/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" #define BITS_PER_BYTE 8 #define OFDM_PLCP_BITS 22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) #define L_STF 8 #define L_LTF 8 #define L_SIG 4 #define HT_SIG 8 #define HT_STF 4 #define HT_LTF(_ns) (4 * (_ns)) #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) #define OFDM_SIFS_TIME 16 static u32 bits_per_symbol[][2] = { /* 20MHz 40MHz */ { 26, 54 }, /* 0: BPSK */ { 52, 108 }, /* 1: QPSK 1/2 */ { 78, 162 }, /* 2: QPSK 3/4 */ { 104, 216 }, /* 3: 16-QAM 1/2 */ { 156, 324 }, /* 4: 16-QAM 3/4 */ { 208, 432 }, /* 5: 64-QAM 2/3 */ { 234, 486 }, /* 6: 64-QAM 3/4 */ { 260, 540 }, /* 7: 64-QAM 5/6 */ { 52, 108 }, /* 8: BPSK */ { 104, 216 }, /* 9: QPSK 1/2 */ { 156, 324 }, /* 10: QPSK 3/4 */ { 208, 432 }, /* 11: 16-QAM 1/2 */ { 312, 648 }, /* 12: 16-QAM 3/4 */ { 416, 864 }, /* 13: 64-QAM 2/3 */ { 468, 972 }, /* 14: 64-QAM 3/4 */ { 520, 1080 }, /* 15: 64-QAM 5/6 */ }; #define IS_HT_RATE(_rate) ((_rate) & 0x80) static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_head); static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct list_head *bf_q, int txok, int sendbar); static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head); static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf); static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf, int txok); static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad, int txok, bool update_rc); /*********************/ /* Aggregation logic */ /*********************/ static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno) { struct ath_atx_tid *tid; tid = ATH_AN_2_TID(an, tidno); if (tid->state & AGGR_ADDBA_COMPLETE || tid->state & AGGR_ADDBA_PROGRESS) return 1; else return 0; } static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_atx_ac *ac = tid->ac; if (tid->paused) return; if (tid->sched) return; tid->sched = true; list_add_tail(&tid->list, &ac->tid_q); if (ac->sched) return; ac->sched = true; list_add_tail(&ac->list, &txq->axq_acq); } static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; spin_lock_bh(&txq->axq_lock); tid->paused++; spin_unlock_bh(&txq->axq_lock); } static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; ASSERT(tid->paused > 0); spin_lock_bh(&txq->axq_lock); tid->paused--; if (tid->paused > 0) goto unlock; if (list_empty(&tid->buf_q)) goto unlock; ath_tx_queue_tid(txq, tid); ath_txq_schedule(sc, txq); unlock: spin_unlock_bh(&txq->axq_lock); } static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; struct ath_buf *bf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); ASSERT(tid->paused > 0); spin_lock_bh(&txq->axq_lock); tid->paused--; if (tid->paused > 0) { spin_unlock_bh(&txq->axq_lock); return; } while (!list_empty(&tid->buf_q)) { bf = list_first_entry(&tid->buf_q, struct ath_buf, list); ASSERT(!bf_isretried(bf)); list_move_tail(&bf->list, &bf_head); ath_tx_send_ht_normal(sc, txq, tid, &bf_head); } spin_unlock_bh(&txq->axq_lock); } static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, int seqno) { int index, cindex; index = ATH_BA_INDEX(tid->seq_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); tid->tx_buf[cindex] = NULL; while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { INCR(tid->seq_start, IEEE80211_SEQ_MAX); INCR(tid->baw_head, ATH_TID_MAX_BUFS); } } static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf) { int index, cindex; if (bf_isretried(bf)) return; index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); ASSERT(tid->tx_buf[cindex] == NULL); tid->tx_buf[cindex] = bf; if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) { tid->baw_tail = cindex; INCR(tid->baw_tail, ATH_TID_MAX_BUFS); } } /* * TODO: For frame(s) that are in the retry state, we will reuse the * sequence number(s) without setting the retry bit. The * alternative is to give up on these and BAR the receiver's window * forward. */ static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_buf *bf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); for (;;) { if (list_empty(&tid->buf_q)) break; bf = list_first_entry(&tid->buf_q, struct ath_buf, list); list_move_tail(&bf->list, &bf_head); if (bf_isretried(bf)) ath_tx_update_baw(sc, tid, bf->bf_seqno); spin_unlock(&txq->axq_lock); ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); spin_lock(&txq->axq_lock); } tid->seq_next = tid->seq_start; tid->baw_tail = tid->baw_head; } static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) { struct sk_buff *skb; struct ieee80211_hdr *hdr; bf->bf_state.bf_type |= BUF_RETRY; bf->bf_retries++; skb = bf->bf_mpdu; hdr = (struct ieee80211_hdr *)skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); } static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) { struct ath_buf *tbf; spin_lock_bh(&sc->tx.txbuflock); ASSERT(!list_empty((&sc->tx.txbuf))); tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); list_del(&tbf->list); spin_unlock_bh(&sc->tx.txbuflock); ATH_TXBUF_RESET(tbf); tbf->bf_mpdu = bf->bf_mpdu; tbf->bf_buf_addr = bf->bf_buf_addr; *(tbf->bf_desc) = *(bf->bf_desc); tbf->bf_state = bf->bf_state; tbf->bf_dmacontext = bf->bf_dmacontext; return tbf; } static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf, struct list_head *bf_q, int txok) { struct ath_node *an = NULL; struct sk_buff *skb; struct ieee80211_sta *sta; struct ieee80211_hdr *hdr; struct ath_atx_tid *tid = NULL; struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; struct ath_desc *ds = bf_last->bf_desc; struct list_head bf_head, bf_pending; u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; bool rc_update = true; skb = bf->bf_mpdu; hdr = (struct ieee80211_hdr *)skb->data; rcu_read_lock(); sta = ieee80211_find_sta(sc->hw, hdr->addr1); if (!sta) { rcu_read_unlock(); return; } an = (struct ath_node *)sta->drv_priv; tid = ATH_AN_2_TID(an, bf->bf_tidno); isaggr = bf_isaggr(bf); memset(ba, 0, WME_BA_BMP_SIZE >> 3); if (isaggr && txok) { if (ATH_DS_TX_BA(ds)) { seq_st = ATH_DS_BA_SEQ(ds); memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); } else { /* * AR5416 can become deaf/mute when BA * issue happens. Chip needs to be reset. * But AP code may have sychronization issues * when perform internal reset in this routine. * Only enable reset in STA mode for now. */ if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) needreset = 1; } } INIT_LIST_HEAD(&bf_pending); INIT_LIST_HEAD(&bf_head); nbad = ath_tx_num_badfrms(sc, bf, txok); while (bf) { txfail = txpending = 0; bf_next = bf->bf_next; if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { /* transmit completion, subframe is * acked by block ack */ acked_cnt++; } else if (!isaggr && txok) { /* transmit completion */ acked_cnt++; } else { if (!