interrupt is ours, * both with their own disadvantages... * * 1) Read in the SIFSTS register from the TMS controller. This * is guarenteed to be accurate, however, there's a fairly * large performance penalty for doing so: the Madge chips * must request the register from the Eagle, the Eagle must * read them from its internal bus, and then take the route * back out again, for a 16bit read. * * 2) Use the MC_CONTROL_REG0_SINTR bit from the Madge ASICs. * The major disadvantage here is that the accuracy of the * bit is in question. However, it cuts out the extra read * cycles it takes to read the Eagle's SIF, as its only an * 8bit read, and theoretically the Madge bit is directly * connected to the interrupt latch coming out of the Eagle * hardware (that statement is not verified). * * I can't determine which of these methods has the best win. For now, * we make a compromise. Use the Madge way for the first interrupt, * which should be the fast-path, and then once we hit the first * interrupt, keep on trying using the SIF method until we've * exhausted all contiguous interrupts. * */ static irqreturn_t madgemc_interrupt(int irq, void *dev_id) { int pending,reg1; struct net_device *dev; if (!dev_id) { printk("madgemc_interrupt: was not passed a dev_id!\n"); return IRQ_NONE; } dev = (struct net_device *)dev_id; /* Make sure its really us. -- the Madge way */ pending = inb(dev->base_addr + MC_CONTROL_REG0); if (!(pending & MC_CONTROL_REG0_SINTR)) return IRQ_NONE; /* not our interrupt */ /* * Since we're level-triggered, we may miss the rising edge * of the next interrupt while we're off handling this one, * so keep checking until the SIF verifies that it has nothing * left for us to do. */ pending = STS_SYSTEM_IRQ; do { if (pending & STS_SYSTEM_IRQ) { /* Toggle the interrupt to reset the latch on card */ reg1 = inb(dev->base_addr + MC_CONTROL_REG1); outb(reg1 ^ MC_CONTROL_REG1_SINTEN, dev->base_addr + MC_CONTROL_REG1); outb(reg1, dev->base_addr + MC_CONTROL_REG1); /* Continue handling as normal */ tms380tr_interrupt(irq, dev_id); pending = SIFREADW(SIFSTS); /* restart - the SIF way */ } else return IRQ_HANDLED; } while (1); return IRQ_HANDLED; /* not reachable */ } /* * Set the card to the prefered ring speed. * * Unlike newer cards, the MC16/32 have their speed selection * circuit connected to the Madge ASICs and not to the TMS380 * NSELOUT pins. Set the ASIC bits correctly here, and return * zero to leave the TMS NSELOUT bits unaffected. * */ static unsigned short madgemc_setnselout_pins(struct net_device *dev) { unsigned char reg1; struct net_local *tp = netdev_priv(dev); reg1 = inb(dev->base_addr + MC_CONTROL_REG1); if(tp->DataRate == SPEED_16) reg1 |= MC_CONTROL_REG1_SPEED_SEL; /* add for 16mb */ else if (reg1 & MC_CONTROL_REG1_SPEED_SEL) reg1 ^= MC_CONTROL_REG1_SPEED_SEL; /* remove for 4mb */ outb(reg1, dev->base_addr + MC_CONTROL_REG1); return 0; /* no change */ } /* * Set the register page. This equates to the SRSX line * on the TMS380Cx6. * * Register selection is normally done via three contiguous * bits. However, some boards (such as the MC16/32) use only * two bits, plus a separate bit in the glue chip. This * sets the SRSX bit (the top bit). See page 4-17 in the * Yellow Book for which registers are affected. * */ static void madgemc_setregpage(struct net_device *dev, int page) { static int reg1; reg1 = inb(dev->base_addr + MC_CONTROL_REG1); if ((page == 0) && (reg1 & MC_CONTROL_REG1_SRSX)) { outb(reg1 ^ MC_CONTROL_REG1_SRSX, dev->base_addr + MC_CONTROL_REG1); } else if (page == 1) { outb(reg1 | MC_CONTROL_REG1_SRSX, dev->base_addr + MC_CONTROL_REG1); } reg1 = inb(dev->base_addr + MC_CONTROL_REG1); return; } /* * The SIF registers are not mapped into register space by default * Set this to 1 to map them, 0 to map the BIA ROM. * */ static void madgemc_setsifsel(struct net_device *dev, int val) { unsigned int reg0; reg0 = inb(dev->base_addr + MC_CONTROL_REG0); if ((val == 0) && (reg0 & MC_CONTROL_REG0_SIFSEL)) { outb(reg0 ^ MC_CONTROL_REG0_SIFSEL, dev->base_addr + MC_CONTROL_REG0); } else if (val == 1) { outb(reg0 | MC_CONTROL_REG0_SIFSEL, dev->base_addr + MC_CONTROL_REG0); } reg0 = inb(dev->base_addr + MC_CONTROL_REG0); return; } /* * Enable SIF interrupts * * This does not enable interrupts in the SIF, but rather * enables SIF interrupts to be passed onto the host. * */ static void madgemc_setint(struct net_device *dev, int val) { unsigned int reg1; reg1 = inb(dev->base_addr + MC_CONTROL_REG1); if ((val == 0) && (reg1 & MC_CONTROL_REG1_SINTEN)) { outb(reg1 ^ MC_CONTROL_REG1_SINTEN, dev->base_addr + MC_CONTROL_REG1); } else if (val == 1) { outb(reg1 | MC_CONTROL_REG1_SINTEN, dev->base_addr + MC_CONTROL_REG1); } return; } /* * Cable type is set via control register 7. Bit zero high * for UTP, low for STP. */ static void madgemc_setcabletype(struct net_device *dev, int type) { outb((type==0)?MC_CONTROL_REG7_CABLEUTP:MC_CONTROL_REG7_CABLESTP, dev->base_addr + MC_CONTROL_REG7); } /* * Enable the functions of the Madge chipset needed for * full working order. */ static int madgemc_chipset_init(struct net_device *dev) { outb(0, dev->base_addr + MC_CONTROL_REG1); /* pull SRESET low */ tms380tr_wait(100); /* wait for card to reset */ /* bring back into normal operating mode */ outb(MC_CONTROL_REG1_NSRESET, dev->base_addr + MC_CONTROL_REG1); /* map SIF registers */ madgemc_setsifsel(dev, 1); /* enable SIF interrupts */ madgemc_setint(dev, 1); return 0; } /* * Disable the board, and put back into power-up state. */ static void madgemc_chipset_close(struct net_device *dev) { /* disable interrupts */ madgemc_setint(dev, 0); /* unmap SIF registers */ madgemc_setsifsel(dev, 0); return; } /* * Read the card type (MC16 or MC32) from the card. * * The configuration registers are stored in two separate * pages. Pages are flipped by clearing bit 3 of CONTROL_REG0 (PAGE) * for page zero, or setting bit 3 for page one. * * Page zero contains the following data: * Byte 0: Manufacturer ID (0x4D -- ASCII "M") * Byte 1: Card type: * 0x08 for MC16 * 0x0D for MC32 * Byte 2: Card revision * Byte 3: Mirror of POS config register 0 * Byte 4: Mirror of POS 1 * Byte 5: Mirror of POS 2 * * Page one contains the following data: * Byte 0: Unused * Byte 1-6: BIA, MSB to LSB. * * Note that to read the BIA, we must unmap the SIF registers * by clearing bit 2 of CONTROL_REG0 (SIFSEL), as the data * will reside in the same logical location. For this reason, * _never_ read the BIA while the Eagle processor is running! * The SIF will be completely inaccessible until the BIA operation * is complete. * */ static void madgemc_read_rom(struct net_device *dev, struct card_info *card) { unsigned long ioaddr; unsigned char reg0, reg1, tmpreg0, i; ioaddr = dev->base_addr; reg0 = inb(ioaddr + MC_CONTROL_REG0); reg1 = inb(ioaddr + MC_CONTROL_REG1); /* Switch to page zero and unmap SIF */ tmpreg0 = reg0 & ~(MC_CONTROL_REG0_PAGE + MC_CONTROL_REG0_SIFSEL); outb(tmpreg0, ioaddr + MC_CONTROL_REG0); card->manid = inb(ioaddr + MC_ROM_MANUFACTURERID); card->cardtype = inb(ioaddr + MC_ROM_ADAPTERID); card->cardrev = inb(ioaddr + MC_ROM_REVISION); /* Switch to rom page one */ outb(tmpreg0 | MC_CONTROL_REG0_PAGE, ioaddr + MC_CONTROL_REG0); /* Read BIA */ dev->addr_len = 6; for (i = 0; i < 6; i++) dev->dev_addr[i] = inb(ioaddr + MC_ROM_BIA_START + i); /* Restore original register values */ outb(reg0, ioaddr + MC_CONTROL_REG0); outb(reg1, ioaddr + MC_CONTROL_REG1); return; } static int madgemc_open(struct net_device *dev) { /* * Go ahead and reinitialize the chipset again, just to * make sure we didn't get left in a bad state. */ madgemc_chipset_init(dev); tms380tr_open(dev); return 0; } static int madgemc_close(struct net_device *dev) { tms380tr_close(dev); madgemc_chipset_close(dev); return 0; } /* * Give some details available from /proc/mca/slotX */ static int madgemc_mcaproc(char *buf, int slot, void *d) { struct net_device *dev = (struct net_device *)d; struct net_local *tp = netdev_priv(dev); struct card_info *curcard = tp->tmspriv; int len = 0; len += sprintf(buf+len, "-------\n"); if (curcard) { len += sprintf(buf+len, "Card Revision: %d\n", curcard->cardrev); len += sprintf(buf+len, "RAM Size: %dkb\n", curcard->ramsize); len += sprintf(buf+len, "Cable type: %s\n", (curcard->cabletype)?"STP/DB9":"UTP/RJ-45"); len += sprintf(buf+len, "Configured ring speed: %dMb/sec\n", (curcard->ringspeed)?16:4); len += sprintf(buf+len, "Running ring speed: %dMb/sec\n", (tp->DataRate==SPEED_16)?16:4); len += sprintf(buf+len, "Device: %s\n", dev->name); len += sprintf(buf+len, "IO Port: 0x%04lx\n", dev->base_addr); len += sprintf(buf+len, "IRQ: %d\n", dev->irq); len += sprintf(buf+len, "Arbitration Level: %d\n", curcard->arblevel); len += sprintf(buf+len, "Burst Mode: "); switch(curcard->burstmode) { case 0: len += sprintf(buf+len, "Cycle steal"); break; case 1: len += sprintf(buf+len, "Limited burst"); break; case 2: len += sprintf(buf+len, "Delayed release"); break; case 3: len += sprintf(buf+len, "Immediate release"); break; } len += sprintf(buf+len, " (%s)\n", (curcard->fairness)?"Unfair":"Fair"); len += sprintf(buf+len, "Ring Station Address: %pM\n", dev->dev_addr); } else len += sprintf(buf+len, "Card not configured\n"); return len; } static int __devexit madgemc_remove(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct net_local *tp; struct card_info *card; BUG_ON(!dev); tp = netdev_priv(dev); card = tp->tmspriv; kfree(card); tp->tmspriv = NULL; unregister_netdev(dev); release_region(dev->base_addr-MADGEMC_SIF_OFFSET, MADGEMC_IO_EXTENT); free_irq(dev->irq, dev); tmsdev_term(dev); free_netdev(dev); dev_set_drvdata(device, NULL); return 0; } static short madgemc_adapter_ids[] __initdata = { 0x002d, 0x0000 }; static struct mca_driver madgemc_driver = { .id_table = madgemc_adapter_ids, .driver = { .name = "madgemc", .bus = &mca_bus_type, .probe = madgemc_probe, .remove = __devexit_p(madgemc_remove), }, }; static int __init madgemc_init (void) { madgemc_netdev_ops = tms380tr_netdev_ops; madgemc_netdev_ops.ndo_open = madgemc_open; madgemc_netdev_ops.ndo_stop = madgemc_close; return mca_register_driver (&madgemc_driver); } static void __exit madgemc_exit (void) { mca_unregister_driver (&madgemc_driver); } module_init(madgemc_init); module_exit(madgemc_exit); MODULE_LICENSE("GPL");