/* * Copyright 1996 The Board of Trustees of The Leland Stanford * Junior University. All Rights Reserved. * * Permission to use, copy, modify, and distribute this * software and its documentation for any purpose and without * fee is hereby granted, provided that the above copyright * notice appear in all copies. Stanford University * makes no representations about the suitability of this * software for any purpose. It is provided "as is" without * express or implied warranty. * * strip.c This module implements Starmode Radio IP (STRIP) * for kernel-based devices like TTY. It interfaces between a * raw TTY, and the kernel's INET protocol layers (via DDI). * * Version: @(#)strip.c 1.3 July 1997 * * Author: Stuart Cheshire <cheshire@cs.stanford.edu> * * Fixes: v0.9 12th Feb 1996 (SC) * New byte stuffing (2+6 run-length encoding) * New watchdog timer task * New Protocol key (SIP0) * * v0.9.1 3rd March 1996 (SC) * Changed to dynamic device allocation -- no more compile * time (or boot time) limit on the number of STRIP devices. * * v0.9.2 13th March 1996 (SC) * Uses arp cache lookups (but doesn't send arp packets yet) * * v0.9.3 17th April 1996 (SC) * Fixed bug where STR_ERROR flag was getting set unneccessarily * (causing otherwise good packets to be unneccessarily dropped) * * v0.9.4 27th April 1996 (SC) * First attempt at using "&COMMAND" Starmode AT commands * * v0.9.5 29th May 1996 (SC) * First attempt at sending (unicast) ARP packets * * v0.9.6 5th June 1996 (Elliot) * Put "message level" tags in every "printk" statement * * v0.9.7 13th June 1996 (laik) * Added support for the /proc fs * * v0.9.8 July 1996 (Mema) * Added packet logging * * v1.0 November 1996 (SC) * Fixed (severe) memory leaks in the /proc fs code * Fixed race conditions in the logging code * * v1.1 January 1997 (SC) * Deleted packet logging (use tcpdump instead) * Added support for Metricom Firmware v204 features * (like message checksums) * * v1.2 January 1997 (SC) * Put portables list back in * * v1.3 July 1997 (SC) * Made STRIP driver set the radio's baud rate automatically. * It is no longer necessarily to manually set the radio's * rate permanently to 115200 -- the driver handles setting * the rate automatically. */ #ifdef MODULE static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR"; #else static const char StripVersion[] = "1.3A-STUART.CHESHIRE"; #endif #define TICKLE_TIMERS 0 #define EXT_COUNTERS 1 /************************************************************************/ /* Header files */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/bitops.h> #include <asm/system.h> #include <asm/uaccess.h> # include <linux/ctype.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/in.h> #include <linux/tty.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/if_strip.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/serial.h> #include <linux/serialP.h> #include <linux/rcupdate.h> #include <net/arp.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/time.h> #include <linux/jiffies.h> /************************************************************************/ /* Useful structures and definitions */ /* * A MetricomKey identifies the protocol being carried inside a Metricom * Starmode packet. */ typedef union { __u8 c[4]; __u32 l; } MetricomKey; /* * An IP address can be viewed as four bytes in memory (which is what it is) or as * a single 32-bit long (which is convenient for assignment, equality testing etc.) */ typedef union { __u8 b[4]; __u32 l; } IPaddr; /* * A MetricomAddressString is used to hold a printable representation of * a Metricom address. */ typedef struct { __u8 c[24]; } MetricomAddressString; /* Encapsulation can expand packet of size x to 65/64x + 1 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>" * 1 1 1-18 1 4 ? 1 * eg. <CR>*0000-1234*SIP0<encaps payload><CR> * We allow 31 bytes for the stars, the key, the address and the <CR>s */ #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L) /* * A STRIP_Header is never really sent over the radio, but making a dummy * header for internal use within the kernel that looks like an Ethernet * header makes certain other software happier. For example, tcpdump * already understands Ethernet headers. */ typedef struct { MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */ MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */ unsigned short protocol; /* The protocol type, using Ethernet codes */ } STRIP_Header; typedef struct { char c[60]; } MetricomNode; #define NODE_TABLE_SIZE 32 typedef struct { struct timeval timestamp; int num_nodes; MetricomNode node[NODE_TABLE_SIZE]; } MetricomNodeTable; enum { FALSE = 0, TRUE = 1 }; /* * Holds the radio's firmware version. */ typedef struct { char c[50]; } FirmwareVersion; /* * Holds the radio's serial number. */ typedef struct { char c[18]; } SerialNumber; /* * Holds the radio's battery voltage. */ typedef struct { char c[11]; } BatteryVoltage; typedef struct { char c[8]; } char8; enum { NoStructure = 0, /* Really old firmware */ StructuredMessages = 1, /* Parsable AT response msgs */ ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */ }; struct strip { int magic; /* * These are pointers to the malloc()ed frame buffers. */ unsigned char *rx_buff; /* buffer for received IP packet */ unsigned char *sx_buff; /* buffer for received serial data */ int sx_count; /* received serial data counter */ int sx_size; /* Serial buffer size */ unsigned char *tx_buff; /* transmitter buffer */ unsigned char *tx_head; /* pointer to next byte to XMIT */ int tx_left; /* bytes left in XMIT queue */ int tx_size; /* Serial buffer size */ /* * STRIP interface statistics. */ unsigned long rx_packets; /* inbound frames counter */ unsigned long tx_packets; /* outbound frames counter */ unsigned long rx_errors; /* Parity, etc. errors */ unsigned long tx_errors; /* Planned stuff */ unsigned long rx_dropped; /* No memory for skb */ unsigned long tx_dropped; /* When MTU change */ unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */ unsigned long pps_timer; /* Timer to determine pps */ unsigned long rx_pps_count; /* Counter to determine pps */ unsigned long tx_pps_count; /* Counter to determine pps */ unsigned long sx_pps_count; /* Counter to determine pps */ unsigned long rx_average_pps; /* rx packets per second * 8 */ unsigned long tx_average_pps; /* tx packets per second * 8 */ unsigned long sx_average_pps; /* sent packets per second * 8 */ #ifdef EXT_COUNTERS unsigned long rx_bytes; /* total received bytes */ unsigned long tx_bytes; /* total received bytes */ unsigned long rx_rbytes; /* bytes thru radio i/f */ unsigned long tx_rbytes; /* bytes thru radio i/f */ unsigned long rx_sbytes; /* tot bytes thru serial i/f */ unsigned long tx_sbytes; /* tot bytes thru serial i/f */ unsigned long rx_ebytes; /* tot stat/err bytes */ unsigned long tx_ebytes; /* tot stat/err bytes */ #endif /* * Internal variables. */ struct list_head list; /* Linked list of devices */ int discard; /* Set if serial error */ int working; /* Is radio working correctly? */ int firmware_level; /* Message structuring level */ int next_command; /* Next periodic command */ unsigned int user_baud; /* The user-selected baud rate */ int mtu; /* Our mtu (to spot changes!) */ long watchdog_doprobe; /* Next time to test the radio */ long watchdog_doreset; /* Time to do next reset */ long gratuitous_arp; /* Time to send next ARP refresh */ long arp_interval; /* Next ARP interval */ struct timer_list idle_timer; /* For periodic wakeup calls */ MetricomAddress true_dev_addr; /* True address of radio */ int manual_dev_addr; /* Hack: See note below */ FirmwareVersion firmware_version; /* The radio's firmware version */ SerialNumber serial_number; /* The radio's serial number */ BatteryVoltage battery_voltage; /* The radio's battery voltage */ /* * Other useful structures. */ struct tty_struct *tty; /* ptr to TTY structure */ struct net_device *dev; /* Our device structure */ /* * Neighbour radio records */ MetricomNodeTable portables; MetricomNodeTable poletops; }; /* * Note: manual_dev_addr hack * * It is not possible to change the hardware address of a Metricom radio, * or to send packets with a user-specified hardware source address, thus * trying to manually set a hardware source address is a questionable * thing to do. However, if the user *does* manually set the hardware * source address of a STRIP interface, then the kernel will believe it, * and use it in certain places. For example, the hardware address listed * by ifconfig will be the manual address, not the true one. * (Both addresses are listed in /proc/net/strip.) * Also, ARP packets will be sent out giving the user-specified address as * the source address, not the real address. This is dangerous, because * it means you won't receive any replies -- the