/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* mac80211 and PCI callbacks */ #include #include "core.h" #define ATH_PCI_VERSION "0.1" static char *dev_info = "ath9k"; MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static struct pci_device_id ath_pci_id_table[] __devinitdata = { { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */ { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */ { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */ { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */ { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */ { 0 } }; static int ath_get_channel(struct ath_softc *sc, struct ieee80211_channel *chan) { int i; for (i = 0; i < sc->sc_ah->ah_nchan; i++) { if (sc->sc_ah->ah_channels[i].channel == chan->center_freq) return i; } return -1; } static u32 ath_get_extchanmode(struct ath_softc *sc, struct ieee80211_channel *chan) { u32 chanmode = 0; u8 ext_chan_offset = sc->sc_ht_info.ext_chan_offset; enum ath9k_ht_macmode tx_chan_width = sc->sc_ht_info.tx_chan_width; switch (chan->band) { case IEEE80211_BAND_2GHZ: if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_NONE) && (tx_chan_width == ATH9K_HT_MACMODE_20)) chanmode = CHANNEL_G_HT20; if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE) && (tx_chan_width == ATH9K_HT_MACMODE_2040)) chanmode = CHANNEL_G_HT40PLUS; if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW) && (tx_chan_width == ATH9K_HT_MACMODE_2040)) chanmode = CHANNEL_G_HT40MINUS; break; case IEEE80211_BAND_5GHZ: if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_NONE) && (tx_chan_width == ATH9K_HT_MACMODE_20)) chanmode = CHANNEL_A_HT20; if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE) && (tx_chan_width == ATH9K_HT_MACMODE_2040)) chanmode = CHANNEL_A_HT40PLUS; if ((ext_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW) && (tx_chan_width == ATH9K_HT_MACMODE_2040)) chanmode = CHANNEL_A_HT40MINUS; break; default: break; } return chanmode; } static int ath_setkey_tkip(struct ath_softc *sc, struct ieee80211_key_conf *key, struct ath9k_keyval *hk, const u8 *addr) { u8 *key_rxmic = NULL; u8 *key_txmic = NULL; key_txmic = key->key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY; key_rxmic = key->key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY; if (addr == NULL) { /* Group key installation */ memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); return ath_keyset(sc, key->keyidx, hk, addr); } if (!sc->sc_splitmic) { /* * data key goes at first index, * the hal handles the MIC keys at index+64. */ memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic)); return ath_keyset(sc, key->keyidx, hk, addr); } /* * TX key goes at first index, RX key at +32. * The hal handles the MIC keys at index+64. */ memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); if (!ath_keyset(sc, key->keyidx, hk, NULL)) { /* Txmic entry failed. No need to proceed further */ DPRINTF(sc, ATH_DBG_KEYCACHE, "%s Setting TX MIC Key Failed\n", __func__); return 0; } memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); /* XXX delete tx key on failure? */ return ath_keyset(sc, key->keyidx+32, hk, addr); } static int ath_key_config(struct ath_softc *sc, const u8 *addr, struct ieee80211_key_conf *key) { struct ieee80211_vif *vif; struct ath9k_keyval hk; const u8 *mac = NULL; int ret = 0; enum nl80211_iftype opmode; memset(&hk, 0, sizeof(hk)); switch (key->alg) { case ALG_WEP: hk.kv_type = ATH9K_CIPHER_WEP; break; case ALG_TKIP: hk.kv_type = ATH9K_CIPHER_TKIP; break; case ALG_CCMP: hk.kv_type = ATH9K_CIPHER_AES_CCM; break; default: return -EINVAL; } hk.kv_len = key->keylen; memcpy(hk.kv_val, key->key, key->keylen); if (!sc->sc_vaps[0]) return -EIO; vif = sc->sc_vaps[0]; opmode = vif->type; /* * Strategy: * For _M_STA mc tx, we will not setup a key at all since we never * tx mc. * _M_STA mc rx, we will use the keyID. * for _M_IBSS mc tx, we will use the keyID, and no macaddr. * for _M_IBSS mc rx, we will alloc a slot and plumb the mac of the * peer node. BUT we will plumb a cleartext key so that we can do * perSta default key table lookup in software. */ if (is_broadcast_ether_addr(addr)) { switch (opmode) { case NL80211_IFTYPE_STATION: /* default key: could be group WPA key * or could be static WEP key */ mac = NULL; break; case NL80211_IFTYPE_ADHOC: break; case NL80211_IFTYPE_AP: break; default: ASSERT(0); break; } } else { mac = addr; } if (key->alg == ALG_TKIP) ret = ath_setkey_tkip(sc, key, &hk, mac); else ret = ath_keyset(sc, key->keyidx, &hk, mac); if (!ret) return -EIO; return 0; } static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key) { int freeslot; freeslot = (key->keyidx >= 4) ? 