(tid->state & AGGR_CLEANUP) && ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { if (bf->bf_retries < ATH_MAX_SW_RETRIES) { ath_tx_set_retry(sc, bf); txpending = 1; } else { bf->bf_state.bf_type |= BUF_XRETRY; txfail = 1; sendbar = 1; txfail_cnt++; } } else { /* * cleanup in progress, just fail * the un-acked sub-frames */ txfail = 1; } } if (bf_next == NULL) { INIT_LIST_HEAD(&bf_head); } else { ASSERT(!list_empty(bf_q)); list_move_tail(&bf->list, &bf_head); } if (!txpending) { /* * complete the acked-ones/xretried ones; update * block-ack window */ spin_lock_bh(&txq->axq_lock); ath_tx_update_baw(sc, tid, bf->bf_seqno); spin_unlock_bh(&txq->axq_lock); if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { ath_tx_rc_status(bf, ds, nbad, txok, true); rc_update = false; } else { ath_tx_rc_status(bf, ds, nbad, txok, false); } ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); } else { /* retry the un-acked ones */ if (bf->bf_next == NULL && bf_last->bf_status & ATH_BUFSTATUS_STALE) { struct ath_buf *tbf; tbf = ath_clone_txbuf(sc, bf_last); ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc); list_add_tail(&tbf->list, &bf_head); } else { /* * Clear descriptor status words for * software retry */ ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc); } /* * Put this buffer to the temporary pending * queue to retain ordering */ list_splice_tail_init(&bf_head, &bf_pending); } bf = bf_next; } if (tid->state & AGGR_CLEANUP) { if (tid->baw_head == tid->baw_tail) { tid->state &= ~AGGR_ADDBA_COMPLETE; tid->addba_exchangeattempts = 0; tid->state &= ~AGGR_CLEANUP; /* send buffered frames as singles */ ath_tx_flush_tid(sc, tid); } rcu_read_unlock(); return; } /* prepend un-acked frames to the beginning of the pending frame queue */ if (!list_empty(&bf_pending)) { spin_lock_bh(&txq->axq_lock); list_splice(&bf_pending, &tid->buf_q); ath_tx_queue_tid(txq, tid); spin_unlock_bh(&txq->axq_lock); } rcu_read_unlock(); if (needreset) ath_reset(sc, false); } static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, struct ath_atx_tid *tid) { struct ath_rate_table *rate_table = sc->cur_rate_table; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; struct ath_tx_info_priv *tx_info_priv; u32 max_4ms_framelen, frmlen; u16 aggr_limit, legacy = 0, maxampdu; int i; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = tx_info->control.rates; tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0]; /* * Find the lowest frame length among the rate series that will have a * 4ms transmit duration. * TODO - TXOP limit needs to be considered. */ max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; for (i = 0; i < 4; i++) { if (rates[i].count) { if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) { legacy = 1; break; } frmlen = rate_table->info[rates[i].idx].max_4ms_framelen; max_4ms_framelen = min(max_4ms_framelen, frmlen); } } /* * limit aggregate size by the minimum rate if rate selected is * not a probe rate, if rate selected is a probe rate then * avoid aggregation of this packet. */ if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) return 0; aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_DEFAULT); /* * h/w can accept aggregates upto 16 bit lengths (65535). * The IE, however can hold upto 65536, which shows up here * as zero. Ignore 65536 since we are constrained by hw. */ maxampdu = tid->an->maxampdu; if (maxampdu) aggr_limit = min(aggr_limit, maxampdu); return aggr_limit; } /* * Returns the number of delimiters to be added to * meet the minimum required mpdudensity. * caller should make sure that the rate is HT rate . */ static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf, u16 frmlen) { struct ath_rate_table *rt = sc->cur_rate_table; struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); u32 nsymbits, nsymbols, mpdudensity; u16 minlen; u8 rc, flags, rix; int width, half_gi, ndelim, mindelim; /* Select standard number of delimiters based on frame length alone */ ndelim = ATH_AGGR_GET_NDELIM(frmlen); /* * If encryption enabled, hardware requires some more padding between * subframes. * TODO - this could be improved to be dependent on the rate. * The hardware can keep up at lower rates, but not higher rates */ if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) ndelim += ATH_AGGR_ENCRYPTDELIM; /* * Convert desired mpdu density from microeconds to bytes based * on highest rate in rate series (i.e. first rate) to determine * required minimum length for subframe. Take into account * whether high rate is 20 or 40Mhz and half or full GI. */ mpdudensity = tid->an->mpdudensity; /* * If there is no mpdu density restriction, no further calculation * is needed. */ if (mpdudensity == 0) return ndelim; rix = tx_info->control.rates[0].idx; flags = tx_info->control.rates[0].flags; rc = rt->info[rix].ratecode; width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; if (half_gi) nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); else nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); if (nsymbols == 0) nsymbols = 1; nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; if (frmlen < minlen) { mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; ndelim = max(mindelim, ndelim); } return ndelim; } static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, struct ath_atx_tid *tid, struct list_head *bf_q) { #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) struct ath_buf *bf, *bf_first, *bf_prev = NULL; int rl = 0, nframes = 0, ndelim, prev_al = 0; u16 aggr_limit = 0, al = 0, bpad = 0, al_delta, h_baw = tid->baw_size / 2; enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); do { bf = list_first_entry(&tid->buf_q, struct ath_buf, list); /* do not step over block-ack window */ if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { status = ATH_AGGR_BAW_CLOSED; break; } if (!rl) { aggr_limit = ath_lookup_rate(sc, bf, tid); rl = 1; } /* do not exceed aggregation limit */ al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; if (nframes && (aggr_limit < (al + bpad + al_delta + prev_al))) { status = ATH_AGGR_LIMITED; break; } /* do not exceed subframe limit */ if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { status = ATH_AGGR_LIMITED; break; } nframes++; /* add padding for previous frame to aggregation length */ al += bpad + al_delta; /* * Get the delimiters needed to meet the MPDU * density for this node. */ ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen); bpad = PADBYTES(al_delta) + (ndelim << 2); bf->bf_next = NULL; bf->bf_desc->ds_link = 0; /* link buffers of this frame to the aggregate */ ath_tx_addto_baw(sc, tid, bf); ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim); list_move_tail(&bf->list, bf_q); if (bf_prev) { bf_prev->bf_next = bf; bf_prev->bf_desc->ds_link = bf->bf_daddr; } bf_prev = bf; } while (!list_empty(&tid->buf_q)); bf_first->bf_al = al; bf_first->bf_nframes = nframes; return status; #undef PADBYTES } static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_buf *bf; enum ATH_AGGR_STATUS status; struct list_head bf_q; do { if (list_empty(&tid->buf_q)) return; INIT_LIST_HEAD(&bf_q); status = ath_tx_form_aggr(sc, tid, &bf_q); /* * no frames picked up to be aggregated; * block-ack window is not open. */ if (list_empty(&bf_q)) break; bf = list_first_entry(&bf_q, struct ath_buf, list); bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); /* if only one frame, send as non-aggregate */ if (bf->bf_nframes == 1) { bf->bf_state.bf_type &= ~BUF_AGGR; ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc); ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txq, &bf_q); continue; } /* setup first desc of aggregate */ bf->bf_state.bf_type |= BUF_AGGR; ath_buf_set_rate(sc, bf); ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); /* anchor last desc of aggregate */ ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc); txq->axq_aggr_depth++; ath_tx_txqaddbuf(sc, txq, &bf_q); } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && status != ATH_AGGR_BAW_CLOSED); } int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ath_atx_tid *txtid; struct ath_node *an; an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) { txtid = ATH_AN_2_TID(an, tid); txtid->state |= AGGR_ADDBA_PROGRESS; ath_tx_pause_tid(sc, txtid); *ssn = txtid->seq_start; } return 0; } int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) { struct ath_node *an = (struct ath_node *)sta->drv_priv; struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum]; struct ath_buf *bf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); if (txtid->state & AGGR_CLEANUP) return 0; if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { txtid->addba_exchangeattempts = 0; return 0; } ath_tx_pause_tid(sc, txtid); /* drop all software retried frames and mark this TID */ spin_lock_bh(&txq->axq_lock); while (!list_empty(&txtid->buf_q)) { bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); if (!bf_isretried(bf)) { /* * NB: it's based on the assumption that * software retried frame will always stay * at the head of software queue. */ break; } list_move_tail(&bf->list, &bf_head); ath_tx_update_baw(sc, txtid, bf->bf_seqno); ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); } spin_unlock_bh(&txq->axq_lock); if (txtid->baw_head != txtid->baw_tail) { txtid->state |= AGGR_CLEANUP; } else { txtid->state &= ~AGGR_ADDBA_COMPLETE; txtid->addba_exchangeattempts = 0; ath_tx_flush_tid(sc, txtid); } return 0; } void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) { struct ath_atx_tid *txtid; struct ath_node *an; an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) { txtid = ATH_AN_2_TID(an, tid); txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; txtid->state |= AGGR_ADDBA_COMPLETE; txtid->state &= ~AGGR_ADDBA_PROGRESS; ath_tx_resume_tid(sc, txtid); } } bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno) { struct ath_atx_tid *txtid; if (!(sc->sc_flags & SC_OP_TXAGGR)) return false; txtid = ATH_AN_2_TID(an, tidno); if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { if (!(txtid->state & AGGR_ADDBA_PROGRESS) && (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { txtid->addba_exchangeattempts++; return true; } } return false; } /********************/ /* Queue Management */ /********************/ static void ath_txq_drain_pending_buffers(struct ath_softc *sc, struct ath_txq *txq) { struct ath_atx_ac *ac, *ac_tmp; struct ath_atx_tid *tid, *tid_tmp; list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { list_del(&ac->list); ac->sched = false; list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { list_del(&tid->list); tid->sched = false; ath_tid_drain(sc, txq, tid); } } } struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) { struct ath_hw *ah = sc->sc_ah; struct ath9k_tx_queue_info qi; int qnum; memset(&qi, 0, sizeof(qi)); qi.tqi_subtype = subtype; qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; qi.tqi_physCompBuf = 0; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise waiting for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. * * The UAPSD queue is an exception, since we take a desc- * based intr on the EOSP frames. */ if (qtype == ATH9K_TX_QUEUE_UAPSD) qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; else qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); if (qnum == -1) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return NULL; } if (qnum >= ARRAY_SIZE(sc->tx.txq)) { DPRINTF(sc, ATH_DBG_FATAL, "qnum %u out of range, max %u!