/*- * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * Copyright (c) 2004-2005 Atheros Communications, Inc. * Copyright (c) 2006 Devicescape Software, Inc. * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com> * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. * */ #include <linux/version.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/if.h> #include <linux/netdevice.h> #include <linux/cache.h> #include <linux/pci.h> #include <linux/ethtool.h> #include <linux/uaccess.h> #include <net/ieee80211_radiotap.h> #include <asm/unaligned.h> #include "base.h" #include "reg.h" #include "debug.h" /* unaligned little endian access */ #define LE_READ_2(_p) (le16_to_cpu(get_unaligned((__le16 *)(_p)))) #define LE_READ_4(_p) (le32_to_cpu(get_unaligned((__le32 *)(_p)))) enum { ATH_LED_TX, ATH_LED_RX, }; static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */ /******************\ * Internal defines * \******************/ /* Module info */ MODULE_AUTHOR("Jiri Slaby"); MODULE_AUTHOR("Nick Kossifidis"); MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION("0.1.1 (EXPERIMENTAL)"); /* Known PCI ids */ static struct pci_device_id ath5k_pci_id_table[] __devinitdata = { { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */ { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */ { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/ { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */ { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */ { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */ { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */ { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */ { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */ { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */ { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */ { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */ { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */ { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */ { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */ { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */ { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/ { PCI_VDEVICE(ATHEROS, 0x0023), .driver_data = AR5K_AR5212 }, /* 5416 */ { PCI_VDEVICE(ATHEROS, 0x0024), .driver_data = AR5K_AR5212 }, /* 5418 */ { 0 } }; MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table); /* Known SREVs */ static struct ath5k_srev_name srev_names[] = { { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 }, { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 }, { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A }, { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B }, { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 }, { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 }, { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 }, { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A }, { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 }, { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 }, { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 }, { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 }, { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 }, { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 }, { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN }, { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 }, { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 }, { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 }, { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 }, { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A }, { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 }, { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A }, { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 }, { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 }, { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 }, { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN }, }; /* * Prototypes - PCI stack related functions */ static int __devinit ath5k_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id); static void __devexit ath5k_pci_remove(struct pci_dev *pdev); #ifdef CONFIG_PM static int ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state); static int ath5k_pci_resume(struct pci_dev *pdev); #else #define ath5k_pci_suspend NULL #define ath5k_pci_resume NULL #endif /* CONFIG_PM */ static struct pci_driver ath5k_pci_driver = { .name = "ath5k_pci", .id_table = ath5k_pci_id_table, .probe = ath5k_pci_probe, .remove = __devexit_p(ath5k_pci_remove), .suspend = ath5k_pci_suspend, .resume = ath5k_pci_resume, }; /* * Prototypes - MAC 802.11 stack related functions */ static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *ctl); static int ath5k_reset(struct ieee80211_hw *hw); static int ath5k_start(struct ieee80211_hw *hw); static void ath5k_stop(struct ieee80211_hw *hw); static int ath5k_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); static void ath5k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); static int ath5k_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf); static int ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf); static void ath5k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *new_flags, int mc_count, struct dev_mc_list *mclist); static int ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, const u8 *local_addr, const u8 *addr, struct ieee80211_key_conf *key); static int ath5k_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats); static int ath5k_get_tx_stats(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats); static u64 ath5k_get_tsf(struct ieee80211_hw *hw); static void ath5k_reset_tsf(struct ieee80211_hw *hw); static int ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *ctl); static struct ieee80211_ops ath5k_hw_ops = { .tx = ath5k_tx, .start = ath5k_start, .stop = ath5k_stop, .add_interface = ath5k_add_interface, .remove_interface = ath5k_remove_interface, .config = ath5k_config, .config_interface = ath5k_config_interface, .configure_filter = ath5k_configure_filter, .set_key = ath5k_set_key, .get_stats = ath5k_get_stats, .conf_tx = NULL, .get_tx_stats = ath5k_get_tx_stats, .get_tsf = ath5k_get_tsf, .reset_tsf = ath5k_reset_tsf, .beacon_update = ath5k_beacon_update, }; /* * Prototypes - Internal functions */ /* Attach detach */ static int ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw); static void ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw); /* Channel/mode setup */ static inline short ath5k_ieee2mhz(short chan); static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates, const struct ath5k_rate_table *rt, unsigned int max); static unsigned int ath5k_copy_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels, unsigned int mode, unsigned int max); static int ath5k_getchannels(struct ieee80211_hw *hw); static int ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan); static void ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode); static void ath5k_mode_setup(struct ath5k_softc *sc); /* Descriptor setup */ static int ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev); static void ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev); /* Buffers setup */ static int ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf); static int ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf, struct ieee80211_tx_control *ctl); static inline void ath5k_txbuf_free(struct ath5k_softc *sc, struct ath5k_buf *bf) { BUG_ON(!bf); if (!bf->skb) return; pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len, PCI_DMA_TODEVICE); dev_kfree_skb(bf->skb); bf->skb = NULL; } /* Queues setup */ static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc, int qtype, int subtype); static int ath5k_beaconq_setup(struct ath5k_hw *ah); static int ath5k_beaconq_config(struct ath5k_softc *sc); static void ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq); static void ath5k_txq_cleanup(struct ath5k_softc *sc); static void ath5k_txq_release(struct ath5k_softc *sc); /* Rx handling */ static int ath5k_rx_start(struct ath5k_softc *sc); static void ath5k_rx_stop(struct ath5k_softc *sc); static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds, struct sk_buff *skb); static void ath5k_tasklet_rx(unsigned long data); /* Tx handling */ static void ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq); static void ath5k_tasklet_tx(unsigned long data); /* Beacon handling */ static int ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf, struct ieee80211_tx_control *ctl); static void ath5k_beacon_send(struct ath5k_softc *sc); static void ath5k_beacon_config(struct ath5k_softc *sc); static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf); static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp) { u64 tsf = ath5k_hw_get_tsf64(ah); if ((tsf & 0x7fff) < rstamp) tsf -= 0x8000; return (tsf & ~0x7fff) | rstamp; } /* Interrupt handling */ static int ath5k_init(struct ath5k_softc *sc); static int ath5k_stop_locked(struct ath5k_softc *sc); static int ath5k_stop_hw(struct