1 : 0; ath_key_reset(sc, key->keyidx, freeslot); } static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info) { #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */ #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */ ht_info->ht_supported = true; ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SM_PS | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40; ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536; ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8; /* set up supported mcs set */ memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); ht_info->mcs.rx_mask[0] = 0xff; ht_info->mcs.rx_mask[1] = 0xff; ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; } static int ath_rate2idx(struct ath_softc *sc, int rate) { int i = 0, cur_band, n_rates; struct ieee80211_hw *hw = sc->hw; cur_band = hw->conf.channel->band; n_rates = sc->sbands[cur_band].n_bitrates; for (i = 0; i < n_rates; i++) { if (sc->sbands[cur_band].bitrates[i].bitrate == rate) break; } /* * NB:mac80211 validates rx rate index against the supported legacy rate * index only (should be done against ht rates also), return the highest * legacy rate index for rx rate which does not match any one of the * supported basic and extended rates to make mac80211 happy. * The following hack will be cleaned up once the issue with * the rx rate index validation in mac80211 is fixed. */ if (i == n_rates) return n_rates - 1; return i; } static void ath9k_rx_prepare(struct ath_softc *sc, struct sk_buff *skb, struct ath_recv_status *status, struct ieee80211_rx_status *rx_status) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_channel *curchan = hw->conf.channel; memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); rx_status->mactime = status->tsf; rx_status->band = curchan->band; rx_status->freq = curchan->center_freq; rx_status->noise = sc->sc_ani.sc_noise_floor; rx_status->signal = rx_status->noise + status->rssi; rx_status->rate_idx = ath_rate2idx(sc, (status->rateKbps / 100)); rx_status->antenna = status->antenna; /* at 45 you will be able to use MCS 15 reliably. A more elaborate * scheme can be used here but it requires tables of SNR/throughput for * each possible mode used. */ rx_status->qual = status->rssi * 100 / 45; /* rssi can be more than 45 though, anything above that * should be considered at 100% */ if (rx_status->qual > 100) rx_status->qual = 100; if (status->flags & ATH_RX_MIC_ERROR) rx_status->flag |= RX_FLAG_MMIC_ERROR; if (status->flags & ATH_RX_FCS_ERROR) rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; rx_status->flag |= RX_FLAG_TSFT; } static void ath9k_ht_conf(struct ath_softc *sc, struct ieee80211_bss_conf *bss_conf) { struct ath_ht_info *ht_info = &sc->sc_ht_info; if (sc->hw->conf.ht.enabled) { ht_info->ext_chan_offset = bss_conf->ht.secondary_channel_offset; if (bss_conf->ht.width_40_ok) ht_info->tx_chan_width = ATH9K_HT_MACMODE_2040; else ht_info->tx_chan_width = ATH9K_HT_MACMODE_20; ath9k_hw_set11nmac2040(sc->sc_ah, ht_info->tx_chan_width); } } static void ath9k_bss_assoc_info(struct ath_softc *sc, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_channel *curchan = hw->conf.channel; struct ath_vap *avp = (void *)vif->drv_priv; int pos; if (bss_conf->assoc) { DPRINTF(sc, ATH_DBG_CONFIG, "%s: Bss Info ASSOC %d\n", __func__, bss_conf->aid); /* New association, store aid */ if (avp->av_opmode == ATH9K_M_STA) { sc->sc_curaid = bss_conf->aid; ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid, sc->sc_curaid); } /* Configure the beacon */ ath_beacon_config(sc, 0); sc->sc_flags |= SC_OP_BEACONS; /* Reset rssi stats */ sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER; /* Update chainmask */ ath_update_chainmask(sc, hw->conf.ht.enabled); DPRINTF(sc, ATH_DBG_CONFIG, "%s: bssid %pM aid 0x%x\n", __func__, sc->sc_curbssid, sc->sc_curaid); DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n", __func__, curchan->center_freq); pos = ath_get_channel(sc, curchan); if (pos == -1) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__); return; } if (hw->conf.ht.enabled) sc->sc_ah->ah_channels[pos].chanmode = ath_get_extchanmode(sc, curchan); else sc->sc_ah->ah_channels[pos].chanmode = (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A; /* set h/w channel */ if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to set channel\n", __func__); ath_rate_newstate(sc, avp); /* Update ratectrl about the new state */ ath_rc_node_update(hw, avp->rc_node); /* Start ANI */ mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); } else { DPRINTF(sc, ATH_DBG_CONFIG, "%s: Bss Info DISSOC\n", __func__); sc->sc_curaid = 0; } } void ath_get_beaconconfig(struct ath_softc *sc, int if_id, struct ath_beacon_config *conf) { struct ieee80211_hw *hw = sc->hw; /* fill in beacon config data */ conf->beacon_interval = hw->conf.beacon_int; conf->listen_interval = 100; conf->dtim_count = 1; conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval; } void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, struct ath_xmit_status *tx_status) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); DPRINTF(sc, ATH_DBG_XMIT, "%s: TX complete: skb: %p\n", __func__, skb); ieee80211_tx_info_clear_status(tx_info); if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK || tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) { /* free driver's private data area of tx_info, XXX: HACK! */ if (tx_info->control.vif != NULL) kfree(tx_info->control.vif); tx_info->control.vif = NULL; } if (tx_status->flags & ATH_TX_BAR) { tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; tx_status->flags &= ~ATH_TX_BAR; } if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { /* Frame was ACKed */ tx_info->flags |= IEEE80211_TX_STAT_ACK; } tx_info->status.rates[0].count = tx_status->retries + 1; ieee80211_tx_status(hw, skb); } int _ath_rx_indicate(struct ath_softc *sc, struct sk_buff *skb, struct ath_recv_status *status, u16 keyix) { struct ieee80211_hw *hw = sc->hw; struct ath_node *an = NULL; struct ieee80211_rx_status rx_status; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; int hdrlen = ieee80211_get_hdrlen_from_skb(skb); int padsize; enum ATH_RX_TYPE st; /* see if any padding is done by the hw and remove it */ if (hdrlen & 3) { padsize = hdrlen % 4; memmove(skb->data + padsize, skb->data, hdrlen); skb_pull(skb, padsize); } /* Prepare rx status */ ath9k_rx_prepare(sc, skb, status, &rx_status); if (!(keyix == ATH9K_RXKEYIX_INVALID) && !(status->flags & ATH_RX_DECRYPT_ERROR)) { rx_status.flag |= RX_FLAG_DECRYPTED; } else if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) && !(status->flags & ATH_RX_DECRYPT_ERROR) && skb->len >= hdrlen + 4) { keyix = skb->data[hdrlen + 3] >> 6; if (test_bit(keyix, sc->sc_keymap)) rx_status.flag |= RX_FLAG_DECRYPTED; } if (an) { ath_rx_input(sc, an, skb, status, &st); } if (!an || (st != ATH_RX_CONSUMED)) __ieee80211_rx(hw, skb, &rx_status); return 0; } int ath_rx_subframe(struct ath_node *an, struct sk_buff *skb, struct ath_recv_status *status) { struct ath_softc *sc = an->an_sc; struct ieee80211_hw *hw = sc->hw; struct ieee80211_rx_status rx_status; /* Prepare rx status */ ath9k_rx_prepare(sc, skb, status, &rx_status); if (!(status->flags & ATH_RX_DECRYPT_ERROR)) rx_status.flag |= RX_FLAG_DECRYPTED; __ieee80211_rx(hw, skb, &rx_status); return 0; } /********************************/ /* LED functions */ /********************************/ static void ath_led_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev); struct ath_softc *sc = led->sc; switch (brightness) { case LED_OFF: if (led->led_type == ATH_LED_ASSOC || led->led_type == ATH_LED_RADIO) sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, (led->led_type == ATH_LED_RADIO) ? 1 : !!(sc->sc_flags & SC_OP_LED_ASSOCIATED)); break; case LED_FULL: if (led->led_type == ATH_LED_ASSOC) sc->sc_flags |= SC_OP_LED_ASSOCIATED; ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0); break; default: break; } } static int ath_register_led(struct ath_softc *sc, struct ath_led *led, char *trigger) { int ret; led->sc = sc; led->led_cdev.name = led->name; led->led_cdev.default_trigger = trigger; led->led_cdev.brightness_set = ath_led_brightness; ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev); if (ret) DPRINTF(sc, ATH_DBG_FATAL, "Failed to register led:%s", led->name); else led->registered = 1; return ret; } static void ath_unregister_led(struct ath_led *led) { if (led->registered) { led_classdev_unregister(&led->led_cdev); led->registered = 0; } } static void ath_deinit_leds(struct ath_softc *sc) { ath_unregister_led(&sc->assoc_led); sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; ath_unregister_led(&sc->tx_led); ath_unregister_led(&sc->rx_led); ath_unregister_led(&sc->radio_led); ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); } static void ath_init_leds(struct ath_softc *sc) { char *trigger; int ret; /* Configure gpio 1 for output */ ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); /* LED off, active low */ ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); trigger = ieee80211_get_radio_led_name(sc->hw); snprintf(sc->radio_led.name, sizeof(sc->radio_led.name), "ath9k-%s:radio", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->radio_led, trigger); sc->radio_led.led_type = ATH_LED_RADIO; if (ret) goto fail; trigger = ieee80211_get_assoc_led_name(sc->hw); snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name), "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->assoc_led, trigger); sc->assoc_led.led_type = ATH_LED_ASSOC; if (ret) goto fail; trigger = ieee80211_get_tx_led_name(sc->hw); snprintf(sc->tx_led.name, sizeof(sc->tx_led.name), "ath9k-%s:tx", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->tx_led, trigger); sc->tx_led.led_type = ATH_LED_TX; if (ret) goto fail; trigger = ieee80211_get_rx_led_name(sc->hw); snprintf(sc->rx_led.name, sizeof(sc->rx_led.name), "ath9k-%s:rx", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->rx_led, trigger); sc->rx_led.led_type = ATH_LED_RX; if (ret) goto fail; return; fail: ath_deinit_leds(sc); } #ifdef CONFIG_RFKILL /*******************/ /* Rfkill */ /*******************/ static void ath_radio_enable(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; int