\n", qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq)); ath9k_hw_releasetxqueue(ah, qnum); return NULL; } if (!ATH_TXQ_SETUP(sc, qnum)) { struct ath_txq *txq = &sc->tx.txq[qnum]; txq->axq_qnum = qnum; txq->axq_link = NULL; INIT_LIST_HEAD(&txq->axq_q); INIT_LIST_HEAD(&txq->axq_acq); spin_lock_init(&txq->axq_lock); txq->axq_depth = 0; txq->axq_aggr_depth = 0; txq->axq_totalqueued = 0; txq->axq_linkbuf = NULL; sc->tx.txqsetup |= 1<tx.txq[qnum]; } static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) { int qnum; switch (qtype) { case ATH9K_TX_QUEUE_DATA: if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) { DPRINTF(sc, ATH_DBG_FATAL, "HAL AC %u out of range, max %zu!\n", haltype, ARRAY_SIZE(sc->tx.hwq_map)); return -1; } qnum = sc->tx.hwq_map[haltype]; break; case ATH9K_TX_QUEUE_BEACON: qnum = sc->beacon.beaconq; break; case ATH9K_TX_QUEUE_CAB: qnum = sc->beacon.cabq->axq_qnum; break; default: qnum = -1; } return qnum; } struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb) { struct ath_txq *txq = NULL; int qnum; qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); txq = &sc->tx.txq[qnum]; spin_lock_bh(&txq->axq_lock); if (txq->axq_depth >= (ATH_TXBUF - 20)) { DPRINTF(sc, ATH_DBG_XMIT, "TX queue: %d is full, depth: %d\n", qnum, txq->axq_depth); ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb)); txq->stopped = 1; spin_unlock_bh(&txq->axq_lock); return NULL; } spin_unlock_bh(&txq->axq_lock); return txq; } int ath_txq_update(struct ath_softc *sc, int qnum, struct ath9k_tx_queue_info *qinfo) { struct ath_hw *ah = sc->sc_ah; int error = 0; struct ath9k_tx_queue_info qi; if (qnum == sc->beacon.beaconq) { /* * XXX: for beacon queue, we just save the parameter. * It will be picked up by ath_beaconq_config when * it's necessary. */ sc->beacon.beacon_qi = *qinfo; return 0; } ASSERT(sc->tx.txq[qnum].axq_qnum == qnum); ath9k_hw_get_txq_props(ah, qnum, &qi); qi.tqi_aifs = qinfo->tqi_aifs; qi.tqi_cwmin = qinfo->tqi_cwmin; qi.tqi_cwmax = qinfo->tqi_cwmax; qi.tqi_burstTime = qinfo->tqi_burstTime; qi.tqi_readyTime = qinfo->tqi_readyTime; if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to update hardware queue %u!\n", qnum); error = -EIO; } else { ath9k_hw_resettxqueue(ah, qnum); } return error; } int ath_cabq_update(struct ath_softc *sc) { struct ath9k_tx_queue_info qi; int qnum = sc->beacon.cabq->axq_qnum; ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); /* * Ensure the readytime % is within the bounds. */ if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; qi.tqi_readyTime = (sc->hw->conf.beacon_int * sc->config.cabqReadytime) / 100; ath_txq_update(sc, qnum, &qi); return 0; } /* * Drain a given TX queue (could be Beacon or Data) * * This assumes output has been stopped and * we do not need to block ath_tx_tasklet. */ void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) { struct ath_buf *bf, *lastbf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); for (;;) { spin_lock_bh(&txq->axq_lock); if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; txq->axq_linkbuf = NULL; spin_unlock_bh(&txq->axq_lock); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); if (bf->bf_status & ATH_BUFSTATUS_STALE) { list_del(&bf->list); spin_unlock_bh(&txq->axq_lock); spin_lock_bh(&sc->tx.txbuflock); list_add_tail(&bf->list, &sc->tx.txbuf); spin_unlock_bh(&sc->tx.txbuflock); continue; } lastbf = bf->bf_lastbf; if (!retry_tx) lastbf->bf_desc->ds_txstat.ts_flags = ATH9K_TX_SW_ABORTED; /* remove ath_buf's of the same mpdu from txq */ list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); txq->axq_depth--; spin_unlock_bh(&txq->axq_lock); if (bf_isampdu(bf)) ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0); else ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); } /* flush any pending frames if aggregation is enabled */ if (sc->sc_flags & SC_OP_TXAGGR) { if (!retry_tx) { spin_lock_bh(&txq->axq_lock); ath_txq_drain_pending_buffers(sc, txq); spin_unlock_bh(&txq->axq_lock); } } } void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) { struct ath_hw *ah = sc->sc_ah; struct ath_txq *txq; int i, npend = 0; if (sc->sc_flags & SC_OP_INVALID) return; /* Stop beacon queue */ ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); /* Stop data queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { txq = &sc->tx.txq[i]; ath9k_hw_stoptxdma(ah, txq->axq_qnum); npend += ath9k_hw_numtxpending(ah, txq->axq_qnum); } } if (npend) { int r; DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n"); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, sc->sc_ah->curchan, true); if (r) DPRINTF(sc, ATH_DBG_FATAL, "Unable to reset hardware; reset status %u\n", r); spin_unlock_bh(&sc->sc_resetlock); } for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) ath_draintxq(sc, &sc->tx.txq[i], retry_tx); } } void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) { ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); sc->tx.txqsetup &= ~(1<axq_qnum); } void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) { struct ath_atx_ac *ac; struct ath_atx_tid *tid; if (list_empty(&txq->axq_acq)) return; ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); list_del(&ac->list); ac->sched = false; do { if (list_empty(&ac->tid_q)) return; tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); list_del(&tid->list); tid->sched = false; if (tid->paused) continue; if ((txq->axq_depth % 2) == 0) ath_tx_sched_aggr(sc, txq, tid); /* * add tid to round-robin queue if more frames * are pending for the tid */ if (!list_empty(&tid->buf_q)) ath_tx_queue_tid(txq, tid); break; } while (!list_empty(&ac->tid_q)); if (!list_empty(&ac->tid_q)) { if (!ac->sched) { ac->sched = true; list_add_tail(&ac->list, &txq->axq_acq); } } } int ath_tx_setup(struct ath_softc *sc, int haltype) { struct ath_txq *txq; if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) { DPRINTF(sc, ATH_DBG_FATAL, "HAL AC %u out of range, max %zu!