ARP replies will go to * the specified address, which will be some other radio. The case where * this is useful is when that other radio is also connected to the same * machine. This allows you to connect a pair of radios to one machine, * and to use one exclusively for inbound traffic, and the other * exclusively for outbound traffic. Pretty neat, huh? * * Here's the full procedure to set this up: * * 1. "slattach" two interfaces, e.g. st0 for outgoing packets, * and st1 for incoming packets * * 2. "ifconfig" st0 (outbound radio) to have the hardware address * which is the real hardware address of st1 (inbound radio). * Now when it sends out packets, it will masquerade as st1, and * replies will be sent to that radio, which is exactly what we want. * * 3. Set the route table entry ("route add default ..." or * "route add -net ...", as appropriate) to send packets via the st0 * interface (outbound radio). Do not add any route which sends packets * out via the st1 interface -- that radio is for inbound traffic only. * * 4. "ifconfig" st1 (inbound radio) to have hardware address zero. * This tells the STRIP driver to "shut down" that interface and not * send any packets through it. In particular, it stops sending the * periodic gratuitous ARP packets that a STRIP interface normally sends. * Also, when packets arrive on that interface, it will search the * interface list to see if there is another interface who's manual * hardware address matches its own real address (i.e. st0 in this * example) and if so it will transfer ownership of the skbuff to * that interface, so that it looks to the kernel as if the packet * arrived on that interface. This is necessary because when the * kernel sends an ARP packet on st0, it expects to get a reply on * st0, and if it sees the reply come from st1 then it will ignore * it (to be accurate, it puts the entry in the ARP table, but * labelled in such a way that st0 can't use it). * * Thanks to Petros Maniatis for coming up with the idea of splitting * inbound and outbound traffic between two interfaces, which turned * out to be really easy to implement, even if it is a bit of a hack. * * Having set a manual address on an interface, you can restore it * to automatic operation (where the address is automatically kept * consistent with the real address of the radio) by setting a manual * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF" * This 'turns off' manual override mode for the device address. * * Note: The IEEE 802 headers reported in tcpdump will show the *real* * radio addresses the packets were sent and received from, so that you * can see what is really going on with packets, and which interfaces * they are really going through. */ /************************************************************************/ /* Constants */ /* * CommandString1 works on all radios * Other CommandStrings are only used with firmware that provides structured responses. * * ats319=1 Enables Info message for node additions and deletions * ats319=2 Enables Info message for a new best node * ats319=4 Enables checksums * ats319=8 Enables ACK messages */ static const int MaxCommandStringLength = 32; static const int CompatibilityCommand = 1; static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */ static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */ static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */ static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */ static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */ static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */ typedef struct { const char *string; long length; } StringDescriptor; static const StringDescriptor CommandString[] = { {CommandString0, sizeof(CommandString0) - 1}, {CommandString1, sizeof(CommandString1) - 1}, {CommandString2, sizeof(CommandString2) - 1}, {CommandString3, sizeof(CommandString3) - 1}, {CommandString4, sizeof(CommandString4) - 1}, {CommandString5, sizeof(CommandString5) - 1} }; #define GOT_ALL_RADIO_INFO(S) \ ((S)->firmware_version.c[0] && \ (S)->battery_voltage.c[0] && \ memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address))) static const char hextable[16] = "0123456789ABCDEF"; static const MetricomAddress zero_address; static const MetricomAddress broadcast_address = { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} }; static const MetricomKey SIP0Key = { "SIP0" }; static const MetricomKey ARP0Key = { "ARP0" }; static const MetricomKey ATR_Key = { "ATR " }; static const MetricomKey ACK_Key = { "ACK_" }; static const MetricomKey INF_Key = { "INF_" }; static const MetricomKey ERR_Key = { "ERR_" }; static const long MaxARPInterval = 60 * HZ; /* One minute */ /* * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion * for STRIP encoding, that translates to a maximum payload MTU of 1155. * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes * long, including IP header, UDP header, and NFS header. Setting the STRIP * MTU to 1152 allows us to send default sized NFS packets without fragmentation. */ static const unsigned short MAX_SEND_MTU = 1152; static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */ static const unsigned short DEFAULT_STRIP_MTU = 1152; static const int STRIP_MAGIC = 0x5303; static const long LongTime = 0x7FFFFFFF; /************************************************************************/ /* Global variables */ static LIST_HEAD(strip_list); static DEFINE_SPINLOCK(strip_lock); /************************************************************************/ /* Macros */ /* Returns TRUE if text T begins with prefix P */ #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1)) /* Returns TRUE if text T of length L is equal to string S */ #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1)) #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \ (X)>='a' && (X)<='f' ? (X)-'a'+10 : \ (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 ) #define READHEX16(X) ((__u16)(READHEX(X))) #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0) #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)])) #define JIFFIE_TO_SEC(X) ((X) / HZ) /************************************************************************/ /* Utility routines */ static int arp_query(unsigned char *haddr, u32 paddr, struct net_device *dev) { struct neighbour *neighbor_entry; int ret = 0; neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev); if (neighbor_entry != NULL) { neighbor_entry->used = jiffies; if (neighbor_entry->nud_state & NUD_VALID) { memcpy(haddr, neighbor_entry->ha, dev->addr_len); ret = 1; } neigh_release(neighbor_entry); } return ret; } static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr, __u8 * end) { static const int MAX_DumpData = 80; __u8 pkt_text[MAX_DumpData], *p = pkt_text; *p++ = '\"'; while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) { if (*ptr == '\\') { *p++ = '\\'; *p++ = '\\'; } else { if (*ptr >= 32 && *ptr <= 126) { *p++ = *ptr; } else { sprintf(p, "\\%02X", *ptr); p += 3; } } ptr++; } if (ptr == end) *p++ = '\"'; *p++ = 0; printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text); } /************************************************************************/ /* Byte stuffing/unstuffing routines */ /* Stuffing scheme: * 00 Unused (reserved character) * 01-3F Run of 2-64 different characters * 40-7F Run of 1-64 different characters plus a single zero at the end * 80-BF Run of 1-64 of the same character * C0-FF Run of 1-64 zeroes (ASCII 0) */ typedef enum { Stuff_Diff = 0x00, Stuff_DiffZero = 0x40, Stuff_Same = 0x80, Stuff_Zero = 0xC0, Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */ Stuff_CodeMask = 0xC0, Stuff_CountMask = 0x3F, Stuff_MaxCount = 0x3F, Stuff_Magic = 0x0D /* The value we are eliminating */ } StuffingCode; /* StuffData encodes the data starting at "src" for "length" bytes. * It writes it to the buffer pointed to by "dst" (which must be at least * as long as 1 + 65/64 of the input length). The output may be up to 1.6% * larger than the input for pathological input, but will usually be smaller. * StuffData returns the new value of the dst pointer as its result. * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state * between calls, allowing an encoded packet to be incrementally built up * from small parts. On the first call, the "__u8 *" pointed to should be * initialized to NULL; between subsequent calls the calling routine should * leave the value alone and simply pass it back unchanged so that the * encoder can recover its current state. */ #define StuffData_FinishBlock(X) \ (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode) static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst, __u8 ** code_ptr_ptr) { __u8 *end = src + length; __u8 *code_ptr = *code_ptr_ptr; __u8 code = Stuff_NoCode, count = 0; if (!length) return (dst); if (code_ptr) { /* * Recover state from last call, if applicable */ code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask; count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask; } while (src < end) { switch (code) { /* Stuff_NoCode: If no current code, select one */ case Stuff_NoCode: /* Record where we're going to put this code */ code_ptr = dst++; count = 0; /* Reset the count (zero means one instance) */ /* Tentatively start a new block */ if (*src == 0) { code = Stuff_Zero; src++; } else { code = Stuff_Same; *dst++ = *src++ ^ Stuff_Magic; } /* Note: We optimistically assume run of same -- */ /* which will be fixed later in Stuff_Same */ /* if it turns out not to be true. */ break; /* Stuff_Zero: We already have at least one zero encoded */ case Stuff_Zero: /* If another zero, count it, else finish this code block */ if (*src == 0) { count++; src++; } else { StuffData_FinishBlock(Stuff_Zero + count); } break; /* Stuff_Same: We already have at least one byte encoded */ case Stuff_Same: /* If another one the same, count it */ if ((*src ^ Stuff_Magic) == code_ptr[1]) { count++; src++; break; } /* else, this byte does not match this block. */ /* If we already have two or more bytes encoded, finish this code block */ if (count) { StuffData_FinishBlock(Stuff_Same + count); break; } /* else, we only have one so far, so switch to Stuff_Diff code */ code = Stuff_Diff; /* and fall through to Stuff_Diff case below * Note cunning cleverness here: case Stuff_Diff compares * the current character with the previous two to see if it * has a run of three the same. Won't this be an error if * there aren't two previous characters stored to compare with? * No. Because we know the current character is *not* the same * as the previous one, the first test below will necessarily * fail and the send half of the "if" won't be executed. */ /* Stuff_Diff: We have at least two *different* bytes encoded */ case Stuff_Diff: /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */ if (*src == 0) { StuffData_FinishBlock(Stuff_DiffZero + count); } /* else, if we have three in a row, it is worth starting a Stuff_Same block */ else if ((*src ^ Stuff_Magic) == dst[-1] && dst[-1] == dst[-2]) { /* Back off the last two characters we encoded */ code += count - 2; /* Note: "Stuff_Diff + 0" is an illegal code */ if (code == Stuff_Diff + 0) { code = Stuff_Same + 0; } StuffData_FinishBlock(code); code_ptr = dst - 2; /* dst[-1] already holds the correct value */ count = 2; /* 2 means three bytes encoded */ code = Stuff_Same; } /* else, another different byte, so add it to the block */ else { *dst++ = *src ^ Stuff_Magic; count++; } src++; /* Consume the byte */ break; } if (count == Stuff_MaxCount) { StuffData_FinishBlock(code + count); } } if (code == Stuff_NoCode) { *code_ptr_ptr = NULL; } else { *code_ptr_ptr = code_ptr; StuffData_FinishBlock(code + count); } return (dst); } /* * UnStuffData decodes the data at "src", up to (but not including) "end". * It writes the decoded data into the buffer pointed to by "dst", up to a * maximum of "dst_length", and returns the new value of "src" so that a * follow-on call can read more data, continuing from where the first left off. * * There are three types of results: * 1. The source data runs out before extracting "dst_length" bytes: * UnStuffData returns NULL to indicate failure. * 2. The source data produces exactly "dst_length" bytes: * UnStuffData returns new_src = end to indicate that all bytes were consumed. * 3. "dst_length" bytes are extracted, with more remaining. * UnStuffData returns new_src < end to indicate that there are more bytes * to be read. * * Note: The decoding may be destructive, in that it may alter the source * data in the process of decoding it (this is necessary to allow a follow-on * call to resume correctly). */ static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst, __u32 dst_length) { __u8 *dst_end = dst + dst_length; /* Sanity check */ if (!src || !end || !dst || !dst_length) return (NULL); while (src < end && dst < dst_end) { int count = (*src ^ Stuff_Magic) & Stuff_CountMask; switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) { case Stuff_Diff: if (src + 1 + count >= end) return (NULL); do { *dst++ = *++src ^ Stuff_Magic; } while (--count >= 0 && dst < dst_end); if (count < 0) src += 1; else { if (count == 0) *src = Stuff_Same ^ Stuff_Magic; else *src = (Stuff_Diff + count) ^ Stuff_Magic; } break; case Stuff_DiffZero: if (src + 1 + count >= end) return (NULL); do { *dst++ = *++src ^ Stuff_Magic; } while (--count >= 0 && dst < dst_end); if (count < 0) *src = Stuff_Zero ^ Stuff_Magic; else *src = (Stuff_DiffZero + count) ^ Stuff_Magic; break; case Stuff_Same: if (src + 1 >= end) return (NULL); do { *dst++ = src[1] ^ Stuff_Magic; } while (--count >= 0 && dst < dst_end); if (count < 0) src += 2; else *src = (Stuff_Same + count) ^ Stuff_Magic; break; case Stuff_Zero: do { *dst++ = 0; } while (--count >= 0 && dst < dst_end); if (count < 0) src += 1; else *src = (Stuff_Zero + count) ^ Stuff_Magic; break; } } if (dst < dst_end) return (NULL); else return (src); } /************************************************************************/ /* General routines for STRIP */ /* * get_baud returns the current baud rate, as one of the constants defined in * termbits.h * If the user has issued a baud rate override using the 'setserial' command * and the logical current rate is set to 38.4, then the true baud rate * currently in effect (57.6 or 115.2) is returned. */ static unsigned int get_baud(struct tty_struct *tty) { if (!tty || !tty->termios) return (0); if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data) { struct async_struct *info = (struct async_struct *) tty->driver_data; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) return (B57600); if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) return (B115200); } return (tty->termios->c_cflag & CBAUD); } /* * set_baud sets the baud rate to the rate defined by baudcode * Note: The rate B38400 should be avoided, because the user may have * issued a 'setserial' speed override to map that to a different speed. * We could achieve a true rate of 38400 if we needed to by cancelling * any user speed override that is in place, but that might annoy the * user, so it is simplest to just avoid using 38400. */ static void set_baud(struct tty_struct *tty, unsigned int baudcode) { struct ktermios old_termios = *(tty->termios); tty->termios->c_cflag &= ~CBAUD; /* Clear the old baud setting */ tty->termios->c_cflag |= baudcode; /* Set the new baud setting */ tty->driver->set_termios(tty, &old_termios); } /* * Convert a string to a Metricom Address. */ #define IS_RADIO_ADDRESS(p) ( \ isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \ (p)[4] == '-' && \ isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) ) static int string_to_radio_address(MetricomAddress * addr, __u8 * p) { if (!IS_RADIO_ADDRESS(p)) return (1); addr->c[0] = 0; addr->c[1] = 0; addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]); addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]); addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]); addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]); return (0); } /* * Convert a Metricom Address to a string. */ static __u8 *radio_address_to_string(const MetricomAddress * addr, MetricomAddressString * p) { sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], addr->c[4], addr->c[5]); return (p->c); } /* * Note: Must make sure sx_size is big enough to receive a stuffed * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's * big enough to receive a large radio neighbour list (currently 4K). */ static int allocate_buffers(struct strip *strip_info, int mtu) { struct net_device *dev = strip_info->dev; int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096); int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength; __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC); __u8 *s = kmalloc(sx_size, GFP_ATOMIC); __u8 *t = kmalloc(tx_size, GFP_ATOMIC); if (r && s && t) { strip_info->rx_buff = r; strip_info->sx_buff = s; strip_info->tx_buff = t; strip_info->sx_size = sx_size; strip_info->tx_size = tx_size; strip_info->mtu = dev->mtu = mtu; return (1); } kfree(r); kfree(s); kfree(t); return (0); } /* * MTU has been changed by the IP layer. * We could be in * an upcall from the tty driver, or in an ip packet queue. */ static int strip_change_mtu(struct net_device *dev, int new_mtu) { struct strip *strip_info = netdev_priv(dev); int old_mtu = strip_info->mtu; unsigned char *orbuff = strip_info->rx_buff; unsigned char *osbuff = strip_info->sx_buff; unsigned char *otbuff = strip_info->tx_buff; if (new_mtu > MAX_SEND_MTU) { printk(KERN_ERR "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n", strip_info->dev->name, MAX_SEND_MTU); return -EINVAL; } spin_lock_bh(&strip_lock); if (!allocate_buffers(strip_info, new_mtu)) { printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n", strip_info->dev->name); spin_unlock_bh(&strip_lock); return -ENOMEM; } if (strip_info->sx_count) { if (strip_info->sx_count <= strip_info->sx_size) memcpy(strip_info->sx_buff, osbuff, strip_info->sx_count); else { strip_info->discard = strip_info->sx_count; strip_info->rx_over_errors++; } } if (strip_info->tx_left) { if (strip_info->tx_left <= strip_info->tx_size) memcpy(strip_info->tx_buff, strip_info->tx_head, strip_info->tx_left); else { strip_info->tx_left = 0; strip_info->tx_dropped++; } } strip_info->tx_head = strip_info->tx_buff; spin_unlock_bh(&strip_lock); printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n", strip_info->dev->name, old_mtu, strip_info->mtu); kfree(orbuff); kfree(osbuff); kfree(otbuff); return 0; } static void strip_unlock(struct strip *strip_info) { /* * Set the timer to go off in one second. */ strip_info->idle_timer.expires = jiffies + 1 * HZ; add_timer(&strip_info->idle_timer); netif_wake_queue(strip_info->dev); } /* * If the time is in the near future, time_delta prints the number of * seconds to go into the buffer and returns the address of the buffer. * If the time is not in the near future, it returns the address of the * string "Not scheduled" The buffer must be long enough to contain the * ascii representation of the number plus 9 charactes for the " seconds" * and the null character. */ #ifdef CONFIG_PROC_FS static char *time_delta(char buffer[], long time) { time -= jiffies; if (time > LongTime / 2) return ("Not scheduled"); if (time < 0) time = 0; /* Don't print negative times */ sprintf(buffer, "%ld seconds", time / HZ); return (buffer); } /* get Nth element of the linked list */ static struct strip *strip_get_idx(loff_t pos) { struct list_head *l; int i = 0; list_for_each_rcu(l, &strip_list) { if (pos == i) return list_entry(l, struct strip, list); ++i; } return NULL; } static void *strip_seq_start(struct seq_file *seq, loff_t *pos) { rcu_read_lock(); return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN; } static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct list_head *l; struct strip *s; ++*pos; if (v == SEQ_START_TOKEN) return strip_get_idx(1); s = v; l = &s->list; list_for_each_continue_rcu(l, &strip_list) { return list_entry(l, struct strip, list); } return NULL; } static void strip_seq_stop(struct seq_file *seq, void *v) { rcu_read_unlock(); } static void strip_seq_neighbours(struct seq_file *seq, const MetricomNodeTable * table, const char *title) { /* We wrap this in a do/while loop, so if the table changes */ /* while we're reading it, we just go around and try again. */ struct timeval t; do { int i; t = table->timestamp; if (table->num_nodes) seq_printf(seq, "\n %s\n", title); for (i = 0; i < table->num_nodes; i++) { MetricomNode node; spin_lock_bh(&strip_lock); node = table->node[i]; spin_unlock_bh(&strip_lock); seq_printf(seq, " %s\n", node.c); } } while (table->timestamp.tv_sec != t.tv_sec || table->timestamp.tv_usec != t.tv_usec); } /* * This function prints radio status information via the seq_file * interface. The interface takes care of buffer size and over * run issues. * * The buffer in seq_file is PAGESIZE (4K) * so this routine should never print more or it will get truncated. * With the maximum of 32 portables and 32 poletops * reported, the routine outputs 3107 bytes into the buffer. */ static void strip_seq_status_info(struct seq_file *seq, const struct strip *strip_info) { char temp[32]; MetricomAddressString addr_string; /* First, we must copy all of our data to a safe place, */ /* in case a serial interrupt comes in and changes it. */ int tx_left = strip_info->tx_left; unsigned long rx_average_pps = strip_info->rx_average_pps; unsigned long tx_average_pps = strip_info->tx_average_pps; unsigned long sx_average_pps = strip_info->sx_average_pps; int working = strip_info->working; int firmware_level = strip_info->firmware_level; long watchdog_doprobe = strip_info->watchdog_doprobe; long watchdog_doreset = strip_info->watchdog_doreset; long gratuitous_arp = strip_info->gratuitous_arp; long arp_interval = strip_info->arp_interval; FirmwareVersion firmware_version = strip_info->firmware_version; SerialNumber serial_number = strip_info->serial_number; BatteryVoltage battery_voltage = strip_info->battery_voltage; char *if_name = strip_info->dev->name; MetricomAddress true_dev_addr = strip_info->true_dev_addr; MetricomAddress dev_dev_addr = *(MetricomAddress *) strip_info->dev->dev_addr; int manual_dev_addr = strip_info->manual_dev_addr; #ifdef EXT_COUNTERS unsigned long rx_bytes = strip_info->rx_bytes; unsigned long tx_bytes = strip_info->tx_bytes; unsigned long rx_rbytes = strip_info->rx_rbytes; unsigned long tx_rbytes = strip_info->tx_rbytes; unsigned long rx_sbytes = strip_info->rx_sbytes; unsigned long tx_sbytes = strip_info->tx_sbytes; unsigned long rx_ebytes = strip_info->rx_ebytes; unsigned long tx_ebytes = strip_info->tx_ebytes; #endif seq_printf(seq, "\nInterface name\t\t%s\n", if_name); seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No"); radio_address_to_string(&true_dev_addr, &addr_string); seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c); if (manual_dev_addr) { radio_address_to_string(&dev_dev_addr, &addr_string); seq_printf(seq, " Device address:\t%s\n", addr_string.c); } seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" : !firmware_level ? "Should be upgraded" : firmware_version.c); if (firmware_level >= ChecksummedMessages) seq_printf(seq, " (Checksums Enabled)"); seq_printf(seq, "\n"); seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c); seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c); seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left); seq_printf(seq, " Receive packet rate: %ld packets per second\n", rx_average_pps / 8); seq_printf(seq, " Transmit packet rate: %ld packets per second\n", tx_average_pps / 8); seq_printf(seq, " Sent packet rate: %ld packets per second\n", sx_average_pps / 8); seq_printf(seq, " Next watchdog probe:\t%s\n", time_delta(temp, watchdog_doprobe)); seq_printf(seq, " Next watchdog reset:\t%s\n", time_delta(temp, watchdog_doreset)); seq_printf(seq, " Next gratuitous ARP:\t"); if (!memcmp (strip_info->dev->dev_addr, zero_address.c, sizeof(zero_address))) seq_printf(seq, "Disabled\n"); else { seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp)); seq_printf(seq, " Next ARP interval:\t%ld seconds\n", JIFFIE_TO_SEC(arp_interval)); } if (working) { #ifdef EXT_COUNTERS seq_printf(seq, "\n"); seq_printf(seq, " Total bytes: \trx:\t%lu\ttx:\t%lu\n", rx_bytes, tx_bytes); seq_printf(seq, " thru radio: \trx:\t%lu\ttx:\t%lu\n", rx_rbytes, tx_rbytes); seq_printf(seq, " thru serial port: \trx:\t%lu\ttx:\t%lu\n", rx_sbytes, tx_sbytes); seq_printf(seq, " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", rx_ebytes, tx_ebytes); #endif strip_seq_neighbours(seq, &strip_info->poletops, "Poletops:"); strip_seq_neighbours(seq, &strip_info->portables, "Portables:"); } } /* * This function is exports status information from the STRIP driver through * the /proc file system. */ static int strip_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_printf(seq, "strip_version: %s\n", StripVersion); else strip_seq_status_info(seq, (const struct strip *)v); return 0; } static struct seq_operations strip_seq_ops = { .start = strip_seq_start, .next = strip_seq_next, .stop = strip_seq_stop, .show = strip_seq_show, }; static int strip_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &strip_seq_ops); } static const struct file_operations strip_seq_fops = { .owner = THIS_MODULE, .open = strip_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif /************************************************************************/ /* Sending routines */ static void ResetRadio(struct strip *strip_info) { struct tty_struct *tty = strip_info->tty; static const char init[] = "ate0q1dt**starmode\r**"; StringDescriptor s = { init, sizeof(init) - 1 }; /* * If the radio isn't working anymore, * we should clear the old status information. */ if (strip_info->working) { printk(KERN_INFO "%s: No response: Resetting radio.