status; spin_lock_bh(&sc->sc_resetlock); if (!ath9k_hw_reset(ah, ah->ah_curchan, sc->sc_ht_info.tx_chan_width, sc->sc_tx_chainmask, sc->sc_rx_chainmask, sc->sc_ht_extprotspacing, false, &status)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to reset channel %u (%uMhz) " "flags 0x%x hal status %u\n", __func__, ath9k_hw_mhz2ieee(ah, ah->ah_curchan->channel, ah->ah_curchan->channelFlags), ah->ah_curchan->channel, ah->ah_curchan->channelFlags, status); } spin_unlock_bh(&sc->sc_resetlock); ath_update_txpow(sc); if (ath_startrecv(sc) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to restart recv logic\n", __func__); return; } if (sc->sc_flags & SC_OP_BEACONS) ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */ /* Re-Enable interrupts */ ath9k_hw_set_interrupts(ah, sc->sc_imask); /* Enable LED */ ath9k_hw_cfg_output(ah, ATH_LED_PIN, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0); ieee80211_wake_queues(sc->hw); } static void ath_radio_disable(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; int status; ieee80211_stop_queues(sc->hw); /* Disable LED */ ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1); ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN); /* Disable interrupts */ ath9k_hw_set_interrupts(ah, 0); ath_draintxq(sc, false); /* clear pending tx frames */ ath_stoprecv(sc); /* turn off frame recv */ ath_flushrecv(sc); /* flush recv queue */ spin_lock_bh(&sc->sc_resetlock); if (!ath9k_hw_reset(ah, ah->ah_curchan, sc->sc_ht_info.tx_chan_width, sc->sc_tx_chainmask, sc->sc_rx_chainmask, sc->sc_ht_extprotspacing, false, &status)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to reset channel %u (%uMhz) " "flags 0x%x hal status %u\n", __func__, ath9k_hw_mhz2ieee(ah, ah->ah_curchan->channel, ah->ah_curchan->channelFlags), ah->ah_curchan->channel, ah->ah_curchan->channelFlags, status); } spin_unlock_bh(&sc->sc_resetlock); ath9k_hw_phy_disable(ah); ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); } static bool ath_is_rfkill_set(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) == ah->ah_rfkill_polarity; } /* h/w rfkill poll function */ static void ath_rfkill_poll(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, rf_kill.rfkill_poll.work); bool radio_on; if (sc->sc_flags & SC_OP_INVALID) return; radio_on = !ath_is_rfkill_set(sc); /* * enable/disable radio only when there is a * state change in RF switch */ if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) { enum rfkill_state state; if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) { state = radio_on ? RFKILL_STATE_SOFT_BLOCKED : RFKILL_STATE_HARD_BLOCKED; } else if (radio_on) { ath_radio_enable(sc); state = RFKILL_STATE_UNBLOCKED; } else { ath_radio_disable(sc); state = RFKILL_STATE_HARD_BLOCKED; } if (state == RFKILL_STATE_HARD_BLOCKED) sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED; else sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED; rfkill_force_state(sc->rf_kill.rfkill, state); } queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll, msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL)); } /* s/w rfkill handler */ static int ath_sw_toggle_radio(void *data, enum rfkill_state state) { struct ath_softc *sc = data; switch (state) { case RFKILL_STATE_SOFT_BLOCKED: if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED | SC_OP_RFKILL_SW_BLOCKED))) ath_radio_disable(sc); sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED; return 0; case RFKILL_STATE_UNBLOCKED: if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) { sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED; if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) { DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the" "radio as it is disabled by h/w \n"); return -EPERM; } ath_radio_enable(sc); } return 0; default: return -EINVAL; } } /* Init s/w rfkill */ static int ath_init_sw_rfkill(struct ath_softc *sc) { sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy), RFKILL_TYPE_WLAN); if (!sc->rf_kill.rfkill) { DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n"); return -ENOMEM; } snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name), "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy)); sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name; sc->rf_kill.rfkill->data = sc; sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio; sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED; sc->rf_kill.rfkill->user_claim_unsupported = 1; return 0; } /* Deinitialize rfkill */ static void ath_deinit_rfkill(struct ath_softc *sc) { if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll); if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) { rfkill_unregister(sc->rf_kill.rfkill); sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED; sc->rf_kill.rfkill = NULL; } } static int ath_start_rfkill_poll(struct ath_softc *sc) { if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll, 