ath5k_softc *sc); static irqreturn_t ath5k_intr(int irq, void *dev_id); static void ath5k_tasklet_reset(unsigned long data); static void ath5k_calibrate(unsigned long data); /* LED functions */ static void ath5k_led_off(unsigned long data); static void ath5k_led_blink(struct ath5k_softc *sc, unsigned int on, unsigned int off); static void ath5k_led_event(struct ath5k_softc *sc, int event); /* * Module init/exit functions */ static int __init init_ath5k_pci(void) { int ret; ath5k_debug_init(); ret = pci_register_driver(&ath5k_pci_driver); if (ret) { printk(KERN_ERR "ath5k_pci: can't register pci driver\n"); return ret; } return 0; } static void __exit exit_ath5k_pci(void) { pci_unregister_driver(&ath5k_pci_driver); ath5k_debug_finish(); } module_init(init_ath5k_pci); module_exit(exit_ath5k_pci); /********************\ * PCI Initialization * \********************/ static const char * ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val) { const char *name = "xxxxx"; unsigned int i; for (i = 0; i < ARRAY_SIZE(srev_names); i++) { if (srev_names[i].sr_type != type) continue; if ((val & 0xff) < srev_names[i + 1].sr_val) { name = srev_names[i].sr_name; break; } } return name; } static int __devinit ath5k_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { void __iomem *mem; struct ath5k_softc *sc; struct ieee80211_hw *hw; int ret; u8 csz; ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "can't enable device\n"); goto err; } /* XXX 32-bit addressing only */ ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (ret) { dev_err(&pdev->dev, "32-bit DMA not available\n"); goto err_dis; } /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz); if (csz == 0) { /* * Linux 2.4.18 (at least) writes the cache line size * register as a 16-bit wide register which is wrong. * We must have this setup properly for rx buffer * DMA to work so force a reasonable value here if it * comes up zero. */ csz = L1_CACHE_BYTES / sizeof(u32); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz); } /* * The default setting of latency timer yields poor results, * set it to the value used by other systems. It may be worth * tweaking this setting more. */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8); /* Enable bus mastering */ pci_set_master(pdev); /* * Disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state. */ pci_write_config_byte(pdev, 0x41, 0); ret = pci_request_region(pdev, 0, "ath5k"); if (ret) { dev_err(&pdev->dev, "cannot reserve PCI memory region\n"); goto err_dis; } mem = pci_iomap(pdev, 0, 0); if (!mem) { dev_err(&pdev->dev, "cannot remap PCI memory region\n") ; ret = -EIO; goto err_reg; } /* * Allocate hw (mac80211 main struct) * and hw->priv (driver private data) */ hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops); if (hw == NULL) { dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n"); ret = -ENOMEM; goto err_map; } dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy)); /* Initialize driver private data */ SET_IEEE80211_DEV(hw, &pdev->dev); hw->flags = IEEE80211_HW_RX_INCLUDES_FCS; hw->extra_tx_headroom = 2; hw->channel_change_time = 5000; /* these names are misleading */ hw->max_rssi = -110; /* signal in dBm */ hw->max_noise = -110; /* noise in dBm */ hw->max_signal = 100; /* we will provide a percentage based on rssi */ sc = hw->priv; sc->hw = hw; sc->pdev = pdev; ath5k_debug_init_device(sc); /* * Mark the device as detached to avoid processing * interrupts until setup is complete. */ __set_bit(ATH_STAT_INVALID, sc->status); sc->iobase = mem; /* So we can unmap it on detach */ sc->cachelsz = csz * sizeof(u32); /* convert to bytes */ sc->opmode = IEEE80211_IF_TYPE_STA; mutex_init(&sc->lock); spin_lock_init(&sc->rxbuflock); spin_lock_init(&sc->txbuflock); /* Set private data */ pci_set_drvdata(pdev, hw); /* Enable msi for devices that support it */ pci_enable_msi(pdev); /* Setup interrupt handler */ ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc); if (ret) { ATH5K_ERR(sc, "request_irq failed\n"); goto err_free; } /* Initialize device */ sc->ah = ath5k_hw_attach(sc, id->driver_data); if (IS_ERR(sc->ah)) { ret = PTR_ERR(sc->ah); goto err_irq; } /* Finish private driver data initialization */ ret = ath5k_attach(pdev, hw); if (ret) goto err_ah; ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n", ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev), sc->ah->ah_mac_srev, sc->ah->ah_phy_revision); if(!sc->ah->ah_single_chip){ /* Single chip radio (!RF5111) */ if(sc->ah->ah_radio_5ghz_revision && !sc->ah->ah_radio_2ghz_revision) { /* No 5GHz support -> report 2GHz radio */ if(!test_bit(MODE_IEEE80211A, sc->ah->ah_capabilities.cap_mode)){ ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD,sc->ah->ah_radio_5ghz_revision), sc->ah->ah_radio_5ghz_revision); /* No 2GHz support (5110 and some 5Ghz only cards) -> report 5Ghz radio */ } else if(!test_bit(MODE_IEEE80211B, sc->ah->ah_capabilities.cap_mode)){ ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD,sc->ah->ah_radio_5ghz_revision), sc->ah->ah_radio_5ghz_revision); /* Multiband radio */ } else { ATH5K_INFO(sc, "RF%s multiband radio found" " (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD,sc->ah->ah_radio_5ghz_revision), sc->ah->ah_radio_5ghz_revision); } } /* Multi chip radio (RF5111 - RF2111) -> report both 2GHz/5GHz radios */ else if(sc->ah->ah_radio_5ghz_revision && sc->ah->ah_radio_2ghz_revision){ ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD,sc->ah->ah_radio_5ghz_revision), sc->ah->ah_radio_5ghz_revision); ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n", ath5k_chip_name(AR5K_VERSION_RAD,sc->ah->ah_radio_2ghz_revision), sc->ah->ah_radio_2ghz_revision); } } /* ready to process interrupts */ __clear_bit(ATH_STAT_INVALID, sc->status); return 0; err_ah: ath5k_hw_detach(sc->ah); err_irq: free_irq(pdev->irq, sc); err_free: pci_disable_msi(pdev); ieee80211_free_hw(hw); err_map: pci_iounmap(pdev, mem); err_reg: pci_release_region(pdev, 0); err_dis: pci_disable_device(pdev); err: return ret; } static void __devexit ath5k_pci_remove(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct ath5k_softc *sc = hw->priv; ath5k_debug_finish_device(sc); ath5k_detach(pdev, hw); ath5k_hw_detach(sc->ah); free_irq(pdev->irq, sc); pci_disable_msi(pdev); pci_iounmap(pdev, sc->iobase); pci_release_region(pdev, 0); pci_disable_device(pdev); ieee80211_free_hw(hw); } #ifdef CONFIG_PM static int ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct ath5k_softc *sc = hw->priv; if (test_bit(ATH_STAT_LEDSOFT, sc->status)) ath5k_hw_set_gpio(sc->ah, sc->led_pin, 1); ath5k_stop_hw(sc); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int ath5k_pci_resume(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct ath5k_softc *sc = hw->priv; struct ath5k_hw *ah = sc->ah; int i, err; err = pci_set_power_state(pdev, PCI_D0); if (err) return err; err = pci_enable_device(pdev); if (err) return err; pci_restore_state(pdev); /* * Suspend/Resume resets the PCI configuration space, so we have to * re-disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config_byte(pdev, 0x41, 0); ath5k_init(sc); if (test_bit(ATH_STAT_LEDSOFT, sc->status)) { ath5k_hw_set_gpio_output(ah, sc->led_pin); ath5k_hw_set_gpio(ah, sc->led_pin, 0); } /* * Reset the key cache since some parts do not * reset the contents on initial power up or resume. * * FIXME: This may need to be revisited when mac80211 becomes * aware of suspend/resume. */ for (i = 0; i < AR5K_KEYTABLE_SIZE; i++) ath5k_hw_reset_key(ah, i); return 0; } #endif /* CONFIG_PM */ /***********************\ * Driver Initialization * \***********************/ static int ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct ath5k_softc *sc = hw->priv; struct ath5k_hw *ah = sc->ah; u8 mac[ETH_ALEN]; unsigned int i; int ret; ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device); /* * Check if the MAC has multi-rate retry support. * We do this by trying to setup a fake extended * descriptor. MAC's that don't have support will * return false w/o doing anything. MAC's that do * support it will return true w/o doing anything. */ ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0); if (ret < 0) goto err; if (ret > 0) __set_bit(ATH_STAT_MRRETRY, sc->status); /* * Reset the key cache since some parts do not * reset the contents on initial power up. */ for (i = 0; i < AR5K_KEYTABLE_SIZE; i++) ath5k_hw_reset_key(ah, i); /* * Collect the channel list. The 802.11 layer * is resposible for filtering this list based * on settings like the phy mode and regulatory * domain restrictions. */ ret = ath5k_getchannels(hw); if (ret) { ATH5K_ERR(sc, "can't get channels\n"); goto err; } /* NB: setup here so ath5k_rate_update is happy */ if (test_bit(MODE_IEEE80211A, ah->ah_modes)) ath5k_setcurmode(sc, MODE_IEEE80211A); else ath5k_setcurmode(sc, MODE_IEEE80211B); /* * Allocate tx+rx descriptors and populate the lists. */ ret = ath5k_desc_alloc(sc, pdev); if (ret) { ATH5K_ERR(sc, "can't allocate descriptors\n"); goto err; } /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that