\n", haltype, ARRAY_SIZE(sc->tx.hwq_map)); return 0; } txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); if (txq != NULL) { sc->tx.hwq_map[haltype] = txq->axq_qnum; return 1; } else return 0; } /***********/ /* TX, DMA */ /***********/ /* * Insert a chain of ath_buf (descriptors) on a txq and * assume the descriptors are already chained together by caller. */ static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head) { struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf; /* * Insert the frame on the outbound list and * pass it on to the hardware. */ if (list_empty(head)) return; bf = list_first_entry(head, struct ath_buf, list); list_splice_tail_init(head, &txq->axq_q); txq->axq_depth++; txq->axq_totalqueued++; txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); DPRINTF(sc, ATH_DBG_QUEUE, "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); if (txq->axq_link == NULL) { ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); DPRINTF(sc, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n", txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); } else { *txq->axq_link = bf->bf_daddr; DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n", txq->axq_qnum, txq->axq_link, ito64(bf->bf_daddr), bf->bf_desc); } txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); ath9k_hw_txstart(ah, txq->axq_qnum); } static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) { struct ath_buf *bf = NULL; spin_lock_bh(&sc->tx.txbuflock); if (unlikely(list_empty(&sc->tx.txbuf))) { spin_unlock_bh(&sc->tx.txbuflock); return NULL; } bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); list_del(&bf->list); spin_unlock_bh(&sc->tx.txbuflock); return bf; } static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, struct list_head *bf_head, struct ath_tx_control *txctl) { struct ath_buf *bf; bf = list_first_entry(bf_head, struct ath_buf, list); bf->bf_state.bf_type |= BUF_AMPDU; /* * Do not queue to h/w when any of the following conditions is true: * - there are pending frames in software queue * - the TID is currently paused for ADDBA/BAR request * - seqno is not within block-ack window * - h/w queue depth exceeds low water mark */ if (!list_empty(&tid->buf_q) || tid->paused || !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { /* * Add this frame to software queue for scheduling later * for aggregation. */ list_move_tail(&bf->list, &tid->buf_q); ath_tx_queue_tid(txctl->txq, tid); return; } /* Add sub-frame to BAW */ ath_tx_addto_baw(sc, tid, bf); /* Queue to h/w without aggregation */ bf->bf_nframes = 1; bf->bf_lastbf = bf; ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txctl->txq, bf_head); } static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_head) { struct ath_buf *bf; bf = list_first_entry(bf_head, struct ath_buf, list); bf->bf_state.bf_type &= ~BUF_AMPDU; /* update starting sequence number for subsequent ADDBA request */ INCR(tid->seq_start, IEEE80211_SEQ_MAX); bf->bf_nframes = 1; bf->bf_lastbf = bf; ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txq, bf_head); } static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, struct list_head *bf_head) { struct ath_buf *bf; bf = list_first_entry(bf_head, struct ath_buf, list); bf->bf_lastbf = bf; bf->bf_nframes = 1; ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txq, bf_head); } static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) { struct ieee80211_hdr *hdr; enum ath9k_pkt_type htype; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_beacon(fc)) htype = ATH9K_PKT_TYPE_BEACON; else if (ieee80211_is_probe_resp(fc)) htype = ATH9K_PKT_TYPE_PROBE_RESP; else if (ieee80211_is_atim(fc)) htype = ATH9K_PKT_TYPE_ATIM; else if (ieee80211_is_pspoll(fc)) htype = ATH9K_PKT_TYPE_PSPOLL; else htype = ATH9K_PKT_TYPE_NORMAL; return htype; } static bool is_pae(struct sk_buff *skb) { struct ieee80211_hdr *hdr; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_data(fc)) { if (ieee80211_is_nullfunc(fc) || /* Port Access Entity (IEEE 802.1X) */ (skb->protocol == cpu_to_be16(ETH_P_PAE))) { return true; } } return false; } static int get_hw_crypto_keytype(struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); if (tx_info->control.hw_key) { if (tx_info->control.hw_key->alg == ALG_WEP) return ATH9K_KEY_TYPE_WEP; else if (tx_info->control.hw_key->alg == ALG_TKIP) return ATH9K_KEY_TYPE_TKIP; else if (tx_info->control.hw_key->alg == ALG_CCMP) return ATH9K_KEY_TYPE_AES; } return ATH9K_KEY_TYPE_CLEAR; } static void assign_aggr_tid_seqno(struct sk_buff *skb, struct ath_buf *bf) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ath_node *an; struct ath_atx_tid *tid; __le16 fc; u8 *qc; if (!tx_info->control.sta) return; an = (struct ath_node *)tx_info->control.sta->drv_priv; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_data_qos(fc)) { qc = ieee80211_get_qos_ctl(hdr); bf->bf_tidno = qc[0] & 0xf; } /* * For HT capable stations, we save tidno for later use. * We also override seqno set by upper layer with the one * in tx aggregation state. * * If fragmentation is on, the sequence number is * not overridden, since it has been * incremented by the fragmentation routine. * * FIXME: check if the fragmentation threshold exceeds * IEEE80211 max. */ tid = ATH_AN_2_TID(an, bf->bf_tidno); hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); bf->bf_seqno = tid->seq_next; INCR(tid->seq_next, IEEE80211_SEQ_MAX); } static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb, struct ath_txq *txq) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); int flags = 0; flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */ flags |= ATH9K_TXDESC_INTREQ; if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) flags |= ATH9K_TXDESC_NOACK; return flags; } /* * rix - rate index * pktlen - total bytes (delims + data + fcs + pads + pad delims) * width - 0 for 20 MHz, 1 for 40 MHz * half_gi - to use 4us v/s 3.6 us for symbol time */ static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf, int width, int half_gi, bool shortPreamble) { struct ath_rate_table *rate_table = sc->cur_rate_table; u32 nbits, nsymbits, duration, nsymbols; u8 rc; int streams, pktlen; pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen; rc = rate_table->info[rix].ratecode; /* for legacy rates, use old function to compute packet duration */ if (!IS_HT_RATE(rc)) return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen, rix, shortPreamble); /* find number of symbols: PLCP + data */ nbits = (pktlen << 3) + OFDM_PLCP_BITS; nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; nsymbols = (nbits + nsymbits - 1) / nsymbits; if (!half_gi) duration = SYMBOL_TIME(nsymbols); else duration = SYMBOL_TIME_HALFGI(nsymbols); /* addup duration for legacy/ht training and signal fields */ streams = HT_RC_2_STREAMS(rc); duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); return duration; } static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) { struct ath_rate_table *rt = sc->cur_rate_table; struct ath9k_11n_rate_series series[4]; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; struct ieee80211_hdr *hdr; int i, flags = 0; u8 rix = 0, ctsrate = 0; bool is_pspoll; memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = tx_info->control.rates; hdr = (struct ieee80211_hdr *)skb->data; is_pspoll = ieee80211_is_pspoll(hdr->frame_control); /* * We check if Short Preamble is needed for the CTS rate by * checking the BSS's global flag. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. */ if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode | rt->info[tx_info->control.rts_cts_rate_idx].short_preamble; else ctsrate = rt->info[tx_info->control.rts_cts_rate_idx].ratecode; /* * ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. * Check the first rate in the series to decide whether RTS/CTS * or CTS-to-self has to be used. */ if (rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) flags = ATH9K_TXDESC_CTSENA; else if (rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) flags = ATH9K_TXDESC_RTSENA; /* FIXME: Handle aggregation protection */ if (sc->config.ath_aggr_prot && (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) { flags = ATH9K_TXDESC_RTSENA; } /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit)) flags &= ~(ATH9K_TXDESC_RTSENA); for (i = 0; i < 4; i++) { if (!rates[i].count || (rates[i].idx < 0)) continue; rix = rates[i].idx; series[i].Tries = rates[i].count; series[i].ChSel = sc->tx_chainmask; if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) series[i].Rate = rt->info[rix].ratecode | rt->info[rix].short_preamble; else series[i].Rate = rt->info[rix].ratecode; if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) series[i].RateFlags |= ATH9K_RATESERIES_2040; if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) series[i].RateFlags |= ATH9K_RATESERIES_HALFGI; series[i].PktDuration = ath_pkt_duration(sc, rix, bf, (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0, (rates[i].flags & IEEE80211_TX_RC_SHORT_GI), (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)); } /* set dur_update_en for l-sig computation except for PS-Poll frames */ ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc, bf->bf_lastbf->bf_desc, !is_pspoll, ctsrate, 0, series, 4, flags); if (sc->config.ath_aggr_prot && flags) ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192); } static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath_tx_info_priv *tx_info_priv; int hdrlen; __le16 fc; tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); if (unlikely(!tx_info_priv)) return -ENOMEM; tx_info->rate_driver_data[0] = tx_info_priv; tx_info_priv->aphy = aphy; tx_info_priv->frame_type = txctl->frame_type; hdrlen = ieee80211_get_hdrlen_from_skb(skb); fc = hdr->frame_control; ATH_TXBUF_RESET(bf); bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3); if (conf_is_ht(&sc->hw->conf) && !is_pae(skb)) bf->bf_state.bf_type |= BUF_HT; bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq); bf->bf_keytype = get_hw_crypto_keytype(skb); if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) { bf->bf_frmlen += tx_info->control.hw_key->icv_len; bf->bf_keyix = tx_info->control.hw_key->hw_key_idx; } else { bf->bf_keyix = ATH9K_TXKEYIX_INVALID; } if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR)) assign_aggr_tid_seqno(skb, bf); bf->bf_mpdu = skb; bf->bf_dmacontext = dma_map_single(sc->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) { bf->bf_mpdu = NULL; DPRINTF(sc, ATH_DBG_CONFIG, "dma_mapping_error() on TX\n"); return -ENOMEM; } bf->bf_buf_addr = bf->bf_dmacontext; return 0; } /* FIXME: tx power */ static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_control *txctl) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath_node *an = NULL; struct list_head bf_head; struct ath_desc *ds; struct ath_atx_tid *tid; struct ath_hw *ah = sc->sc_ah; int frm_type; __le16 fc; frm_type = get_hw_packet_type(skb); fc = hdr->frame_control; INIT_LIST_HEAD(&bf_head); list_add_tail(&bf->list, &bf_head); ds = bf->bf_desc; ds->ds_link = 0; ds->ds_data = bf->bf_buf_addr; ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER, bf->bf_keyix, bf->bf_keytype, bf->bf_flags); ath9k_hw_filltxdesc(ah, ds, skb->len, /* segment length */ true, /* first segment */ true, /* last segment */ ds); /* first descriptor */ spin_lock_bh(&txctl->txq->axq_lock); if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) && tx_info->control.sta) { an = (struct ath_node *)tx_info->control.sta->drv_priv; tid = ATH_AN_2_TID(an, bf->bf_tidno); if (!ieee80211_is_data_qos(fc)) { ath_tx_send_normal(sc, txctl->txq, &bf_head); goto tx_done; } if (ath_aggr_query(sc, an, bf->bf_tidno)) { /* * Try aggregation if it's a unicast data frame * and the destination is HT capable. */ ath_tx_send_ampdu(sc, tid, &bf_head, txctl); } else { /* * Send this frame as regular when ADDBA * exchange is neither complete nor pending. */ ath_tx_send_ht_normal(sc, txctl->txq, tid, &bf_head); } } else { ath_tx_send_normal(sc, txctl->txq, &bf_head); } tx_done: spin_unlock_bh(&txctl->txq->axq_lock); } /* Upon failure caller should free skb */ int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_buf *bf; int r; bf = ath_tx_get_buffer(sc); if (!bf) { DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n"); return -1; } r = ath_tx_setup_buffer(hw, bf, skb, txctl); if (unlikely(r)) { struct ath_txq *txq = txctl->txq; DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n"); /* upon ath_tx_processq() this TX queue will be resumed, we * guarantee this will happen by knowing beforehand that * we will at least have to run TX completionon one buffer * on the queue */ spin_lock_bh(&txq->axq_lock); if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) { ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb)); txq->stopped = 1; } spin_unlock_bh(&txq->axq_lock); spin_lock_bh(&sc->tx.txbuflock); list_add_tail(&bf->list, &sc->tx.txbuf); spin_unlock_bh(&sc->tx.txbuflock); return r; } ath_tx_start_dma(sc, bf, txctl); return 0; } void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; int hdrlen, padsize; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath_tx_control txctl; memset(&txctl, 0, sizeof(struct ath_tx_control)); /* * As a temporary workaround, assign seq# here; this will likely need * to be cleaned up to work better with Beacon transmission and virtual * BSSes. */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) sc->tx.seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); } /* Add the padding after the header if this is not already done */ hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (hdrlen & 3) { padsize = hdrlen % 4; if (skb_headroom(skb) < padsize) { DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n"); dev_kfree_skb_any(skb); return; } skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, hdrlen); } txctl.txq = sc->beacon.cabq; DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb); if (ath_tx_start(hw, skb, &txctl) != 0) { DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n"); goto exit; } return; exit: dev_kfree_skb_any(skb); } /*****************/ /* TX Completion */ /*****************/ static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, int tx_flags) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); int hdrlen, padsize; int frame_type = ATH9K_NOT_INTERNAL; DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb); if (tx_info_priv) { hw = tx_info_priv->aphy->hw; frame_type = tx_info_priv->frame_type; } if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK || tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) { kfree(tx_info_priv); tx_info->rate_driver_data[0] = NULL; } if (tx_flags & ATH_TX_BAR) tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { /* Frame was ACKed */ tx_info->flags |= IEEE80211_TX_STAT_ACK; } hdrlen = ieee80211_get_hdrlen_from_skb(skb); padsize = hdrlen & 3; if (padsize && hdrlen >= 24) { /* * Remove MAC header padding before giving the frame back to * mac80211. */ memmove(skb->data + padsize, skb->data, hdrlen); skb_pull(skb, padsize); } if (frame_type == ATH9K_NOT_INTERNAL) ieee80211_tx_status(hw, skb); else ath9k_tx_status(hw, skb); } static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct list_head *bf_q, int txok, int sendbar) { struct sk_buff *skb = bf->bf_mpdu; unsigned long flags; int tx_flags = 0; if (sendbar) tx_flags = ATH_TX_BAR; if (!txok) { tx_flags |= ATH_TX_ERROR; if (bf_isxretried(bf)) tx_flags |= ATH_TX_XRETRY; } dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE); ath_tx_complete(sc, skb, tx_flags); /* * Return the list of ath_buf of this mpdu to free queue */ spin_lock_irqsave(&sc->tx.txbuflock, flags); list_splice_tail_init(bf_q, &sc->tx.txbuf); spin_unlock_irqrestore(&sc->tx.txbuflock, flags); } static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf, int txok) { struct ath_buf *bf_last = bf->bf_lastbf; struct ath_desc *ds = bf_last->bf_desc; u16 seq_st = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int ba_index; int nbad = 0; int isaggr = 0; if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) return 0; isaggr = bf_isaggr(bf); if (isaggr) { seq_st = ATH_DS_BA_SEQ(ds); memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); } while (bf) { ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) nbad++; bf = bf->bf_next; } return nbad; } static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad, int txok, bool update_rc) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); struct ieee80211_hw *hw = tx_info_priv->aphy->hw; u8 i, tx_rateindex; if (txok) tx_info->status.ack_signal = ds->ds_txstat.ts_rssi; tx_rateindex = ds->ds_txstat.ts_rateindex; WARN_ON(tx_rateindex >= hw->max_rates); tx_info_priv->update_rc = update_rc; if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) { if (ieee80211_is_data(hdr->frame_control)) { memcpy(&tx_info_priv->tx, &ds->ds_txstat, sizeof(tx_info_priv->tx)); tx_info_priv->n_frames = bf->bf_nframes; tx_info_priv->n_bad_frames = nbad; } } for (i = tx_rateindex + 1; i < hw->max_rates; i++) tx_info->status.rates[i].count = 0; tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1; } static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq) { int qnum; spin_lock_bh(&txq->axq_lock); if (txq->stopped && sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) { qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); if (qnum != -1) { ieee80211_wake_queue(sc->hw, qnum); txq->stopped = 0; } } spin_unlock_bh(&txq->axq_lock); } static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf, *lastbf, *bf_held = NULL; struct list_head bf_head; struct ath_desc *ds; int txok; int status; DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n", txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), txq->axq_link); for (;;) { spin_lock_bh(&txq->axq_lock); if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; txq->axq_linkbuf = NULL; spin_unlock_bh(&txq->axq_lock); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); /* * There is a race condition that a BH gets scheduled * after sw writes TxE and before hw re-load the last * descriptor to get the newly chained one. * Software must keep the last DONE descriptor as a * holding descriptor - software does so by marking * it with the STALE flag. */ bf_held = NULL; if (bf->bf_status & ATH_BUFSTATUS_STALE) { bf_held = bf; if (list_is_last(&bf_held->list, &txq->axq_q)) { txq->axq_link = NULL; txq->axq_linkbuf = NULL; spin_unlock_bh(&txq->axq_lock); /* * The holding descriptor is the last * descriptor in queue. It's safe to remove * the last holding descriptor in BH context. */ spin_lock_bh(&sc->tx.txbuflock); list_move_tail(&bf_held->list, &sc->tx.txbuf); spin_unlock_bh(&sc->tx.txbuflock); break; } else { bf = list_entry(bf_held->list.next, struct ath_buf, list); } } lastbf = bf->bf_lastbf; ds = lastbf->bf_desc; status = ath9k_hw_txprocdesc(ah, ds); if (status == -EINPROGRESS) { spin_unlock_bh(&txq->axq_lock); break; } if (bf->bf_desc == txq->axq_lastdsWithCTS) txq->axq_lastdsWithCTS = NULL; if (ds == txq->axq_gatingds) txq->axq_gatingds = NULL; /* * Remove ath_buf's of the same transmit unit from txq, * however leave the last descriptor back as the holding * descriptor for hw. */ lastbf->bf_status |= ATH_BUFSTATUS_STALE; INIT_LIST_HEAD(&bf_head); if (!list_is_singular(&lastbf->list)) list_cut_position(&bf_head, &txq->axq_q, lastbf->list.prev); txq->axq_depth--; if (bf_isaggr(bf)) txq->axq_aggr_depth--; txok = (ds->ds_txstat.ts_status == 0); spin_unlock_bh(&txq->axq_lock); if (bf_held) { spin_lock_bh(&sc->tx.txbuflock); list_move_tail(&bf_held->list, &sc->tx.txbuf); spin_unlock_bh(&sc->tx.txbuflock); } if (!bf_isampdu(bf)) { /* * This frame is sent out as a single frame. * Use hardware retry status for this frame. */ bf->bf_retries = ds->ds_txstat.ts_longretry; if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) bf->bf_state.bf_type |= BUF_XRETRY; ath_tx_rc_status(bf, ds, 0, txok, true); } if (bf_isampdu(bf)) ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok); else ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); ath_wake_mac80211_queue(sc, txq); spin_lock_bh(&txq->axq_lock); if (sc->sc_flags & SC_OP_TXAGGR) ath_txq_schedule(sc, txq); spin_unlock_bh(&txq->axq_lock); } } void ath_tx_tasklet(struct ath_softc *sc) { int i; u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) ath_tx_processq(sc, &sc->tx.txq[i]); } } /*****************/ /* Init, Cleanup */ /*****************/ int ath_tx_init(struct ath_softc *sc, int nbufs) { int error = 0; do { spin_lock_init(&sc->tx.txbuflock); error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, "tx", nbufs, 1); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate tx descriptors: %d\n", error); break; } error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, "beacon", ATH_BCBUF, 1); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate beacon descriptors: %d\n", error); break; } } while (0); if (error != 0) ath_tx_cleanup(sc); return error; } int ath_tx_cleanup(struct ath_softc *sc) { if (sc->beacon.bdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); if (sc->tx.txdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); return 0; } void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) { struct ath_atx_tid *tid; struct ath_atx_ac *ac; int tidno, acno; for (tidno = 0, tid = &an->tid[tidno]; tidno < WME_NUM_TID; tidno++, tid++) { tid->an = an; tid->tidno = tidno; tid->seq_start = tid->seq_next = 0; tid->baw_size = WME_MAX_BA; tid->baw_head = tid->baw_tail = 0; tid->sched = false; tid->paused = false; tid->state &= ~AGGR_CLEANUP; INIT_LIST_HEAD(&tid->buf_q); acno = TID_TO_WME_AC(tidno); tid->ac = &an->ac[acno]; tid->state &= ~AGGR_ADDBA_COMPLETE; tid->state &= ~AGGR_ADDBA_PROGRESS; tid->addba_exchangeattempts = 0; } for (acno = 0, ac = &an->ac[acno]; acno < WME_NUM_AC; acno++, ac++) { ac->sched = false; INIT_LIST_HEAD(&ac->tid_q); switch (acno) { case WME_AC_BE: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); break; case WME_AC_BK: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); break; case WME_AC_VI: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); break; case WME_AC_VO: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); break; } } } void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) { int i; struct ath_atx_ac *ac, *ac_tmp; struct ath_atx_tid *tid, *tid_tmp; struct ath_txq *txq; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { txq = &sc->tx.txq[i]; spin_lock(&txq->axq_lock); list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); if (tid && tid->an != an) continue; list_del(&ac->list); ac->sched = false; list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { list_del(&tid->list); tid->sched = false; ath_tid_drain(sc, txq, tid); tid->state &= ~AGGR_ADDBA_COMPLETE; tid->addba_exchangeattempts = 0; tid->state &= ~AGGR_CLEANUP; } } spin_unlock(&txq->axq_lock); } } }