0); if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) { if (rfkill_register(sc->rf_kill.rfkill)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to register rfkill\n"); rfkill_free(sc->rf_kill.rfkill); /* Deinitialize the device */ if (sc->pdev->irq) free_irq(sc->pdev->irq, sc); ath_detach(sc); pci_iounmap(sc->pdev, sc->mem); pci_release_region(sc->pdev, 0); pci_disable_device(sc->pdev); ieee80211_free_hw(hw); return -EIO; } else { sc->sc_flags |= SC_OP_RFKILL_REGISTERED; } } return 0; } #endif /* CONFIG_RFKILL */ static void ath_detach(struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; int i = 0; DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach ATH hw\n", __func__); ieee80211_unregister_hw(hw); ath_deinit_leds(sc); #ifdef CONFIG_RFKILL ath_deinit_rfkill(sc); #endif ath_rate_control_unregister(); ath_rate_detach(sc->sc_rc); ath_rx_cleanup(sc); ath_tx_cleanup(sc); tasklet_kill(&sc->intr_tq); tasklet_kill(&sc->bcon_tasklet); if (!(sc->sc_flags & SC_OP_INVALID)) ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->sc_txq[i]); ath9k_hw_detach(sc->sc_ah); } static int ath_attach(u16 devid, struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; int error = 0; DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach ATH hw\n", __func__); error = ath_init(devid, sc); if (error != 0) return error; /* get mac address from hardware and set in mac80211 */ SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr); hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_AMPDU_AGGREGATION; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); hw->queues = 4; hw->sta_data_size = sizeof(struct ath_node); hw->vif_data_size = sizeof(struct ath_vap); /* Register rate control */ hw->rate_control_algorithm = "ath9k_rate_control"; error = ath_rate_control_register(); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to register rate control " "algorithm:%d\n", __func__, error); ath_rate_control_unregister(); goto bad; } if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) { setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap); if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap); } hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ]; if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &sc->sbands[IEEE80211_BAND_5GHZ]; error = ieee80211_register_hw(hw); if (error != 0) { ath_rate_control_unregister(); goto bad; } /* Initialize LED control */ ath_init_leds(sc); #ifdef CONFIG_RFKILL /* Initialze h/w Rfkill */ if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll); /* Initialize s/w rfkill */ if (ath_init_sw_rfkill(sc)) goto detach; #endif /* initialize tx/rx engine */ error = ath_tx_init(sc, ATH_TXBUF); if (error != 0) goto detach; error = ath_rx_init(sc, ATH_RXBUF); if (error != 0) goto detach; return 0; detach: ath_detach(sc); bad: return error; } static int ath9k_start(struct ieee80211_hw *hw) { struct ath_softc *sc = hw->priv; struct ieee80211_channel *curchan = hw->conf.channel; int error = 0, pos; DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with " "initial channel: %d MHz\n", __func__, curchan->center_freq); /* setup initial channel */ pos = ath_get_channel(sc, curchan); if (pos == -1) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__); error = -EINVAL; goto exit; } sc->sc_ah->ah_channels[pos].chanmode = (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A; error = ath_open(sc, &sc->sc_ah->ah_channels[pos]); if (error) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to complete ath_open\n", __func__); goto exit; } #ifdef CONFIG_RFKILL error = ath_start_rfkill_poll(sc); #endif exit: return error; } static int ath9k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath_softc *sc = hw->priv; struct ath_tx_control txctl; int hdrlen, padsize; memset(&txctl, 0, sizeof(struct ath_tx_control)); /* * As a temporary workaround, assign seq# here; this will likely need * to be cleaned up to work better with Beacon transmission and virtual * BSSes. */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) sc->seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(sc->seq_no); } /* Add the padding after the header if this is not already done */ hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (hdrlen & 3) { padsize = hdrlen % 4; if (skb_headroom(skb) < padsize) return -1; skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, hdrlen); } /* Check if a tx queue is available */ txctl.txq = ath_test_get_txq(sc, skb); if (!txctl.txq) goto exit; DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting packet, skb: %p\n", __func__, skb); if (ath_tx_start(sc, skb, &txctl) != 0) { DPRINTF(sc, ATH_DBG_XMIT, "%s: TX failed\n", __func__); goto exit; } return 0; exit: dev_kfree_skb_any(skb); return 0; } static void ath9k_stop(struct ieee80211_hw *hw) { struct ath_softc *sc = hw->priv; if (sc->sc_flags & SC_OP_INVALID) { DPRINTF(sc, ATH_DBG_ANY, "%s: Device not present\n", __func__); return; } ath_stop(sc); DPRINTF(sc, ATH_DBG_CONFIG, "%s: Driver halt\n", __func__); } static int ath9k_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct ath_softc *sc = hw->priv; struct ath_vap *avp = (void *)conf->vif->drv_priv; int ic_opmode = 0; /* Support only vap for now */ if (sc->sc_nvaps) return -ENOBUFS; switch (conf->type) { case NL80211_IFTYPE_STATION: ic_opmode = ATH9K_M_STA; break; case NL80211_IFTYPE_ADHOC: ic_opmode = ATH9K_M_IBSS; break; case NL80211_IFTYPE_AP: ic_opmode = ATH9K_M_HOSTAP; break; default: DPRINTF(sc, ATH_DBG_FATAL, "%s: Interface type %d not yet supported\n", __func__, conf->type); return -EOPNOTSUPP; } DPRINTF(sc, ATH_DBG_CONFIG, "%s: Attach a VAP of type: %d\n", __func__, ic_opmode); /* Set the VAP opmode */ avp->av_opmode = ic_opmode; avp->av_bslot = -1; if (ic_opmode == ATH9K_M_HOSTAP) ath9k_hw_set_tsfadjust(sc->sc_ah, 1); sc->sc_vaps[0] = conf->vif; sc->sc_nvaps++; /* Set the device opmode */ sc->sc_ah->ah_opmode = ic_opmode; /* default VAP configuration */ avp->av_config.av_fixed_rateset = IEEE80211_FIXED_RATE_NONE; avp->av_config.av_fixed_retryset = 0x03030303; if (conf->type == NL80211_IFTYPE_AP) { /* TODO: is this a suitable place to start ANI for AP mode? */ /* Start ANI */ mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); } return 0; } static void ath9k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct ath_softc *sc = hw->priv; struct ath_vap *avp = (void *)conf->vif->drv_priv; DPRINTF(sc, ATH_DBG_CONFIG, "%s: Detach VAP\n", __func__); #ifdef CONFIG_SLOW_ANT_DIV ath_slow_ant_div_stop(&sc->sc_antdiv); #endif /* Stop ANI */ del_timer_sync(&sc->sc_ani.timer); /* Reclaim beacon resources */ if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP || sc->sc_ah->ah_opmode == ATH9K_M_IBSS) { ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); ath_beacon_return(sc, avp); } sc->sc_flags &= ~SC_OP_BEACONS; sc->sc_vaps[0] = NULL; sc->sc_nvaps--; } static int ath9k_config(struct ieee80211_hw *hw, u32 changed) { struct ath_softc *sc = hw->priv; struct ieee80211_channel *curchan = hw->conf.channel; struct ieee80211_conf *conf = &hw->conf; int pos; DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n", __func__, curchan->center_freq); /* Update chainmask */ ath_update_chainmask(sc, conf->ht.enabled); pos = ath_get_channel(sc, curchan); if (pos == -1) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__); return -EINVAL; } sc->sc_ah->ah_channels[pos].chanmode = (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A; if (sc->sc_curaid && hw->conf.ht.enabled) sc->sc_ah->ah_channels[pos].chanmode = ath_get_extchanmode(sc, curchan); if (changed & IEEE80211_CONF_CHANGE_POWER) sc->sc_config.txpowlimit = 2 * conf->power_level; /* set h/w channel */ if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to set channel\n", __func__); return 0; } static int ath9k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf) { struct ath_softc *sc = hw->priv; struct ath_hal *ah = sc->sc_ah; struct ath_vap *avp = (void *)vif->drv_priv; u32 rfilt = 0; int error, i; /* TODO: Need to decide which hw opmode to use for multi-interface * cases */ if (vif->type == NL80211_IFTYPE_AP && ah->ah_opmode != ATH9K_M_HOSTAP) { ah->ah_opmode = ATH9K_M_HOSTAP; ath9k_hw_setopmode(ah); ath9k_hw_write_associd(ah, sc->sc_myaddr, 0); /* Request full reset to get hw opmode changed properly */ sc->sc_flags |= SC_OP_FULL_RESET; } if ((conf->changed & IEEE80211_IFCC_BSSID) && !is_zero_ether_addr(conf->bssid)) { switch (vif->type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: /* Update ratectrl about the new state */ ath_rate_newstate(sc, avp); /* Set BSSID */ memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN); sc->sc_curaid = 0; ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid, sc->sc_curaid); /* Set aggregation protection mode parameters */ sc->sc_config.ath_aggr_prot = 0; /* Disable BMISS interrupt when we're not associated */ ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask & ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS)); sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS); DPRINTF(sc, ATH_DBG_CONFIG, "%s: RX filter 0x%x bssid %pM aid 0x%x\n", __func__, rfilt, sc->sc_curbssid, sc->sc_curaid); /* need to reconfigure the beacon */ sc->sc_flags &= ~SC_OP_BEACONS ; break; default: break; } } if ((conf->changed & IEEE80211_IFCC_BEACON) && ((vif->type == NL80211_IFTYPE_ADHOC) || (vif->type == NL80211_IFTYPE_AP))) { /* * Allocate and setup the beacon frame. * * Stop any previous beacon DMA. This may be * necessary, for example, when an ibss merge * causes reconfiguration; we may be called * with beacon transmission active. */ ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); error = ath_beacon_alloc(sc, 0); if (error != 0) return error; ath_beacon_sync(sc, 0); } /* Check for WLAN_CAPABILITY_PRIVACY ? */ if ((avp->av_opmode != ATH9K_M_STA)) { for (i = 0; i < IEEE80211_WEP_NKID; i++) if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i)) ath9k_hw_keysetmac(sc->sc_ah, (u16)i, sc->sc_curbssid); } /* Only