hw functions handle reseting * these queues at the needed time. */ ret = ath5k_beaconq_setup(ah); if (ret < 0) { ATH5K_ERR(sc, "can't setup a beacon xmit queue\n"); goto err_desc; } sc->bhalq = ret; sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK); if (IS_ERR(sc->txq)) { ATH5K_ERR(sc, "can't setup xmit queue\n"); ret = PTR_ERR(sc->txq); goto err_bhal; } tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc); tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc); tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc); setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc); setup_timer(&sc->led_tim, ath5k_led_off, (unsigned long)sc); sc->led_on = 0; /* low true */ /* * Auto-enable soft led processing for IBM cards and for * 5211 minipci cards. */ if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM || pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) { __set_bit(ATH_STAT_LEDSOFT, sc->status); sc->led_pin = 0; } /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */ if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) { __set_bit(ATH_STAT_LEDSOFT, sc->status); sc->led_pin = 0; } if (test_bit(ATH_STAT_LEDSOFT, sc->status)) { ath5k_hw_set_gpio_output(ah, sc->led_pin); ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on); } ath5k_hw_get_lladdr(ah, mac); SET_IEEE80211_PERM_ADDR(hw, mac); /* All MAC address bits matter for ACKs */ memset(sc->bssidmask, 0xff, ETH_ALEN); ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask); ret = ieee80211_register_hw(hw); if (ret) { ATH5K_ERR(sc, "can't register ieee80211 hw\n"); goto err_queues; } return 0; err_queues: ath5k_txq_release(sc); err_bhal: ath5k_hw_release_tx_queue(ah, sc->bhalq); err_desc: ath5k_desc_free(sc, pdev); err: return ret; } static void ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw) { struct ath5k_softc *sc = hw->priv; /* * NB: the order of these is important: * o call the 802.11 layer before detaching ath5k_hw to * insure callbacks into the driver to delete global * key cache entries can be handled * o reclaim the tx queue data structures after calling * the 802.11 layer as we'll get called back to reclaim * node state and potentially want to use them * o to cleanup the tx queues the hal is called, so detach * it last * XXX: ??? detach ath5k_hw ??? * Other than that, it's straightforward... */ ieee80211_unregister_hw(hw); ath5k_desc_free(sc, pdev); ath5k_txq_release(sc); ath5k_hw_release_tx_queue(sc->ah, sc->bhalq); /* * NB: can't reclaim these until after ieee80211_ifdetach * returns because we'll get called back to reclaim node * state and potentially want to use them. */ } /********************\ * Channel/mode setup * \********************/ /* * Convert IEEE channel number to MHz frequency. */ static inline short ath5k_ieee2mhz(short chan) { if (chan <= 14 || chan >= 27) return ieee80211chan2mhz(chan); else return 2212 + chan * 20; } static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates, const struct ath5k_rate_table *rt, unsigned int max) { unsigned int i, count; if (rt == NULL) return 0; for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) { if (!rt->rates[i].valid) continue; rates->rate = rt->rates[i].rate_kbps / 100; rates->val = rt->rates[i].rate_code; rates->flags = rt->rates[i].modulation; rates++; count++; max--; } return count; } static unsigned int ath5k_copy_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels, unsigned int mode, unsigned int max) { static const struct { unsigned int mode, mask, chan; } map[] = { [MODE_IEEE80211A] = { CHANNEL_OFDM, CHANNEL_OFDM | CHANNEL_TURBO, CHANNEL_A }, [MODE_ATHEROS_TURBO] = { CHANNEL_OFDM|CHANNEL_TURBO, CHANNEL_OFDM | CHANNEL_TURBO, CHANNEL_T }, [MODE_IEEE80211B] = { CHANNEL_CCK, CHANNEL_CCK, CHANNEL_B }, [MODE_IEEE80211G] = { CHANNEL_OFDM, CHANNEL_OFDM, CHANNEL_G }, [MODE_ATHEROS_TURBOG] = { CHANNEL_OFDM | CHANNEL_TURBO, CHANNEL_OFDM | CHANNEL_TURBO, CHANNEL_TG }, }; static const struct ath5k_regchannel chans_2ghz[] = IEEE80211_CHANNELS_2GHZ; static const struct ath5k_regchannel chans_5ghz[] = IEEE80211_CHANNELS_5GHZ; const struct ath5k_regchannel *chans; enum ath5k_regdom dmn; unsigned int i, count, size, chfreq, all, f, ch; if (!test_bit(mode, ah->ah_modes)) return 0; all = ah->ah_regdomain == DMN_DEFAULT || CHAN_DEBUG == 1; switch (mode) { case MODE_IEEE80211A: case MODE_ATHEROS_TURBO: /* 1..220, but 2GHz frequencies are filtered by check_channel */ size = all ? 220 : ARRAY_SIZE(chans_5ghz); chans = chans_5ghz; dmn = ath5k_regdom2flag(ah->ah_regdomain, IEEE80211_CHANNELS_5GHZ_MIN); chfreq = CHANNEL_5GHZ; break; case MODE_IEEE80211B: case MODE_IEEE80211G: case MODE_ATHEROS_TURBOG: size = all ? 26 : ARRAY_SIZE(chans_2ghz); chans = chans_2ghz; dmn = ath5k_regdom2flag(ah->ah_regdomain, IEEE80211_CHANNELS_2GHZ_MIN); chfreq = CHANNEL_2GHZ; break; default: ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n"); return 0; } for (i = 0, count = 0; i < size && max > 0; i++) { ch = all ? i + 1 : chans[i].chan; f = ath5k_ieee2mhz(ch); /* Check if channel is supported by the chipset */ if (!ath5k_channel_ok(ah, f, chfreq)) continue; /* Match regulation domain */ if (!all && !(IEEE80211_DMN(chans[i].domain) & IEEE80211_DMN(dmn))) continue; if (!all && (chans[i].mode & map[mode].mask) != map[mode].mode) continue; /* Write channel and increment counter */ channels->chan = ch; channels->freq = f; channels->val = map[mode].chan; channels++; count++; max--; } return count; } /* Only tries to register modes our EEPROM says it can support */ #define REGISTER_MODE(m) do { \ ret = ath5k_register_mode(hw, m); \ if (ret) \ return ret; \ } while (0) \ static inline int ath5k_register_mode(struct ieee80211_hw *hw, u8 m) { struct ath5k_softc *sc = hw->priv; struct ieee80211_hw_mode *modes = sc->modes; unsigned int i; int ret; if (!test_bit(m, sc->ah->ah_capabilities.cap_mode)) return 0; for (i = 0; i < NUM_DRIVER_MODES; i++) { if (modes[i].mode != m || !modes[i].num_channels) continue; ret = ieee80211_register_hwmode(hw, &modes[i]); if (ret) { ATH5K_ERR(sc, "can't register hwmode %u\n", m); return ret; } return 0; } BUG(); } static int ath5k_getchannels(struct ieee80211_hw *hw) { struct ath5k_softc *sc = hw->priv; struct ath5k_hw *ah = sc->ah; struct ieee80211_hw_mode *modes = sc->modes; unsigned int i, max_r, max_c; int ret; BUILD_BUG_ON(ARRAY_SIZE(sc->modes) < 3); /* The order here does not matter */ modes[0].mode = MODE_IEEE80211G; modes[1].mode = MODE_IEEE80211B; modes[2].mode = MODE_IEEE80211A; max_r = ARRAY_SIZE(sc->rates); max_c = ARRAY_SIZE(sc->channels); for (i = 0; i < NUM_DRIVER_MODES; i++) { struct ieee80211_hw_mode *mode = &modes[i]; const struct ath5k_rate_table *hw_rates; if (i == 0) { modes[0].rates = sc->rates; modes->channels = sc->channels; } else { struct ieee80211_hw_mode *prev_mode = &modes[i-1]; int prev_num_r = prev_mode->num_rates; int prev_num_c = prev_mode->num_channels; mode->rates = &prev_mode->rates[prev_num_r]; mode->channels = &prev_mode->channels[prev_num_c]; } hw_rates = ath5k_hw_get_rate_table(ah, mode->mode); mode->num_rates = ath5k_copy_rates(mode->rates, hw_rates, max_r); mode->num_channels = ath5k_copy_channels(ah, mode->channels, mode->mode, max_c); max_r -= mode->num_rates; max_c -= mode->num_channels; } /* We try to register all modes this driver supports. We don't bother * with MODE_IEEE80211B for AR5212 as MODE_IEEE80211G already accounts * for that as per mac80211. Then, REGISTER_MODE() will will actually * check the eeprom reading for more reliable capability information. * Order matters here as per mac80211's latest preference. This will * all hopefullly soon go away. */ REGISTER_MODE(MODE_IEEE80211G); if (ah->ah_version != AR5K_AR5212) REGISTER_MODE(MODE_IEEE80211B); REGISTER_MODE(MODE_IEEE80211A); ath5k_debug_dump_modes(sc, modes); return ret; } /* * Set/change channels. If the channel is really being changed, * it's done by reseting the chip. To accomplish this we must * first cleanup any pending DMA, then restart stuff after a la * ath5k_init. */ static int ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan) { struct ath5k_hw *ah = sc->ah; int ret; ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "%u (%u MHz) -> %u (%u MHz)\n", sc->curchan->chan, sc->curchan->freq, chan->chan, chan->freq); if (chan->freq != sc->curchan->freq || chan->val != sc->curchan->val) { /* * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ ath5k_hw_set_intr(ah, 0); /* disable interrupts */ ath5k_txq_cleanup(sc); /* clear pending tx frames */ ath5k_rx_stop(sc); /* turn off frame recv */ ret = ath5k_hw_reset(ah, sc->opmode, chan, true); if (ret) { ATH5K_ERR(sc, "%s: unable to reset channel %u " "(%u Mhz)\n", __func__, chan->chan, chan->freq); return ret; } sc->curchan = chan; ath5k_hw_set_txpower_limit(sc->ah, 0); /* * Re-enable rx framework. */ ret = ath5k_rx_start(sc); if (ret) { ATH5K_ERR(sc, "%s: unable to restart recv logic\n", __func__); return ret; } /* * Change channels and update the h/w rate map * if we're switching; e.g. 11a to 11b/g. * * XXX needed? */ /* ath5k_chan_change(sc, chan); */ ath5k_beacon_config(sc); /* * Re-enable interrupts. */ ath5k_hw_set_intr(ah, sc->imask); } return 0; } static void ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode) { if (unlikely(test_bit(ATH_STAT_LEDSOFT, sc->status))) { /* from Atheros NDIS driver, w/ permission */ static const struct { u16 rate; /* tx/rx 802.11 rate */ u16 timeOn; /* LED on time (ms) */ u16 timeOff; /* LED off time (ms) */ } blinkrates[] = { { 108, 40, 10 }, { 96, 44, 11 }, { 72, 50, 13 }, { 48, 57, 14 }, { 36, 67, 16 }, { 24, 80, 20 }, { 22, 100, 25 }, { 18, 133, 34 }, { 12, 160, 40 }, { 10, 200, 50 }, { 6, 240, 58 }, { 4, 267, 66 }, { 2, 400, 100 }, { 0, 500, 130 } }; const struct ath5k_rate_table *rt = ath5k_hw_get_rate_table(sc->ah, mode); unsigned int i, j; BUG_ON(rt == NULL); memset(sc->hwmap, 0, sizeof(sc->hwmap)); for (i = 0; i < 32; i++) { u8 ix = rt->rate_code_to_index[i]; if (ix == 0xff) { sc->hwmap[i].ledon = msecs_to_jiffies(500); sc->hwmap[i].ledoff = msecs_to_jiffies(130); continue; } sc->hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; if (SHPREAMBLE_FLAG(ix) || rt->rates[ix].modulation == IEEE80211_RATE_OFDM) sc->hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; /* receive frames include FCS */ sc->hwmap[i].rxflags = sc->hwmap[i].txflags | IEEE80211_RADIOTAP_F_FCS; /* setup blink rate table to avoid per-packet lookup */ for (j = 0; j < ARRAY_SIZE(blinkrates) - 1; j++) if (blinkrates[j].rate == /* XXX why 7f? */ (rt->rates[ix].dot11_rate&0x7f)) break; sc->hwmap[i].ledon = msecs_to_jiffies(blinkrates[j]. timeOn); sc->hwmap[i].ledoff = msecs_to_jiffies(blinkrates[j]. timeOff); } } sc->curmode = mode; } static void ath5k_mode_setup(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; u32 rfilt; /* configure rx filter */ rfilt = sc->filter_flags; ath5k_hw_set_rx_filter(ah, rfilt); if (ath5k_hw_hasbssidmask(ah)) ath5k_hw_set_bssid_mask(ah, sc->bssidmask); /* configure operational mode */ ath5k_hw_set_opmode(ah); ath5k_hw_set_mcast_filter(ah, 0, 0); ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt); } /***************\ * Buffers setup * \***************/ static int ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf) { struct ath5k_hw *ah = sc->ah; struct sk_buff *skb = bf->skb; struct ath5k_desc *ds; if (likely(skb == NULL)) { unsigned int off; /* * Allocate buffer with headroom_needed space for the * fake physical layer header at the start. */ skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1); if (unlikely(skb == NULL)) { ATH5K_ERR(sc, "can't alloc skbuff of size %u\n", sc->rxbufsize + sc->cachelsz - 1); return -ENOMEM; } /* * Cache-line-align. This is important (for the * 5210 at least) as not doing so causes bogus data * in rx'd frames. */ off = ((unsigned long)skb->data) % sc->cachelsz; if (off != 0) skb_reserve(skb, sc->cachelsz - off); bf->skb = skb; bf->skbaddr = pci_map_single(sc->pdev, skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE); if (unlikely(pci_dma_mapping_error(bf->skbaddr))) { ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__); dev_kfree_skb(skb); bf->skb = NULL; return -ENOMEM; } } /* * Setup descriptors. For receive we always terminate * the descriptor list with a self-linked entry so we'll * not get overrun under high load (as can happen with a * 5212 when ANI processing enables PHY error frames). * * To insure the last descriptor is self-linked we create * each descriptor as self-linked and add it to the end. As * each additional descriptor is added the previous self-linked * entry is ``fixed'' naturally. This should be safe even * if DMA is happening. When processing RX interrupts we * never remove/process the last, self-linked, entry on the * descriptor list. This insures the hardware always has * someplace to write a new frame. */ ds = bf->desc; ds->ds_link = bf->daddr; /* link to self */ ds->ds_data = bf->skbaddr; ath5k_hw_setup_rx_desc(ah, ds, skb_tailroom(skb), /* buffer size */ 0); if (sc->rxlink != NULL) *sc->rxlink = bf->daddr; sc->rxlink = &ds->ds_link; return 0; } static int ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf, struct ieee80211_tx_control *ctl) { struct ath5k_hw *ah = sc->ah; struct ath5k_txq *txq = sc->txq; struct ath5k_desc *ds = bf->desc; struct sk_buff *skb = bf->skb; unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID; int ret; flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK; bf->ctl = *ctl; /* XXX endianness */ bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); if (ctl->flags & IEEE80211_TXCTL_NO_ACK) flags |= AR5K_TXDESC_NOACK; pktlen = skb->len; if (!(ctl->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) { keyidx = ctl->key_idx; pktlen += ctl->icv_len; } ret = ah->ah_setup_tx_desc(ah, ds, pktlen, ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL, (ctl->power_level * 2), ctl->tx_rate, ctl->retry_limit, keyidx, 0, flags, 0, 0); if (ret) goto err_unmap; ds->ds_link = 0; ds->ds_data = bf->skbaddr; spin_lock_bh(&txq->lock); list_add_tail(&bf->list, &txq->q); sc->tx_stats.data[txq->qnum].len++; if (txq->link == NULL) /* is this first packet? */ ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr); else /* no, so only link it */ *txq->link = bf->daddr; txq->link = &ds->ds_link; ath5k_hw_tx_start(ah, txq->qnum); spin_unlock_bh(&txq->lock); return 0; err_unmap: pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE); return ret; } /*******************\ * Descriptors setup * \*******************/ static int ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev) { struct ath5k_desc *ds; struct ath5k_buf *bf; dma_addr_t da; unsigned int i; int ret; /* allocate descriptors */ sc->desc_len = sizeof(struct ath5k_desc) * (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1); sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr); if (sc->desc == NULL) { ATH5K_ERR(sc, "can't allocate descriptors\n"); ret = -ENOMEM; goto err; } ds = sc->desc; da = sc->desc_daddr; ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n", ds, sc->desc_len, (unsigned long long)sc->desc_daddr); bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF, sizeof(struct ath5k_buf), GFP_KERNEL); if (bf == NULL) { ATH5K_ERR(sc, "can't allocate bufptr\n"); ret = -ENOMEM; goto err_free; } sc->bufptr = bf; INIT_LIST_HEAD(&sc->rxbuf); for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) { bf->desc = ds; bf->daddr = da; list_add_tail(&bf->list, &sc->rxbuf); } INIT_LIST_HEAD(&sc->txbuf); sc->txbuf_len = ATH_TXBUF; for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) { bf->desc = ds; bf->daddr = da; list_add_tail(&bf->list, &sc->txbuf); } /* beacon buffer */ bf->desc = ds; bf->daddr = da; sc->bbuf = bf; return 0; err_free: pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr); err: sc->desc = NULL; return ret; } static void ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev) { struct ath5k_buf *bf; ath5k_txbuf_free(sc, sc->bbuf); list_for_each_entry(bf, &sc->txbuf, list) ath5k_txbuf_free(sc, bf); list_for_each_entry(bf, &sc->rxbuf, list) ath5k_txbuf_free(sc, bf); /* Free memory associated with all descriptors */ pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr); kfree(sc->bufptr); sc->bufptr = NULL; } /**************\ * Queues setup * \**************/ static struct ath5k_txq * ath5k_txq_setup(struct ath5k_softc *sc, int qtype, int subtype) { struct ath5k_hw *ah = sc->ah; struct ath5k_txq *txq; struct ath5k_txq_info qi = { .tqi_subtype = subtype, .tqi_aifs = AR5K_TXQ_USEDEFAULT, .tqi_cw_min = AR5K_TXQ_USEDEFAULT, .tqi_cw_max = AR5K_TXQ_USEDEFAULT }; int qnum; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise waiting for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. */ qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE | AR5K_TXQ_FLAG_TXDESCINT_ENABLE; qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi); if (qnum < 0) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return ERR_PTR(qnum); } if (qnum >= ARRAY_SIZE(sc->txqs)) { ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n", qnum, ARRAY_SIZE(sc->txqs)); ath5k_hw_release_tx_queue(ah, qnum); return ERR_PTR(-EINVAL); } txq = &sc->txqs[qnum]; if (!txq->setup) { txq->qnum = qnum; txq->link = NULL; INIT_LIST_HEAD(&txq->q); spin_lock_init(&txq->lock); txq->setup = true; } return &sc->txqs[qnum]; } static int ath5k_beaconq_setup(struct ath5k_hw *ah) { struct ath5k_txq_info qi = { .tqi_aifs = AR5K_TXQ_USEDEFAULT, .tqi_cw_min = AR5K_TXQ_USEDEFAULT, .tqi_cw_max = AR5K_TXQ_USEDEFAULT, /* NB: for dynamic turbo, don't enable any other interrupts */ .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE }; return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi); } static int ath5k_beaconq_config(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; struct ath5k_txq_info qi; int ret; ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi); if (ret) return ret; if (sc->opmode == IEEE80211_IF_TYPE_AP) { /* * Always burst out beacon and CAB traffic * (aifs = cwmin = cwmax = 0) */ qi.tqi_aifs = 0; qi.tqi_cw_min = 0; qi.tqi_cw_max = 0; } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) { /* * Adhoc mode; backoff between 0 and (2 * cw_min). */ qi.tqi_aifs = 0; qi.tqi_cw_min = 0; qi.tqi_cw_max = 2 * ah->ah_cw_min; } ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n", qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max); ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi); if (ret) { ATH5K_ERR(sc, "%s: unable to update parameters for beacon " "hardware queue!