\n", strip_info->dev->name); strip_info->firmware_version.c[0] = '\0'; strip_info->serial_number.c[0] = '\0'; strip_info->battery_voltage.c[0] = '\0'; strip_info->portables.num_nodes = 0; do_gettimeofday(&strip_info->portables.timestamp); strip_info->poletops.num_nodes = 0; do_gettimeofday(&strip_info->poletops.timestamp); } strip_info->pps_timer = jiffies; strip_info->rx_pps_count = 0; strip_info->tx_pps_count = 0; strip_info->sx_pps_count = 0; strip_info->rx_average_pps = 0; strip_info->tx_average_pps = 0; strip_info->sx_average_pps = 0; /* Mark radio address as unknown */ *(MetricomAddress *) & strip_info->true_dev_addr = zero_address; if (!strip_info->manual_dev_addr) *(MetricomAddress *) strip_info->dev->dev_addr = zero_address; strip_info->working = FALSE; strip_info->firmware_level = NoStructure; strip_info->next_command = CompatibilityCommand; strip_info->watchdog_doprobe = jiffies + 10 * HZ; strip_info->watchdog_doreset = jiffies + 1 * HZ; /* If the user has selected a baud rate above 38.4 see what magic we have to do */ if (strip_info->user_baud > B38400) { /* * Subtle stuff: Pay attention :-) * If the serial port is currently at the user's selected (>38.4) rate, * then we temporarily switch to 19.2 and issue the ATS304 command * to tell the radio to switch to the user's selected rate. * If the serial port is not currently at that rate, that means we just * issued the ATS304 command last time through, so this time we restore * the user's selected rate and issue the normal starmode reset string. */ if (strip_info->user_baud == get_baud(tty)) { static const char b0[] = "ate0q1s304=57600\r"; static const char b1[] = "ate0q1s304=115200\r"; static const StringDescriptor baudstring[2] = { {b0, sizeof(b0) - 1} , {b1, sizeof(b1) - 1} }; set_baud(tty, B19200); if (strip_info->user_baud == B57600) s = baudstring[0]; else if (strip_info->user_baud == B115200) s = baudstring[1]; else s = baudstring[1]; /* For now */ } else set_baud(tty, strip_info->user_baud); } tty->driver->write(tty, s.string, s.length); #ifdef EXT_COUNTERS strip_info->tx_ebytes += s.length; #endif } /* * Called by the driver when there's room for more data. If we have * more packets to send, we send them here. */ static void strip_write_some_more(struct tty_struct *tty) { struct strip *strip_info = (struct strip *) tty->disc_data; /* First make sure we're connected. */ if (!strip_info || strip_info->magic != STRIP_MAGIC || !netif_running(strip_info->dev)) return; if (strip_info->tx_left > 0) { int num_written = tty->driver->write(tty, strip_info->tx_head, strip_info->tx_left); strip_info->tx_left -= num_written; strip_info->tx_head += num_written; #ifdef EXT_COUNTERS strip_info->tx_sbytes += num_written; #endif } else { /* Else start transmission of another packet */ tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP); strip_unlock(strip_info); } } static __u8 *add_checksum(__u8 * buffer, __u8 * end) { __u16 sum = 0; __u8 *p = buffer; while (p < end) sum += *p++; end[3] = hextable[sum & 0xF]; sum >>= 4; end[2] = hextable[sum & 0xF]; sum >>= 4; end[1] = hextable[sum & 0xF]; sum >>= 4; end[0] = hextable[sum & 0xF]; return (end + 4); } static unsigned char *strip_make_packet(unsigned char *buffer, struct strip *strip_info, struct sk_buff *skb) { __u8 *ptr = buffer; __u8 *stuffstate = NULL; STRIP_Header *header = (STRIP_Header *) skb->data; MetricomAddress haddr = header->dst_addr; int len = skb->len - sizeof(STRIP_Header); MetricomKey key; /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */ if (header->protocol == htons(ETH_P_IP)) key = SIP0Key; else if (header->protocol == htons(ETH_P_ARP)) key = ARP0Key; else { printk(KERN_ERR "%s: strip_make_packet: Unknown packet type 0x%04X\n", strip_info->dev->name, ntohs(header->protocol)); return (NULL); } if (len > strip_info->mtu) { printk(KERN_ERR "%s: Dropping oversized transmit packet: %d bytes\n", strip_info->dev->name, len); return (NULL); } /* * If we're sending to ourselves, discard the packet. * (Metricom radios choke if they try to send a packet to their own address.) */ if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) { printk(KERN_ERR "%s: Dropping packet addressed to self\n", strip_info->dev->name); return (NULL); } /* * If this is a broadcast packet, send it to our designated Metricom * 'broadcast hub' radio (First byte of address being 0xFF means broadcast) */ if (haddr.c[0] == 0xFF) { __be32 brd = 0; struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(strip_info->dev); if (in_dev == NULL) { rcu_read_unlock(); return NULL; } if (in_dev->ifa_list) brd = in_dev->ifa_list->ifa_broadcast; rcu_read_unlock(); /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */ if (!arp_query(haddr.c, brd, strip_info->dev)) { printk(KERN_ERR "%s: Unable to send packet (no broadcast hub configured)\n", strip_info->dev->name); return (NULL); } /* * If we are the broadcast hub, don't bother sending to ourselves. * (Metricom radios choke if they try to send a packet to their own address.) */ if (!memcmp (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) return (NULL); } *ptr++ = 0x0D; *ptr++ = '*'; *ptr++ = hextable[haddr.c[2] >> 4]; *ptr++ = hextable[haddr.c[2] & 0xF]; *ptr++ = hextable[haddr.c[3] >> 4]; *ptr++ = hextable[haddr.c[3] & 0xF]; *ptr++ = '-'; *ptr++ = hextable[haddr.c[4] >> 4]; *ptr++ = hextable[haddr.c[4] & 0xF]; *ptr++ = hextable[haddr.c[5] >> 4]; *ptr++ = hextable[haddr.c[5] & 0xF]; *ptr++ = '*'; *ptr++ = key.c[0]; *ptr++ = key.c[1]; *ptr++ = key.c[2]; *ptr++ = key.c[3]; ptr = StuffData(skb->data + sizeof(STRIP_Header), len, ptr, &stuffstate); if (strip_info->firmware_level >= ChecksummedMessages) ptr = add_checksum(buffer + 1, ptr); *ptr++ = 0x0D; return (ptr); } static void strip_send(struct strip *strip_info, struct sk_buff *skb) { MetricomAddress haddr; unsigned char *ptr = strip_info->tx_buff; int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0; int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0 && !doreset; __be32 addr, brd; /* * 1. If we have a packet, encapsulate it and put it in the buffer */ if (skb) { char *newptr = strip_make_packet(ptr, strip_info, skb); strip_info->tx_pps_count++; if (!newptr) strip_info->tx_dropped++; else { ptr = newptr; strip_info->sx_pps_count++; strip_info->tx_packets++; /* Count another successful packet */ #ifdef EXT_COUNTERS strip_info->tx_bytes += skb->len; strip_info->tx_rbytes += ptr - strip_info->tx_buff; #endif /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */ /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */ } } /* * 2. If it is time for another tickle, tack it on, after the packet */ if (doprobe) { StringDescriptor ts = CommandString[strip_info->next_command]; #if TICKLE_TIMERS { struct timeval tv; do_gettimeofday(&tv); printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n", strip_info->next_command, tv.tv_sec % 100, tv.tv_usec); } #endif if (ptr == strip_info->tx_buff) *ptr++ = 0x0D; *ptr++ = '*'; /* First send "**" to provoke an error message */ *ptr++ = '*'; /* Then add the command */ memcpy(ptr, ts.string, ts.length); /* Add a checksum ? */ if (strip_info->firmware_level < ChecksummedMessages) ptr += ts.length; else ptr = add_checksum(ptr, ptr + ts.length); *ptr++ = 0x0D; /* Terminate the command with a <CR> */ /* Cycle to next periodic command? */ if (strip_info->firmware_level >= StructuredMessages) if (++strip_info->next_command >= ARRAY_SIZE(CommandString)) strip_info->next_command = 0; #ifdef EXT_COUNTERS strip_info->tx_ebytes += ts.length; #endif strip_info->watchdog_doprobe = jiffies + 10 * HZ; strip_info->watchdog_doreset = jiffies + 1 * HZ; /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */ } /* * 3. Set up the strip_info ready to send the data (if any). */ strip_info->tx_head = strip_info->tx_buff; strip_info->tx_left = ptr - strip_info->tx_buff; strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP); /* * 4. Debugging check to make sure we're not overflowing the buffer. */ if (strip_info->tx_size - strip_info->tx_left < 20) printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", strip_info->dev->name, strip_info->tx_left, strip_info->tx_size - strip_info->tx_left); /* * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in * the buffer, strip_write_some_more will send it after the reset has finished */ if (doreset) { ResetRadio(strip_info); return; } if (1) { struct in_device *in_dev; brd = addr = 0; rcu_read_lock(); in_dev = __in_dev_get_rcu(strip_info->dev); if (in_dev) { if (in_dev->ifa_list) { brd = in_dev->ifa_list->ifa_broadcast; addr = in_dev->ifa_list->ifa_local; } } rcu_read_unlock(); } /* * 6. If it is time for a periodic ARP, queue one up to be sent. * We only do this if: * 1. The radio is working * 2. It's time to send another periodic ARP * 3. We really know what our address is (and it is not manually set to zero) * 4. We have a designated broadcast address configured * If we queue up an ARP packet when we don't have a designated broadcast * address configured, then the packet will just have to be discarded in * strip_make_packet. This is not fatal, but it causes misleading information * to be displayed in tcpdump. tcpdump will report that periodic APRs are * being sent, when in fact they are not, because they are all being dropped * in the strip_make_packet routine. */ if (strip_info->working && (long) jiffies - strip_info->gratuitous_arp >= 0 && memcmp(strip_info->dev->dev_addr, zero_address.c, sizeof(zero_address)) && arp_query(haddr.c, brd, strip_info->dev)) { /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n", strip_info->dev->name, strip_info->arp_interval / HZ); */ strip_info->gratuitous_arp = jiffies + strip_info->arp_interval; strip_info->arp_interval *= 2; if (strip_info->arp_interval > MaxARPInterval) strip_info->arp_interval = MaxARPInterval; if (addr) arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */ strip_info->dev, /* Device to send packet on */ addr, /* Source IP address this ARP packet comes from */ NULL, /* Destination HW address is NULL (broadcast it) */ strip_info->dev->dev_addr, /* Source HW address is our HW address */ strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */ } /* * 7. All ready. Start the transmission */ strip_write_some_more(strip_info->tty); } /* Encapsulate a datagram and kick it into a TTY queue. */ static int strip_xmit(struct sk_buff *skb, struct net_device *dev) { struct strip *strip_info = netdev_priv(dev); if (!netif_running(dev)) { printk(KERN_ERR "%s: xmit call when iface is down\n", dev->name); return (1); } netif_stop_queue(dev); del_timer(&strip_info->idle_timer); if (time_after(jiffies, strip_info->pps_timer + HZ)) { unsigned long t = jiffies - strip_info->pps_timer; unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t; unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t; unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t; strip_info->pps_timer = jiffies; strip_info->rx_pps_count = 0; strip_info->tx_pps_count = 0; strip_info->sx_pps_count = 0; strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2; strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2; strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2; if (rx_pps_count / 8 >= 10) printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n", strip_info->dev->name, rx_pps_count / 8); if (tx_pps_count / 8 >= 10) printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n", strip_info->dev->name, tx_pps_count / 8); if (sx_pps_count / 8 >= 10) printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n", strip_info->dev->name, sx_pps_count / 8); } spin_lock_bh(&strip_lock); strip_send(strip_info, skb); spin_unlock_bh(&strip_lock); if (skb) dev_kfree_skb(skb); return 0; } /* * IdleTask periodically calls strip_xmit, so even when we have no IP packets * to send for an extended period of time, the watchdog processing still gets * done to ensure that the radio stays in Starmode */ static void strip_IdleTask(unsigned long parameter) { strip_xmit(NULL, (struct net_device *) parameter); } /* * Create the MAC header for an arbitrary protocol layer * * saddr!=NULL means use this specific address (n/a for Metricom) * saddr==NULL means use default device source address * daddr!=NULL means use this destination address * daddr==NULL means leave destination address alone * (e.g. unresolved arp -- kernel will call * rebuild_header later to fill in the address) */ static int strip_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len) { struct strip *strip_info = netdev_priv(dev); STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header)); /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type, type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */ header->src_addr = strip_info->true_dev_addr; header->protocol = htons(type); /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */ if (!daddr) return (-dev->hard_header_len); header->dst_addr = *(MetricomAddress *) daddr; return (dev->hard_header_len); } /* * Rebuild the MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. * I think this should return zero if packet is ready to send, * or non-zero if it needs more time to do an address lookup */ static int strip_rebuild_header(struct sk_buff *skb) { #ifdef CONFIG_INET STRIP_Header *header = (STRIP_Header *) skb->data; /* Arp find returns zero if if knows the address, */ /* or if it doesn't know the address it sends an ARP packet and returns non-zero */ return arp_find(header->dst_addr.c, skb) ? 1 : 0; #else return 0; #endif } /************************************************************************/ /* Receiving routines */ /* * This function parses the response to the ATS300? command, * extracting the radio version and serial number. */ static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end) { __u8 *p, *value_begin, *value_end; int len; /* Determine the beginning of the second line of the payload */ p = ptr; while (p < end && *p != 10) p++; if (p >= end) return; p++; value_begin = p; /* Determine the end of line */ while (p < end && *p != 10) p++; if (p >= end) return; value_end = p; p++; len = value_end - value_begin; len = min_t(int, len, sizeof(FirmwareVersion) - 1); if (strip_info->firmware_version.c[0] == 0) printk(KERN_INFO "%s: Radio Firmware: %.*s\n", strip_info->dev->name, len, value_begin); sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin); /* Look for the first colon */ while (p < end && *p != ':') p++; if (p >= end) return; /* Skip over the space */ p += 2; len = sizeof(SerialNumber) - 1; if (p + len <= end) { sprintf(strip_info->serial_number.c, "%.*s", len, p); } else { printk(KERN_DEBUG "STRIP: radio serial number shorter (%zd) than expected (%d)\n", end - p, len); } } /* * This function parses the response to the ATS325? command, * extracting the radio battery voltage. */ static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end) { int len; len = sizeof(BatteryVoltage) - 1; if (ptr + len <= end) { sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr); } else { printk(KERN_DEBUG "STRIP: radio voltage string shorter (%zd) than expected (%d)\n", end - ptr, len); } } /* * This function parses the responses to the AT~LA and ATS311 commands, * which list the radio's neighbours. */ static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end) { table->num_nodes = 0; while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) { MetricomNode *node = &table->node[table->num_nodes++]; char *dst = node->c, *limit = dst + sizeof(*node) - 1; while (ptr < end && *ptr <= 32) ptr++; while (ptr < end && dst < limit && *ptr != 10) *dst++ = *ptr++; *dst++ = 0; while (ptr < end && ptr[-1] != 10) ptr++; } do_gettimeofday(&table->timestamp); } static int get_radio_address(struct strip *strip_info, __u8 * p) { MetricomAddress addr; if (string_to_radio_address(&addr, p)) return (1); /* See if our radio address has changed */ if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) { MetricomAddressString addr_string; radio_address_to_string(&addr, &addr_string); printk(KERN_INFO "%s: Radio address = %s\n", strip_info->dev->name, addr_string.c); strip_info->true_dev_addr = addr; if (!strip_info->manual_dev_addr) *(MetricomAddress *) strip_info->dev->dev_addr = addr; /* Give the radio a few seconds to get its head straight, then send an arp */ strip_info->gratuitous_arp = jiffies + 15 * HZ; strip_info->arp_interval = 1 * HZ; } return (0); } static int verify_checksum(struct strip *strip_info) { __u8 *p = strip_info->sx_buff; __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4; u_short sum = (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) | (READHEX16(end[2]) << 4) | (READHEX16(end[3])); while (p < end) sum -= *p++; if (sum == 0 && strip_info->firmware_level == StructuredMessages) { strip_info->firmware_level = ChecksummedMessages; printk(KERN_INFO "%s: Radio provides message checksums\n", strip_info->dev->name); } return (sum == 0); } static void RecvErr(char *msg, struct strip *strip_info) { __u8 *ptr = strip_info->sx_buff; __u8 *end = strip_info->sx_buff + strip_info->sx_count; DumpData(msg, strip_info, ptr, end); strip_info->rx_errors++; } static void RecvErr_Message(struct strip *strip_info, __u8 * sendername, const __u8 * msg, u_long len) { if (has_prefix(msg, len, "001")) { /* Not in StarMode! */ RecvErr("Error Msg:", strip_info); printk(KERN_INFO "%s: Radio %s is not in StarMode\n", strip_info->dev->name, sendername); } else if (has_prefix(msg, len, "002")) { /* Remap handle */ /* We ignore "Remap handle" messages for now */ } else if (has_prefix(msg, len, "003")) { /* Can't resolve name */ RecvErr("Error Msg:", strip_info); printk(KERN_INFO "%s: Destination radio name is unknown\n", strip_info->dev->name); } else if (has_prefix(msg, len, "004")) { /* Name too small or missing */ strip_info->watchdog_doreset = jiffies + LongTime; #if TICKLE_TIMERS { struct timeval tv; do_gettimeofday(&tv); printk(KERN_INFO "**** Got ERR_004 response at %02d.