legacy IBSS for now */ if (vif->type == NL80211_IFTYPE_ADHOC) ath_update_chainmask(sc, 0); return 0; } #define SUPPORTED_FILTERS \ (FIF_PROMISC_IN_BSS | \ FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_FCSFAIL) /* FIXME: sc->sc_full_reset ? */ static void ath9k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_mc_list *mclist) { struct ath_softc *sc = hw->priv; u32 rfilt; changed_flags &= SUPPORTED_FILTERS; *total_flags &= SUPPORTED_FILTERS; sc->rx_filter = *total_flags; rfilt = ath_calcrxfilter(sc); ath9k_hw_setrxfilter(sc->sc_ah, rfilt); if (changed_flags & FIF_BCN_PRBRESP_PROMISC) { if (*total_flags & FIF_BCN_PRBRESP_PROMISC) ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0); } DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set HW RX filter: 0x%x\n", __func__, sc->rx_filter); } static void ath9k_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { struct ath_softc *sc = hw->priv; switch (cmd) { case STA_NOTIFY_ADD: ath_node_attach(sc, sta); break; case STA_NOTIFY_REMOVE: ath_node_detach(sc, sta); break; default: break; } } static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params) { struct ath_softc *sc = hw->priv; struct ath9k_tx_queue_info qi; int ret = 0, qnum; if (queue >= WME_NUM_AC) return 0; qi.tqi_aifs = params->aifs; qi.tqi_cwmin = params->cw_min; qi.tqi_cwmax = params->cw_max; qi.tqi_burstTime = params->txop; qnum = ath_get_hal_qnum(queue, sc); DPRINTF(sc, ATH_DBG_CONFIG, "%s: Configure tx [queue/halq] [%d/%d], " "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n", __func__, queue, qnum, params->aifs, params->cw_min, params->cw_max, params->txop); ret = ath_txq_update(sc, qnum, &qi); if (ret) DPRINTF(sc, ATH_DBG_FATAL, "%s: TXQ Update failed\n", __func__); return ret; } static int ath9k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, const u8 *local_addr, const u8 *addr, struct ieee80211_key_conf *key) { struct ath_softc *sc = hw->priv; int ret = 0; DPRINTF(sc, ATH_DBG_KEYCACHE, " %s: Set HW Key\n", __func__); switch (cmd) { case SET_KEY: ret = ath_key_config(sc, addr, key); if (!ret) { set_bit(key->keyidx, sc->sc_keymap); key->hw_key_idx = key->keyidx; /* push IV and Michael MIC generation to stack */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; if (key->alg == ALG_TKIP) key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; } break; case DISABLE_KEY: ath_key_delete(sc, key); clear_bit(key->keyidx, sc->sc_keymap); break; default: ret = -EINVAL; } return ret; } static void ath9k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changed) { struct ath_softc *sc = hw->priv; if (changed & BSS_CHANGED_ERP_PREAMBLE) { DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed PREAMBLE %d\n", __func__, bss_conf->use_short_preamble); if (bss_conf->use_short_preamble) sc->sc_flags |= SC_OP_PREAMBLE_SHORT; else sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT; } if (changed & BSS_CHANGED_ERP_CTS_PROT) { DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed CTS PROT %d\n", __func__, bss_conf->use_cts_prot); if (bss_conf->use_cts_prot && hw->conf.channel->band != IEEE80211_BAND_5GHZ) sc->sc_flags |= SC_OP_PROTECT_ENABLE; else sc->sc_flags &= ~SC_OP_PROTECT_ENABLE; } if (changed & BSS_CHANGED_HT) { DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed HT\n", __func__); ath9k_ht_conf(sc, bss_conf); } if (changed & BSS_CHANGED_ASSOC) { DPRINTF(sc, ATH_DBG_CONFIG, "%s: BSS Changed ASSOC %d\n", __func__, bss_conf->assoc); ath9k_bss_assoc_info(sc, vif, bss_conf); } } static u64 ath9k_get_tsf(struct ieee80211_hw *hw) { u64 tsf; struct ath_softc *sc = hw->priv; struct ath_hal *ah = sc->sc_ah; tsf = ath9k_hw_gettsf64(ah); return tsf; } static void ath9k_reset_tsf(struct ieee80211_hw *hw) { struct ath_softc *sc = hw->priv; struct ath_hal *ah = sc->sc_ah; ath9k_hw_reset_tsf(ah); } static int ath9k_ampdu_action(struct ieee80211_hw *hw, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ath_softc *sc = hw->priv; int ret = 0; switch (action) { case IEEE80211_AMPDU_RX_START: ret = ath_rx_aggr_start(sc, sta, tid, ssn); if (ret < 0) DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to start RX aggregation\n", __func__); break; case IEEE80211_AMPDU_RX_STOP: ret = ath_rx_aggr_stop(sc, sta, tid); if (ret < 0) DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to stop RX aggregation\n", __func__); break; case IEEE80211_AMPDU_TX_START: ret = ath_tx_aggr_start(sc, sta, tid, ssn); if (ret < 0) DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to start TX aggregation\n", __func__); else ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid); break; case IEEE80211_AMPDU_TX_STOP: ret = ath_tx_aggr_stop(sc, sta, tid); if (ret < 0) DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to stop TX aggregation\n", __func__); ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid); break; default: DPRINTF(sc, ATH_DBG_FATAL, "%s: Unknown