\n", __func__); return ret; } return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */; } static void ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq) { struct ath5k_buf *bf, *bf0; /* * NB: this assumes output has been stopped and * we do not need to block ath5k_tx_tasklet */ spin_lock_bh(&txq->lock); list_for_each_entry_safe(bf, bf0, &txq->q, list) { ath5k_debug_printtxbuf(sc, bf, !sc->ah->ah_proc_tx_desc(sc->ah, bf->desc)); ath5k_txbuf_free(sc, bf); spin_lock_bh(&sc->txbuflock); sc->tx_stats.data[txq->qnum].len--; list_move_tail(&bf->list, &sc->txbuf); sc->txbuf_len++; spin_unlock_bh(&sc->txbuflock); } txq->link = NULL; spin_unlock_bh(&txq->lock); } /* * Drain the transmit queues and reclaim resources. */ static void ath5k_txq_cleanup(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; unsigned int i; /* XXX return value */ if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) { /* don't touch the hardware if marked invalid */ ath5k_hw_stop_tx_dma(ah, sc->bhalq); ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n", ath5k_hw_get_tx_buf(ah, sc->bhalq)); for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) if (sc->txqs[i].setup) { ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum); ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, " "link %p\n", sc->txqs[i].qnum, ath5k_hw_get_tx_buf(ah, sc->txqs[i].qnum), sc->txqs[i].link); } } ieee80211_start_queues(sc->hw); /* XXX move to callers */ for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) if (sc->txqs[i].setup) ath5k_txq_drainq(sc, &sc->txqs[i]); } static void ath5k_txq_release(struct ath5k_softc *sc) { struct ath5k_txq *txq = sc->txqs; unsigned int i; for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++) if (txq->setup) { ath5k_hw_release_tx_queue(sc->ah, txq->qnum); txq->setup = false; } } /*************\ * RX Handling * \*************/ /* * Enable the receive h/w following a reset. */ static int ath5k_rx_start(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; struct ath5k_buf *bf; int ret; sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz); ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n", sc->cachelsz, sc->rxbufsize); sc->rxlink = NULL; spin_lock_bh(&sc->rxbuflock); list_for_each_entry(bf, &sc->rxbuf, list) { ret = ath5k_rxbuf_setup(sc, bf); if (ret != 0) { spin_unlock_bh(&sc->rxbuflock); goto err; } } bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list); spin_unlock_bh(&sc->rxbuflock); ath5k_hw_put_rx_buf(ah, bf->daddr); ath5k_hw_start_rx(ah); /* enable recv descriptors */ ath5k_mode_setup(sc); /* set filters, etc. */ ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ return 0; err: return ret; } /* * Disable the receive h/w in preparation for a reset. */ static void ath5k_rx_stop(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; ath5k_hw_stop_pcu_recv(ah); /* disable PCU */ ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */ ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */ mdelay(3); /* 3ms is long enough for 1 frame */ ath5k_debug_printrxbuffs(sc, ah); sc->rxlink = NULL; /* just in case */ } static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (void *)skb->data; unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb); if (!(ds->ds_rxstat.rs_status & AR5K_RXERR_DECRYPT) && ds->ds_rxstat.rs_keyix != AR5K_RXKEYIX_INVALID) return RX_FLAG_DECRYPTED; /* Apparently when a default key is used to decrypt the packet the hw does not set the index used to decrypt. In such cases get the index from the packet. */ if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) && !(ds->ds_rxstat.rs_status & AR5K_RXERR_DECRYPT) && skb->len >= hlen + 4) { keyix = skb->data[hlen + 3] >> 6; if (test_bit(keyix, sc->keymap)) return RX_FLAG_DECRYPTED; } return 0; } static void ath5k_check_ibss_hw_merge(struct ath5k_softc *sc, struct sk_buff *skb) { u32 hw_tu; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; if ((mgmt->frame_control & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && (mgmt->frame_control & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON && mgmt->u.beacon.capab_info & WLAN_CAPABILITY_IBSS && memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) { /* * Received an IBSS beacon with the same BSSID. Hardware might * have updated the TSF, check if we need to update timers. */ hw_tu = TSF_TO_TU(ath5k_hw_get_tsf64(sc->ah)); if (hw_tu >= sc->nexttbtt) { ath5k_beacon_update_timers(sc, mgmt->u.beacon.timestamp); ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "detected HW merge from received beacon\n"); } } } static void ath5k_tasklet_rx(unsigned long data) { struct ieee80211_rx_status rxs = {}; struct sk_buff *skb; struct ath5k_softc *sc = (void *)data; struct ath5k_buf *bf; struct ath5k_desc *ds; u16 len; u8 stat; int ret; int hdrlen; int pad; spin_lock(&sc->rxbuflock); do { if (unlikely(list_empty(&sc->rxbuf))) { ATH5K_WARN(sc, "empty rx buf pool\n"); break; } bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list); BUG_ON(bf->skb == NULL); skb = bf->skb; ds = bf->desc; /* TODO only one segment */ pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr, sc->desc_len, PCI_DMA_FROMDEVICE); if (unlikely(ds->ds_link == bf->daddr)) /* this is the end */ break; ret = sc->ah->ah_proc_rx_desc(sc->ah, ds); if (unlikely(ret == -EINPROGRESS)) break; else if (unlikely(ret)) { ATH5K_ERR(sc, "error in processing rx descriptor\n"); spin_unlock(&sc->rxbuflock); return; } if (unlikely(ds->ds_rxstat.rs_more)) { ATH5K_WARN(sc, "unsupported jumbo\n"); goto next; } stat = ds->ds_rxstat.rs_status; if (unlikely(stat)) { if (stat & AR5K_RXERR_PHY) goto next; if (stat & AR5K_RXERR_DECRYPT) { /* * Decrypt error. If the error occurred * because there was no hardware key, then * let the frame through so the upper layers * can process it. This is necessary for 5210 * parts which have no way to setup a ``clear'' * key cache entry. * * XXX do key cache faulting */ if (ds->ds_rxstat.rs_keyix == AR5K_RXKEYIX_INVALID && !(stat & AR5K_RXERR_CRC)) goto accept; } if (stat & AR5K_RXERR_MIC) { rxs.flag |= RX_FLAG_MMIC_ERROR; goto accept; } /* let crypto-error packets fall through in MNTR */ if ((stat & ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) || sc->opmode != IEEE80211_IF_TYPE_MNTR) goto next; } accept: len = ds->ds_rxstat.rs_datalen; pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr, len, PCI_DMA_FROMDEVICE); pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize, PCI_DMA_FROMDEVICE); bf->skb = NULL; skb_put(skb, len); /* * the hardware adds a padding to 4 byte boundaries between * the header and the payload data if the header length is * not multiples of 4 - remove it */ hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (hdrlen & 3) { pad = hdrlen % 4; memmove(skb->data + pad, skb->data, hdrlen); skb_pull(skb, pad); } /* * always extend the mac timestamp, since this information is * also needed for proper IBSS merging. * * XXX: it might be too late to do it here, since rs_tstamp is * 15bit only. that means TSF extension has to be done within * 32768usec (about 32ms). it might be necessary to move this to * the interrupt handler, like it is done in madwifi. */ rxs.mactime = ath5k_extend_tsf(sc->ah, ds->ds_rxstat.rs_tstamp); rxs.flag |= RX_FLAG_TSFT; rxs.freq = sc->curchan->freq; rxs.channel = sc->curchan->chan; rxs.phymode = sc->curmode; /* * signal quality: * the names here are misleading and the usage of these * values by iwconfig makes it even worse */ /* noise floor in dBm, from the last noise calibration */ rxs.noise = sc->ah->ah_noise_floor; /* signal level in dBm */ rxs.ssi = rxs.noise + ds->ds_rxstat.rs_rssi; /* * "signal" is actually displayed as Link Quality by iwconfig * we provide a percentage based on rssi (assuming max rssi 64) */ rxs.signal = ds->ds_rxstat.rs_rssi * 100 / 64; rxs.antenna = ds->ds_rxstat.rs_antenna; rxs.rate = ds->ds_rxstat.rs_rate; rxs.flag |= ath5k_rx_decrypted(sc, ds, skb); ath5k_debug_dump_skb(sc, skb, "RX ", 0); /* check beacons in IBSS mode */ if (sc->opmode == IEEE80211_IF_TYPE_IBSS) ath5k_check_ibss_hw_merge(sc, skb); __ieee80211_rx(sc->hw, skb, &rxs); sc->led_rxrate = ds->ds_rxstat.rs_rate; ath5k_led_event(sc, ATH_LED_RX); next: list_move_tail(&bf->list, &sc->rxbuf); } while (ath5k_rxbuf_setup(sc, bf) == 0); spin_unlock(&sc->rxbuflock); } /*************\ * TX Handling * \*************/ static void ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq) { struct ieee80211_tx_status txs = {}; struct ath5k_buf *bf, *bf0; struct ath5k_desc *ds; struct sk_buff *skb; int ret; spin_lock(&txq->lock); list_for_each_entry_safe(bf, bf0, &txq->q, list) { ds = bf->desc; /* TODO only one segment */ pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr, sc->desc_len, PCI_DMA_FROMDEVICE); ret = sc->ah->ah_proc_tx_desc(sc->ah, ds); if (unlikely(ret == -EINPROGRESS)) break; else if (unlikely(ret)) { ATH5K_ERR(sc, "error %d while processing queue %u\n", ret, txq->qnum); break; } skb = bf->skb; bf->skb = NULL; pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE); txs.control = bf->ctl; txs.retry_count = ds->ds_txstat.ts_shortretry + ds->ds_txstat.ts_longretry / 6; if (unlikely(ds->ds_txstat.ts_status)) { sc->ll_stats.dot11ACKFailureCount++; if (ds->ds_txstat.ts_status & AR5K_TXERR_XRETRY) txs.excessive_retries = 1; else if (ds->ds_txstat.ts_status & AR5K_TXERR_FILT) txs.flags |= IEEE80211_TX_STATUS_TX_FILTERED; } else { txs.flags |= IEEE80211_TX_STATUS_ACK; txs.ack_signal = ds->ds_txstat.ts_rssi; } ieee80211_tx_status(sc->hw, skb, &txs); sc->tx_stats.data[txq->qnum].count++; spin_lock(&sc->txbuflock); sc->tx_stats.data[txq->qnum].len--; list_move_tail(&bf->list, &sc->txbuf); sc->txbuf_len++; spin_unlock(&sc->txbuflock); } if (likely(list_empty(&txq->q))) txq->link = NULL; spin_unlock(&txq->lock); if (sc->txbuf_len > ATH_TXBUF / 5) ieee80211_wake_queues(sc->hw); } static void ath5k_tasklet_tx(unsigned long data) { struct ath5k_softc *sc = (void *)data; ath5k_tx_processq(sc, sc->txq); ath5k_led_event(sc, ATH_LED_TX); } /*****************\ * Beacon handling * \*****************/ /* * Setup the beacon frame for transmit. */ static int ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf, struct ieee80211_tx_control *ctl) { struct sk_buff *skb = bf->skb; struct ath5k_hw *ah = sc->ah; struct ath5k_desc *ds; int ret, antenna = 0; u32 flags; bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] " "skbaddr %llx\n", skb, skb->data, skb->len, (unsigned long long)bf->skbaddr); if (pci_dma_mapping_error(bf->skbaddr)) { ATH5K_ERR(sc, "beacon DMA mapping failed\n"); return -EIO; } ds = bf->desc; flags = AR5K_TXDESC_NOACK; if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) { ds->ds_link = bf->daddr; /* self-linked */ flags |= AR5K_TXDESC_VEOL; /* * Let hardware handle antenna switching if txantenna is not set */ } else { ds->ds_link = 0; /* * Switch antenna every 4 beacons if txantenna is not set * XXX assumes two antennas */ if (antenna == 0) antenna = sc->bsent & 4 ? 2 : 1; } ds->ds_data = bf->skbaddr; ret = ah->ah_setup_tx_desc(ah, ds, skb->len, ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_BEACON, (ctl->power_level * 2), ctl->tx_rate, 1, AR5K_TXKEYIX_INVALID, antenna, flags, 0, 0); if (ret) goto err_unmap; return 0; err_unmap: pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE); return ret; } /* * Transmit a beacon frame at SWBA. Dynamic updates to the * frame contents are done as needed and the slot time is * also adjusted based on current state. * * this is usually called from interrupt context (ath5k_intr()) * but also from ath5k_beacon_config() in IBSS mode which in turn * can be called from a tasklet and user context */ static void ath5k_beacon_send(struct ath5k_softc *sc) { struct ath5k_buf *bf = sc->bbuf; struct ath5k_hw *ah = sc->ah; ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n"); if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA || sc->opmode == IEEE80211_IF_TYPE_MNTR)) { ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL); return; } /* * Check if the previous beacon has gone out. If * not don't don't try to post another, skip this * period and wait for the next. Missed beacons * indicate a problem and should not occur. If we * miss too many consecutive beacons reset the device. */ if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) { sc->bmisscount++; ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "missed %u consecutive beacons\n", sc->bmisscount); if (sc->bmisscount > 3) { /* NB: 3 is a guess */ ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "stuck beacon time (%u missed)\n", sc->bmisscount); tasklet_schedule(&sc->restq); } return; } if (unlikely(sc->bmisscount != 0)) { ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "resume beacon xmit after %u misses\n", sc->bmisscount); sc->bmisscount = 0; } /* * Stop any current dma and put the new frame on the queue. * This should never fail since we check above that no frames * are still pending on the queue. */ if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) { ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq); /* NB: hw still stops DMA, so proceed */ } pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr, bf->skb->len, PCI_DMA_TODEVICE); ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr); ath5k_hw_tx_start(ah, sc->bhalq); ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n", sc->bhalq, (unsigned long long)bf->daddr, bf->desc); sc->bsent++; } /** * ath5k_beacon_update_timers - update beacon timers * * @sc: struct ath5k_softc pointer we are operating on * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a * beacon timer update based on the current HW TSF. * * Calculate the next target beacon transmit time (TBTT) based on the timestamp * of a received beacon or the current local hardware TSF and write it to the * beacon timer registers. * * This is called in a variety of situations, e.g. when a beacon is received, * when a HW merge has been detected, but also when an new IBSS is created or * when we otherwise know we have to update the timers, but we keep it in this * function to have it all together in one place. */ static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf) { struct ath5k_hw *ah = sc->ah; u32 nexttbtt, intval, hw_tu, bc_tu; u64 hw_tsf; intval = sc->bintval & AR5K_BEACON_PERIOD; if (WARN_ON(!intval)) return; /* beacon TSF converted to TU */ bc_tu = TSF_TO_TU(bc_tsf); /* current TSF converted to TU */ hw_tsf = ath5k_hw_get_tsf64(ah); hw_tu = TSF_TO_TU(hw_tsf); #define FUDGE 3 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */ if (bc_tsf == -1) { /* * no beacons received, called internally. * just need to refresh timers based on HW TSF. */ nexttbtt = roundup(hw_tu + FUDGE, intval); } else if (bc_tsf == 0) { /* * no beacon received, probably called by ath5k_reset_tsf(). * reset TSF to start with 0. */ nexttbtt = intval; intval |= AR5K_BEACON_RESET_TSF; } else if (bc_tsf > hw_tsf) { /* * beacon received, SW merge happend but HW TSF not yet updated. * not possible to reconfigure timers yet, but next time we * receive a beacon with the same BSSID, the hardware will * automatically update the TSF and then we need to reconfigure * the timers. */ ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "need to wait for HW TSF sync\n"); return; } else { /* * most important case for beacon synchronization between STA. * * beacon received and HW TSF has been already updated by HW. * update next TBTT based on the TSF of the beacon, but make * sure it is ahead of our local TSF timer. */ nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval); } #undef FUDGE sc->nexttbtt = nexttbtt; intval |= AR5K_BEACON_ENA; ath5k_hw_init_beacon(ah, nexttbtt, intval); /* * debugging output last in order to preserve the time critical aspect * of this function */ if (bc_tsf == -1) ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "reconfigured timers based on HW TSF\n"); else if (bc_tsf == 0) ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "reset HW TSF and timers\n"); else ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "updated timers based on beacon TSF\n"); ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n", (unsigned long long) bc_tsf, (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt); ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n", intval & AR5K_BEACON_PERIOD, intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "", intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : ""); } /** * ath5k_beacon_config - Configure the beacon queues and interrupts * * @sc: struct ath5k_softc pointer we are operating on * * When operating in station mode we want to receive a BMISS interrupt when we * stop seeing beacons from the AP we've associated with so we can look for * another AP to associate with. * * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA * interrupts to detect HW merges only. * * AP mode is missing. */ static void ath5k_beacon_config(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; ath5k_hw_set_intr(ah, 0); sc->bmisscount = 0; if (sc->opmode == IEEE80211_IF_TYPE_STA) { sc->imask |= AR5K_INT_BMISS; } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) { /* * In IBSS mode we use a self-linked tx descriptor and let the * hardware send the beacons automatically. We have to load it * only once here. * We use the SWBA interrupt only to keep track of the beacon * timers in order to detect HW merges (automatic TSF updates). */ ath5k_beaconq_config(sc); sc->imask |= AR5K_INT_SWBA; if (ath5k_hw_hasveol(ah)) ath5k_beacon_send(sc); } /* TODO else AP */ ath5k_hw_set_intr(ah, sc->imask); } /********************\ * Interrupt handling * \********************/ static int ath5k_init(struct ath5k_softc *sc) { int ret; mutex_lock(&sc->lock); ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode); /* * Stop anything previously setup. This is safe * no matter this is the first time through or not. */ ath5k_stop_locked(sc); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ sc->curchan = sc->hw->conf.chan; ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false); if (ret) { ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret); goto done; } /* * This is needed only to setup initial state * but it's best done after a reset. */ ath5k_hw_set_txpower_limit(sc->ah, 0); /* * Setup the hardware after reset: the key cache * is filled as needed and the receive engine is * set going. Frame transmit is handled entirely * in the frame output path; there's nothing to do * here except setup the interrupt mask. */ ret = ath5k_rx_start(sc); if (ret) goto done; /* * Enable interrupts. */ sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL | AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL; ath5k_hw_set_intr(sc->ah, sc->imask); /* Set ack to be sent at low bit-rates */ ath5k_hw_set_ack_bitrate_high(sc->ah, false); mod_timer(&sc->calib_tim, round_jiffies(jiffies + msecs_to_jiffies(ath5k_calinterval * 1000))); ret = 0; done: mutex_unlock(&sc->lock); return ret; } static int ath5k_stop_locked(struct ath5k_softc *sc) { struct ath5k_hw *ah = sc->ah; ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n", test_bit(ATH_STAT_INVALID, sc->status)); /* * Shutdown the hardware and driver: * stop output from above * disable interrupts * turn off timers * turn off the radio * clear transmit machinery * clear receive machinery * drain and release tx queues * reclaim beacon resources * power down hardware * * Note that some of this work is not possible if the * hardware is gone (invalid). */ ieee80211_stop_queues(sc->hw); if (!test_bit(ATH_STAT_INVALID, sc->status)) { if (test_bit(ATH_STAT_LEDSOFT, sc->status)) { del_timer_sync(&sc->led_tim); ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on); __clear_bit(ATH_STAT_LEDBLINKING, sc->status); } ath5k_hw_set_intr(ah, 0); } ath5k_txq_cleanup(sc); if (!test_bit(ATH_STAT_INVALID, sc->status)) { ath5k_rx_stop(sc); ath5k_hw_phy_disable(ah); } else sc->rxlink = NULL; return 0; } /* * Stop the device, grabbing the top-level lock to protect * against concurrent entry through ath5k_init (which can happen * if another thread does a system call and the thread doing the * stop is preempted). */ static int ath5k_stop_hw(struct ath5k_softc *sc) { int ret; mutex_lock(&sc->lock); ret = ath5k_stop_locked(sc); if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) { /* * Set the chip in full sleep mode. Note that we are * careful to do this only when bringing the interface * completely to a stop. When the chip is in this state * it must be carefully woken up or references to * registers in the PCI clock domain may freeze the bus * (and system). This varies by chip and is mostly an * issue with newer parts that go to sleep more quickly. */ if (sc->ah->ah_mac_srev >= 0x78) { /* * XXX * don't put newer MAC revisions > 7.8 to sleep because * of the above mentioned problems */ ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, " "not putting device to sleep\n"); } else { ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "putting device to full sleep\n"); ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0); } } ath5k_txbuf_free(sc, sc->bbuf); mutex_unlock(&sc->lock); del_timer_sync(&sc->calib_tim); return ret; } static irqreturn_t ath5k_intr(int irq, void *dev_id) { struct ath5k_softc *sc = dev_id; struct ath5k_hw *ah = sc->ah; enum ath5k_int status; unsigned int counter = 1000; if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) || !ath5k_hw_is_intr_pending(ah))) return IRQ_NONE; do { /* * Figure out the reason(s) for the interrupt. Note * that get_isr returns a pseudo-ISR that may include * bits we haven't explicitly enabled so we mask the * value to insure we only process bits we requested. */ ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */ ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n", status, sc->imask); status &= sc->imask; /* discard unasked for bits */ if (unlikely(status & AR5K_INT_FATAL)) { /* * Fatal errors are unrecoverable. * Typically these are caused by DMA errors. */ tasklet_schedule(&sc->restq); } else if (unlikely(status & AR5K_INT_RXORN)) { tasklet_schedule(&sc->restq); } else { if (status & AR5K_INT_SWBA) { /* * Software beacon alert--time to send a beacon. * Handle beacon transmission directly; deferring * this is too slow to meet timing constraints * under load. * * In IBSS mode we use this interrupt just to * keep track of the next TBTT (target beacon * transmission time) in order to detect hardware * merges (TSF updates). */ if (sc->opmode == IEEE80211_IF_TYPE_IBSS) { /* XXX: only if VEOL suppported */ u64 tsf = ath5k_hw_get_tsf64(ah); sc->nexttbtt += sc->bintval; ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "SWBA nexttbtt: %x hw_tu: %x " "TSF: %llx\n", sc->nexttbtt, TSF_TO_TU(tsf), (unsigned long long) tsf); } else { ath5k_beacon_send(sc); } } if (status & AR5K_INT_RXEOL) { /* * NB: the hardware should re-read the link when * RXE bit is written, but it doesn't work at * least on older hardware revs. */ sc->rxlink = NULL; } if (status & AR5K_INT_TXURN) { /* bump tx trigger level */ ath5k_hw_update_tx_triglevel(ah, true); } if (status & AR5K_INT_RX) tasklet_schedule(&sc->rxtq); if (status & AR5K_INT_TX) tasklet_schedule(&sc->txtq); if (status & AR5K_INT_BMISS) { } if (status & AR5K_INT_MIB) { /* TODO */ } } } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0); if (unlikely(!counter)) ATH5K_WARN(sc, "too many interrupts, giving up for now\n"); return IRQ_HANDLED; } static void ath5k_tasklet_reset(unsigned long data) { struct ath5k_softc *sc = (void *)data; ath5k_reset(sc->hw); } /* * Periodically recalibrate the PHY to account * for temperature/environment changes. */ static void ath5k_calibrate(unsigned long data) { struct ath5k_softc *sc = (void *)data; struct ath5k_hw *ah = sc->ah; ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n", sc->curchan->chan, sc->curchan->val); if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) { /* * Rfgain is out of bounds, reset the chip * to load new gain values. */ ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n"); ath5k_reset(sc->hw); } if (ath5k_hw_phy_calibrate(ah, sc->curchan)) ATH5K_ERR(sc, "calibration of channel %u failed\n", sc->curchan->chan); mod_timer(&sc->calib_tim, round_jiffies(jiffies + msecs_to_jiffies(ath5k_calinterval * 1000))); } /***************\ * LED functions * \***************/ static void ath5k_led_off(unsigned long data) { struct ath5k_softc *sc = (void *)data; if (test_bit(ATH_STAT_LEDENDBLINK, sc->status)) __clear_bit(ATH_STAT_LEDBLINKING, sc->status); else { __set_bit(ATH_STAT_LEDENDBLINK, sc->status); ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on); mod_timer(&sc->led_tim, jiffies + sc->led_off); } } /* * Blink the LED according to the specified on/off times. */ static void ath5k_led_blink(struct ath5k_softc *sc, unsigned int on, unsigned int off) { ATH5K_DBG(sc, ATH5K_DEBUG_LED, "on %u off %u\n", on, off); ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on); __set_bit(ATH_STAT_LEDBLINKING, sc->status); __clear_bit(ATH_STAT_LEDENDBLINK, sc->status); sc->led_off = off; mod_timer(&sc->led_tim, jiffies + on); } static void ath5k_led_event(struct ath5k_softc *sc, int event) { if (likely(!test_bit(ATH_STAT_LEDSOFT, sc->status))) return; if (unlikely(test_bit(ATH_STAT_LEDBLINKING, sc->status))) return; /* don't interrupt active blink */ switch (event) { case ATH_LED_TX: ath5k_led_blink(sc, sc->hwmap[sc->led_txrate].ledon, sc->hwmap[sc->led_txrate].ledoff); break; case ATH_LED_RX: ath5k_led_blink(sc, sc->hwmap[sc->led_rxrate].ledon, sc->hwmap[sc->led_rxrate].ledoff); break; } } /********************\ * Mac80211 functions * \********************/ static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *ctl) { struct ath5k_softc *sc = hw->priv; struct ath5k_buf *bf; unsigned long flags; int hdrlen; int pad; ath5k_debug_dump_skb(sc, skb, "TX ", 1); if (sc->opmode == IEEE80211_IF_TYPE_MNTR) ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n"); /* * the hardware expects the header padded to 4 byte boundaries * if this is not the case we add the padding after the header */ hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (hdrlen & 3) { pad = hdrlen % 4; if (skb_headroom(skb) < pad) { ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough" " headroom to pad %d\n", hdrlen, pad); return -1; } skb_push(skb, pad); memmove(skb->data, skb->data+pad, hdrlen); } sc->led_txrate = ctl->tx_rate; spin_lock_irqsave(&sc->txbuflock, flags); if (list_empty(&sc->txbuf)) { ATH5K_ERR(sc, "no further txbuf available, dropping packet\n"); spin_unlock_irqrestore(&sc->txbuflock, flags); ieee80211_stop_queue(hw, ctl->queue); return -1; } bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list); list_del(&bf->list); sc->txbuf_len--; if (list_empty(&sc->txbuf)) ieee80211_stop_queues(hw); spin_unlock_irqrestore(&sc->txbuflock, flags); bf->skb = skb; if (ath5k_txbuf_setup(sc, bf, ctl)) { bf->skb = NULL; spin_lock_irqsave(&sc->txbuflock, flags); list_add_tail(&bf->list, &sc->txbuf); sc->txbuf_len++; spin_unlock_irqrestore(&sc->txbuflock, flags); dev_kfree_skb_any(skb); return 0; } return 0; } static int ath5k_reset(struct ieee80211_hw *hw) { struct ath5k_softc *sc = hw->priv; struct ath5k_hw *ah = sc->ah; int ret; ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n"); /* * Convert to a hw channel description with the flags * constrained to reflect the current operating mode. */ sc->curchan = hw->conf.chan; ath5k_hw_set_intr(ah, 0); ath5k_txq_cleanup(sc); ath5k_rx_stop(sc); ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true); if (unlikely(ret)) { ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret); goto err; } ath5k_hw_set_txpower_limit(sc->ah, 0); ret = ath5k_rx_start(sc); if (unlikely(ret)) { ATH5K_ERR(sc, "can't start recv logic\n"); goto err; } /* * We may be doing a reset in response to an ioctl * that changes the channel so update any state that * might change as a result. * * XXX needed? */ /* ath5k_chan_change(sc, c); */ ath5k_beacon_config(sc); /* intrs are started by ath5k_beacon_config */ ieee80211_wake_queues(hw); return 0; err: return ret; } static int ath5k_start(struct ieee80211_hw *hw) { return ath5k_init(hw->priv); } static void ath5k_stop(struct ieee80211_hw *hw) { ath5k_stop_hw(hw->priv); } static int ath5k_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct ath5k_softc *sc = hw->priv; int ret; mutex_lock(&sc->lock); if (sc->vif) { ret = 0; goto end; } sc->vif = conf->vif; switch (conf->type) { case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_IBSS: case IEEE80211_IF_TYPE_MNTR: sc->opmode = conf->type; break; default: ret = -EOPNOTSUPP; goto end; } ret = 0; end: mutex_unlock(&sc->lock); return ret; } static void ath5k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct ath5k_softc *sc = hw->priv; mutex_lock(&sc->lock); if (sc->vif != conf->vif) goto end; sc->vif = NULL; end: mutex_unlock(&sc->lock); } static int ath5k_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf) { struct ath5k_softc *sc = hw->priv; sc->bintval = conf->beacon_int; ath5k_setcurmode(sc, conf->phymode); return ath5k_chan_set(sc, conf->chan); } static int ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf) { struct ath5k_softc *sc = hw->priv; struct ath5k_hw *ah = sc->ah; int ret; /* Set to a reasonable value. Note that this will * be set to mac80211's value at ath5k_config(). */ sc->bintval = 1000; mutex_lock(&sc->lock); if (sc->vif != vif) { ret = -EIO; goto unlock; } if (conf->bssid) { /* Cache for later use during resets */ memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN); /* XXX: assoc id is set to 0 for now, mac80211 doesn't have * a clean way of letting us retrieve this yet. */ ath5k_hw_set_associd(ah, ah->ah_bssid, 0); } mutex_unlock(&sc->lock); return ath5k_reset(hw); unlock: mutex_unlock(&sc->lock); return ret; } #define SUPPORTED_FIF_FLAGS \ FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \ FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC /* * o always accept unicast, broadcast, and multicast traffic * o multicast traffic for all BSSIDs will be enabled if mac80211 * says it should be * o maintain current state of phy ofdm or phy cck error reception. * If the hardware detects any of these type of errors then * ath5k_hw_get_rx_filter() will pass to us the respective * hardware filters to be able to receive these type of frames. * o probe request frames are accepted only when operating in * hostap, adhoc, or monitor modes * o enable promiscuous mode according to the interface state * o accept beacons: * - when operating in adhoc mode so the 802.11 layer creates * node table entries for peers, * - when operating in station mode for collecting rssi data when * the station is otherwise quiet, or * - when scanning */ static void ath5k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *new_flags, int mc_count, struct dev_mc_list *mclist) { struct ath5k_softc *sc = hw->priv; struct ath5k_hw *ah = sc->ah; u32 mfilt[2], val, rfilt; u8 pos; int i; mfilt[0] = 0; mfilt[1] = 0; /* Only deal with supported flags */ changed_flags &= SUPPORTED_FIF_FLAGS; *new_flags &= SUPPORTED_FIF_FLAGS; /* If HW detects any phy or radar errors, leave those filters on. * Also, always enable Unicast, Broadcasts and Multicast * XXX: move unicast, bssid broadcasts and multicast to mac80211 */ rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) | (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST | AR5K_RX_FILTER_MCAST); if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) { if (*new_flags & FIF_PROMISC_IN_BSS) { rfilt |= AR5K_RX_FILTER_PROM; __set_bit(ATH_STAT_PROMISC, sc->status); } else __clear_bit(ATH_STAT_PROMISC, sc->status); } /* Note, AR5K_RX_FILTER_MCAST is already enabled */ if (*new_flags & FIF_ALLMULTI) { mfilt[0] = ~0; mfilt[1] = ~0; } else { for (i = 0; i < mc_count; i++) { if (!mclist) break; /* calculate XOR of eight 6-bit values */ val = LE_READ_4(mclist->dmi_addr + 0); pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; val = LE_READ_4(mclist->dmi_addr + 3); pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; pos &= 0x3f; mfilt[pos / 32] |= (1 << (pos % 32)); /* XXX: we might be able to just do this instead, * but not sure, needs testing, if we do use this we'd * neet to inform below to not reset the mcast */ /* ath5k_hw_set_mcast_filterindex(ah, * mclist->dmi_addr[5]); */ mclist = mclist->next; } } /* This is the best we can do */ if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)) rfilt |= AR5K_RX_FILTER_PHYERR; /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons * and probes for any BSSID, this needs testing */ if (*new_flags & FIF_BCN_PRBRESP_PROMISC) rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ; /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not * set we should only pass on control frames for this * station. This needs testing. I believe right now this * enables *all* control frames, which is OK.. but * but we should see if we can improve on granularity */ if (*new_flags & FIF_CONTROL) rfilt |= AR5K_RX_FILTER_CONTROL; /* Additional settings per mode -- this is per ath5k */ /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */ if (sc->opmode == IEEE80211_IF_TYPE_MNTR) rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM; if (sc->opmode != IEEE80211_IF_TYPE_STA) rfilt |= AR5K_RX_FILTER_PROBEREQ; if (sc->opmode != IEEE80211_IF_TYPE_AP && test_bit(ATH_STAT_PROMISC, sc->status)) rfilt |= AR5K_RX_FILTER_PROM; if (sc->opmode == IEEE80211_IF_TYPE_STA || sc->opmode == IEEE80211_IF_TYPE_IBSS) { rfilt |= AR5K_RX_FILTER_BEACON; } /* Set filters */ ath5k_hw_set_rx_filter(ah,rfilt); /* Set multicast bits */ ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]); /* Set the cached hw filter flags, this will alter actually * be set in HW */ sc->filter_flags = rfilt; } static int ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, const u8 *local_addr, const u8 *addr, struct ieee80211_key_conf *key) { struct ath5k_softc *sc = hw->priv; int ret = 0; switch(key->alg) { case ALG_WEP: break; case ALG_TKIP: case ALG_CCMP: return -EOPNOTSUPP; default: WARN_ON(1); return -EINVAL; } mutex_lock(&sc->lock); switch (cmd) { case SET_KEY: ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr); if (ret) { ATH5K_ERR(sc, "can't set the key\n"); goto unlock; } __set_bit(key->keyidx, sc->keymap); key->hw_key_idx = key->keyidx; break; case DISABLE_KEY: ath5k_hw_reset_key(sc->ah, key->keyidx); __clear_bit(key->keyidx, sc->keymap); break; default: ret = -EINVAL; goto unlock; } unlock: mutex_unlock(&sc->lock); return ret; } static int ath5k_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct ath5k_softc *sc = hw->priv; memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats)); return 0; } static int ath5k_get_tx_stats(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats) { struct ath5k_softc *sc = hw->priv; memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats)); return 0; } static u64 ath5k_get_tsf(struct ieee80211_hw *hw) { struct ath5k_softc *sc = hw->priv; return ath5k_hw_get_tsf64(sc->ah); } static void ath5k_reset_tsf(struct ieee80211_hw *hw) { struct ath5k_softc *sc = hw->priv; /* * in IBSS mode we need to update the beacon timers too. * this will also reset the TSF if we call it with 0 */ if (sc->opmode == IEEE80211_IF_TYPE_IBSS) ath5k_beacon_update_timers(sc, 0); else ath5k_hw_reset_tsf(sc->ah); } static int ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *ctl) { struct ath5k_softc *sc = hw->priv; int ret; ath5k_debug_dump_skb(sc, skb, "BC ", 1); mutex_lock(&sc->lock); if (sc->opmode != IEEE80211_IF_TYPE_IBSS) { ret = -EIO; goto end; } ath5k_txbuf_free(sc, sc->bbuf); sc->bbuf->skb = skb; ret = ath5k_beacon_setup(sc, sc->bbuf, ctl); if (ret) sc->bbuf->skb = NULL; else ath5k_beacon_config(sc); end: mutex_unlock(&sc->lock); return ret; }