%06d\n", tv.tv_sec % 100, tv.tv_usec); } #endif if (!strip_info->working) { strip_info->working = TRUE; printk(KERN_INFO "%s: Radio now in starmode\n", strip_info->dev->name); /* * If the radio has just entered a working state, we should do our first * probe ASAP, so that we find out our radio address etc. without delay. */ strip_info->watchdog_doprobe = jiffies; } if (strip_info->firmware_level == NoStructure && sendername) { strip_info->firmware_level = StructuredMessages; strip_info->next_command = 0; /* Try to enable checksums ASAP */ printk(KERN_INFO "%s: Radio provides structured messages\n", strip_info->dev->name); } if (strip_info->firmware_level >= StructuredMessages) { /* * If this message has a valid checksum on the end, then the call to verify_checksum * will elevate the firmware_level to ChecksummedMessages for us. (The actual return * code from verify_checksum is ignored here.) */ verify_checksum(strip_info); /* * If the radio has structured messages but we don't yet have all our information about it, * we should do probes without delay, until we have gathered all the information */ if (!GOT_ALL_RADIO_INFO(strip_info)) strip_info->watchdog_doprobe = jiffies; } } else if (has_prefix(msg, len, "005")) /* Bad count specification */ RecvErr("Error Msg:", strip_info); else if (has_prefix(msg, len, "006")) /* Header too big */ RecvErr("Error Msg:", strip_info); else if (has_prefix(msg, len, "007")) { /* Body too big */ RecvErr("Error Msg:", strip_info); printk(KERN_ERR "%s: Error! Packet size too big for radio.\n", strip_info->dev->name); } else if (has_prefix(msg, len, "008")) { /* Bad character in name */ RecvErr("Error Msg:", strip_info); printk(KERN_ERR "%s: Radio name contains illegal character\n", strip_info->dev->name); } else if (has_prefix(msg, len, "009")) /* No count or line terminator */ RecvErr("Error Msg:", strip_info); else if (has_prefix(msg, len, "010")) /* Invalid checksum */ RecvErr("Error Msg:", strip_info); else if (has_prefix(msg, len, "011")) /* Checksum didn't match */ RecvErr("Error Msg:", strip_info); else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */ RecvErr("Error Msg:", strip_info); else RecvErr("Error Msg:", strip_info); } static void process_AT_response(struct strip *strip_info, __u8 * ptr, __u8 * end) { u_long len; __u8 *p = ptr; while (p < end && p[-1] != 10) p++; /* Skip past first newline character */ /* Now ptr points to the AT command, and p points to the text of the response. */ len = p - ptr; #if TICKLE_TIMERS { struct timeval tv; do_gettimeofday(&tv); printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n", ptr, tv.tv_sec % 100, tv.tv_usec); } #endif if (has_prefix(ptr, len, "ATS300?")) get_radio_version(strip_info, p, end); else if (has_prefix(ptr, len, "ATS305?")) get_radio_address(strip_info, p); else if (has_prefix(ptr, len, "ATS311?")) get_radio_neighbours(&strip_info->poletops, p, end); else if (has_prefix(ptr, len, "ATS319=7")) verify_checksum(strip_info); else if (has_prefix(ptr, len, "ATS325?")) get_radio_voltage(strip_info, p, end); else if (has_prefix(ptr, len, "AT~LA")) get_radio_neighbours(&strip_info->portables, p, end); else RecvErr("Unknown AT Response:", strip_info); } static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end) { /* Currently we don't do anything with ACKs from the radio */ } static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end) { if (ptr + 16 > end) RecvErr("Bad Info Msg:", strip_info); } static struct net_device *get_strip_dev(struct strip *strip_info) { /* If our hardware address is *manually set* to zero, and we know our */ /* real radio hardware address, try to find another strip device that has been */ /* manually set to that address that we can 'transfer ownership' of this packet to */ if (strip_info->manual_dev_addr && !memcmp(strip_info->dev->dev_addr, zero_address.c, sizeof(zero_address)) && memcmp(&strip_info->true_dev_addr, zero_address.c, sizeof(zero_address))) { struct net_device *dev; read_lock_bh(&dev_base_lock); for_each_netdev(dev) { if (dev->type == strip_info->dev->type && !memcmp(dev->dev_addr, &strip_info->true_dev_addr, sizeof(MetricomAddress))) { printk(KERN_INFO "%s: Transferred packet ownership to %s.\n", strip_info->dev->name, dev->name); read_unlock_bh(&dev_base_lock); return (dev); } } read_unlock_bh(&dev_base_lock); } return (strip_info->dev); } /* * Send one completely decapsulated datagram to the next layer. */ static void deliver_packet(struct strip *strip_info, STRIP_Header * header, __u16 packetlen) { struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen); if (!skb) { printk(KERN_ERR "%s: memory squeeze, dropping packet.\n", strip_info->dev->name); strip_info->rx_dropped++; } else { memcpy(skb_put(skb, sizeof(STRIP_Header)), header, sizeof(STRIP_Header)); memcpy(skb_put(skb, packetlen), strip_info->rx_buff, packetlen); skb->dev = get_strip_dev(strip_info); skb->protocol = header->protocol; skb_reset_mac_header(skb); /* Having put a fake header on the front of the sk_buff for the */ /* benefit of tools like tcpdump, skb_pull now 'consumes' that */ /* fake header before we hand the packet up to the next layer. */ skb_pull(skb, sizeof(STRIP_Header)); /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */ strip_info->rx_packets++; strip_info->rx_pps_count++; #ifdef EXT_COUNTERS strip_info->rx_bytes += packetlen; #endif skb->dev->last_rx = jiffies; netif_rx(skb); } } static void process_IP_packet(struct strip *strip_info, STRIP_Header * header, __u8 * ptr, __u8 * end) { __u16 packetlen; /* Decode start of the IP packet header */ ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4); if (!ptr) { RecvErr("IP Packet too short", strip_info); return; } packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3]; if (packetlen > MAX_RECV_MTU) { printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n", strip_info->dev->name, packetlen); strip_info->rx_dropped++; return; } /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */ /* Decode remainder of the IP packet */ ptr = UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4); if (!ptr) { RecvErr("IP Packet too short", strip_info); return; } if (ptr < end) { RecvErr("IP Packet too long", strip_info); return; } header->protocol = htons(ETH_P_IP); deliver_packet(strip_info, header, packetlen); } static void process_ARP_packet(struct strip *strip_info, STRIP_Header * header, __u8 * ptr, __u8 * end) { __u16 packetlen; struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff; /* Decode start of the ARP packet */ ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8); if (!ptr) { RecvErr("ARP Packet too short", strip_info); return; } packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2; if (packetlen > MAX_RECV_MTU) { printk(KERN_INFO "%s: Dropping oversized received ARP packet: %d bytes\n", strip_info->dev->name, packetlen); strip_info->rx_dropped++; return; } /*printk(KERN_INFO "%s: Got %d byte ARP %s\n", strip_info->dev->name, packetlen, ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */ /* Decode remainder of the ARP packet */ ptr = UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8); if (!ptr) { RecvErr("ARP Packet too short", strip_info); return; } if (ptr < end) { RecvErr("ARP Packet too long", strip_info); return; } header->protocol = htons(ETH_P_ARP); deliver_packet(strip_info, header, packetlen); } /* * process_text_message processes a <CR>-terminated block of data received * from the radio that doesn't begin with a '*' character. All normal * Starmode communication messages with the radio begin with a '*', * so any text that does not indicates a serial port error, a radio that * is in Hayes command mode instead of Starmode, or a radio with really * old firmware that doesn't frame its Starmode responses properly. */ static void process_text_message(struct strip *strip_info) { __u8 *msg = strip_info->sx_buff; int len = strip_info->sx_count; /* Check for anything that looks like it might be our radio name */ /* (This is here for backwards compatibility with old firmware) */ if (len == 9 && get_radio_address(strip_info, msg) == 0) return; if (text_equal(msg, len, "OK")) return; /* Ignore 'OK' responses from prior commands */ if (text_equal(msg, len, "ERROR")) return; /* Ignore 'ERROR' messages */ if (has_prefix(msg, len, "ate0q1")) return; /* Ignore character echo back from the radio */ /* Catch other error messages */ /* (This is here for backwards compatibility with old firmware) */ if (has_prefix(msg, len, "ERR_")) { RecvErr_Message(strip_info, NULL, &msg[4], len - 4); return; } RecvErr("No initial *", strip_info); } /* * process_message processes a <CR>-terminated block of data received * from the radio. If the radio is not in Starmode or has old firmware, * it may be a line of text in response to an AT command. Ideally, with * a current radio that's properly in Starmode, all data received should * be properly framed and checksummed radio message blocks, containing * either a starmode packet, or a other