AMPDU action\n", __func__); } return ret; } static int ath9k_no_fragmentation(struct ieee80211_hw *hw, u32 value) { return -EOPNOTSUPP; } static struct ieee80211_ops ath9k_ops = { .tx = ath9k_tx, .start = ath9k_start, .stop = ath9k_stop, .add_interface = ath9k_add_interface, .remove_interface = ath9k_remove_interface, .config = ath9k_config, .config_interface = ath9k_config_interface, .configure_filter = ath9k_configure_filter, .sta_notify = ath9k_sta_notify, .conf_tx = ath9k_conf_tx, .bss_info_changed = ath9k_bss_info_changed, .set_key = ath9k_set_key, .get_tsf = ath9k_get_tsf, .reset_tsf = ath9k_reset_tsf, .ampdu_action = ath9k_ampdu_action, .set_frag_threshold = ath9k_no_fragmentation, }; static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { void __iomem *mem; struct ath_softc *sc; struct ieee80211_hw *hw; const char *athname; u8 csz; u32 val; int ret = 0; if (pci_enable_device(pdev)) return -EIO; /* XXX 32-bit addressing only */ if (pci_set_dma_mask(pdev, 0xffffffff)) { printk(KERN_ERR "ath_pci: 32-bit DMA not available\n"); ret = -ENODEV; goto bad; } /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz); if (csz == 0) { /* * Linux 2.4.18 (at least) writes the cache line size * register as a 16-bit wide register which is wrong. * We must have this setup properly for rx buffer * DMA to work so force a reasonable value here if it * comes up zero. */ csz = L1_CACHE_BYTES / sizeof(u32); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz); } /* * The default setting of latency timer yields poor results, * set it to the value used by other systems. It may be worth * tweaking this setting more. */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8); pci_set_master(pdev); /* * Disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state. */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); ret = pci_request_region(pdev, 0, "ath9k"); if (ret) { dev_err(&pdev->dev, "PCI memory region reserve error\n"); ret = -ENODEV; goto bad; } mem = pci_iomap(pdev, 0, 0); if (!mem) { printk(KERN_ERR "PCI memory map error\n") ; ret = -EIO; goto bad1; } hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops); if (hw == NULL) { printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n"); goto bad2; } SET_IEEE80211_DEV(hw, &pdev->dev); pci_set_drvdata(pdev, hw); sc = hw->priv; sc->hw = hw; sc->pdev = pdev; sc->mem = mem; if (ath_attach(id->device, sc) != 0) { ret = -ENODEV; goto bad3; } /* setup interrupt service routine */ if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) { printk(KERN_ERR "%s: request_irq failed\n", wiphy_name(hw->wiphy)); ret = -EIO; goto bad4; } athname = ath9k_hw_probe(id->vendor, id->device); printk(KERN_INFO "%s: %s: mem=0x%lx, irq=%d\n", wiphy_name(hw->wiphy), athname ? athname : "Atheros ???", (unsigned long)mem, pdev->irq); return 0; bad4: ath_detach(sc); bad3: ieee80211_free_hw(hw); bad2: pci_iounmap(pdev, mem); bad1: pci_release_region(pdev, 0); bad: pci_disable_device(pdev); return ret; } static void ath_pci_remove(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct ath_softc *sc = hw->priv; ath_detach(sc); if (pdev->irq) free_irq(pdev->irq, sc); pci_iounmap(pdev, sc->mem); pci_release_region(pdev, 0); pci_disable_device(pdev); ieee80211_free_hw(hw); } #ifdef CONFIG_PM static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct ath_softc *sc = hw->priv; ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); #ifdef CONFIG_RFKILL if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll); #endif pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, 3); return 0; } static int ath_pci_resume(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct ath_softc *sc = hw->priv; u32 val; int err; err = pci_enable_device(pdev); if (err) return err; pci_restore_state(pdev); /* * Suspend/Resume resets the PCI configuration space, so we have to * re-disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); /* Enable LED */ ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); #ifdef CONFIG_RFKILL /* * check the h/w rfkill state on resume * and start the rfkill poll timer */ if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll, 0); #endif return 0; } #endif /* CONFIG_PM */ MODULE_DEVICE_TABLE(pci, ath_pci_id_table); static struct pci_driver ath_pci_driver = { .name = "ath9k", .id_table = ath_pci_id_table, .probe = ath_pci_probe, .remove = ath_pci_remove, #ifdef CONFIG_PM .suspend = ath_pci_suspend, .resume = ath_pci_resume, #endif /* CONFIG_PM */ }; static int __init init_ath_pci(void) { printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION); if (pci_register_driver(&ath_pci_driver) < 0) { printk(KERN_ERR "ath_pci: No devices found, driver not installed.\n"); pci_unregister_driver(&ath_pci_driver); return -ENODEV; } return 0; } module_init(init_ath_pci); static void __exit exit_ath_pci(void) { pci_unregister_driver(&ath_pci_driver); printk(KERN_INFO "%s: driver unloaded\n", dev_info); } module_exit(exit_ath_pci);