communication from the radio * firmware, like "INF_" Info messages and &COMMAND responses. */ static void process_message(struct strip *strip_info) { STRIP_Header header = { zero_address, zero_address, 0 }; __u8 *ptr = strip_info->sx_buff; __u8 *end = strip_info->sx_buff + strip_info->sx_count; __u8 sendername[32], *sptr = sendername; MetricomKey key; /*HexDump("Receiving", strip_info, ptr, end); */ /* Check for start of address marker, and then skip over it */ if (*ptr == '*') ptr++; else { process_text_message(strip_info); return; } /* Copy out the return address */ while (ptr < end && *ptr != '*' && sptr < ARRAY_END(sendername) - 1) *sptr++ = *ptr++; *sptr = 0; /* Null terminate the sender name */ /* Check for end of address marker, and skip over it */ if (ptr >= end || *ptr != '*') { RecvErr("No second *", strip_info); return; } ptr++; /* Skip the second '*' */ /* If the sender name is "&COMMAND", ignore this 'packet' */ /* (This is here for backwards compatibility with old firmware) */ if (!strcmp(sendername, "&COMMAND")) { strip_info->firmware_level = NoStructure; strip_info->next_command = CompatibilityCommand; return; } if (ptr + 4 > end) { RecvErr("No proto key", strip_info); return; } /* Get the protocol key out of the buffer */ key.c[0] = *ptr++; key.c[1] = *ptr++; key.c[2] = *ptr++; key.c[3] = *ptr++; /* If we're using checksums, verify the checksum at the end of the packet */ if (strip_info->firmware_level >= ChecksummedMessages) { end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */ if (ptr > end) { RecvErr("Missing Checksum", strip_info); return; } if (!verify_checksum(strip_info)) { RecvErr("Bad Checksum", strip_info); return; } } /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */ /* * Fill in (pseudo) source and destination addresses in the packet. * We assume that the destination address was our address (the radio does not * tell us this). If the radio supplies a source address, then we use it. */ header.dst_addr = strip_info->true_dev_addr; string_to_radio_address(&header.src_addr, sendername); #ifdef EXT_COUNTERS if (key.l == SIP0Key.l) { strip_info->rx_rbytes += (end - ptr); process_IP_packet(strip_info, &header, ptr, end); } else if (key.l == ARP0Key.l) { strip_info->rx_rbytes += (end - ptr); process_ARP_packet(strip_info, &header, ptr, end); } else if (key.l == ATR_Key.l) { strip_info->rx_ebytes += (end - ptr); process_AT_response(strip_info, ptr, end); } else if (key.l == ACK_Key.l) { strip_info->rx_ebytes += (end - ptr); process_ACK(strip_info, ptr, end); } else if (key.l == INF_Key.l) { strip_info->rx_ebytes += (end - ptr); process_Info(strip_info, ptr, end); } else if (key.l == ERR_Key.l) { strip_info->rx_ebytes += (end - ptr); RecvErr_Message(strip_info, sendername, ptr, end - ptr); } else RecvErr("Unrecognized protocol key", strip_info); #else if (key.l == SIP0Key.l) process_IP_packet(strip_info, &header, ptr, end); else if (key.l == ARP0Key.l) process_ARP_packet(strip_info, &header, ptr, end); else if (key.l == ATR_Key.l) process_AT_response(strip_info, ptr, end); else if (key.l == ACK_Key.l) process_ACK(strip_info, ptr, end); else if (key.l == INF_Key.l) process_Info(strip_info, ptr, end); else if (key.l == ERR_Key.l) RecvErr_Message(strip_info, sendername, ptr, end - ptr); else RecvErr("Unrecognized protocol key", strip_info); #endif } #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \ (X) == TTY_FRAME ? "Framing Error" : \ (X) == TTY_PARITY ? "Parity Error" : \ (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error") /* * Handle the 'receiver data ready' interrupt. * This function is called by the 'tty_io' module in the kernel when * a block of STRIP data has been received, which can now be decapsulated * and sent on to some IP layer for further processing. */ static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count) { struct strip *strip_info = (struct strip *) tty->disc_data; const unsigned char *end = cp + count; if (!strip_info || strip_info->magic != STRIP_MAGIC || !netif_running(strip_info->dev)) return; spin_lock_bh(&strip_lock); #if 0 { struct timeval tv; do_gettimeofday(&tv); printk(KERN_INFO "**** strip_receive_buf: %3d bytes at %02d.%06d\n", count, tv.tv_sec % 100, tv.tv_usec); } #endif #ifdef EXT_COUNTERS strip_info->rx_sbytes += count; #endif /* Read the characters out of the buffer */ while (cp < end) { if (fp && *fp) printk(KERN_INFO "%s: %s on serial port\n", strip_info->dev->name, TTYERROR(*fp)); if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */ /* If we have some characters in the buffer, discard them */ strip_info->discard = strip_info->sx_count; strip_info->rx_errors++; } /* Leading control characters (CR, NL, Tab, etc.) are ignored */ if (strip_info->sx_count > 0 || *cp >= ' ') { if (*cp == 0x0D) { /* If end of packet, decide what to do with it */ if (strip_info->sx_count > 3000) printk(KERN_INFO "%s: Cut a %d byte packet (%zd bytes remaining)%s\n", strip_info->dev->name, strip_info->sx_count, end - cp - 1, strip_info-> discard ? " (discarded)" : ""); if (strip_info->sx_count > strip_info->sx_size) { strip_info->rx_over_errors++; printk(KERN_INFO "%s: sx_buff overflow (%d bytes total)\n", strip_info->dev->name, strip_info->sx_count); } else if (strip_info->discard) printk(KERN_INFO "%s: Discarding bad packet (%d/%d)\n", strip_info->dev->name, strip_info->discard, strip_info->sx_count); else process_message(strip_info); strip_info->discard = 0; strip_info->sx_count = 0; } else { /* Make sure we have space in the buffer */ if (strip_info->sx_count < strip_info->sx_size) strip_info->sx_buff[strip_info-> sx_count] = *cp; strip_info->sx_count++; } } cp++; } spin_unlock_bh(&strip_lock); } /************************************************************************/ /* General control routines */ static int set_mac_address(struct strip *strip_info, MetricomAddress * addr) { /* * We're using a manually specified address if the address is set * to anything other than all ones. Setting the address to all ones * disables manual mode and goes back to automatic address determination * (tracking the true address that the radio has). */ strip_info->manual_dev_addr = memcmp(addr->c, broadcast_address.c, sizeof(broadcast_address)); if (strip_info->manual_dev_addr) *(MetricomAddress *) strip_info->dev->dev_addr = *addr; else *(MetricomAddress *) strip_info->dev->dev_addr = strip_info->true_dev_addr; return 0; } static int strip_set_mac_address(struct net_device *dev, void *addr) { struct strip *strip_info = netdev_priv(dev); struct sockaddr *sa = addr; printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name); set_mac_address(strip_info, (MetricomAddress *) sa->sa_data); return 0; } static struct net_device_stats *strip_get_stats(struct net_device *dev) { struct strip *strip_info = netdev_priv(dev); static struct net_device_stats stats; memset(&stats, 0, sizeof(struct net_device_stats)); stats.rx_packets = strip_info->rx_packets; stats.tx_packets = strip_info->tx_packets; stats.rx_dropped = strip_info->rx_dropped; stats.tx_dropped = strip_info->tx_dropped; stats.tx_errors = strip_info->tx_errors; stats.rx_errors = strip_info->rx_errors; stats.rx_over_errors = strip_info->rx_over_errors; return (&stats); } /************************************************************************/ /* Opening and closing */ /* * Here's the order things happen: * When the user runs "slattach -p strip ..." * 1. The TTY module calls strip_open;; * 2. strip_open calls strip_alloc * 3. strip_alloc calls register_netdev * 4. register_netdev calls strip_dev_init * 5. then strip_open finishes setting up the strip_info * * When the user runs "ifconfig st<x> up address netmask ..." * 6. strip_open_low gets called * * When the user runs "ifconfig st<x> down" * 7. strip_close_low gets called * * When the user kills the slattach process * 8. strip_close gets called * 9. strip_close calls dev_close * 10. if the device is still up, then dev_close calls strip_close_low * 11. strip_close calls strip_free */ /* Open the low-level part of the STRIP channel. Easy! */ static int strip_open_low(struct net_device *dev) { struct strip *strip_info = netdev_priv(dev); if (strip_info->tty == NULL) return (-ENODEV); if (!allocate_buffers(strip_info, dev->mtu)) return (-ENOMEM); strip_info->sx_count = 0; strip_info->tx_left = 0; strip_info->discard = 0; strip_info->working = FALSE; strip_info->firmware_level = NoStructure; strip_info->next_command = CompatibilityCommand; strip_info->user_baud = get_baud(strip_info->tty); printk(KERN_INFO "%s: Initializing Radio.\n", strip_info->dev->name); ResetRadio(strip_info); strip_info->idle_timer.expires = jiffies + 1 * HZ; add_timer(&strip_info->idle_timer); netif_wake_queue(dev); return (0); } /* * Close the low-level part of the STRIP channel. Easy! */ static int strip_close_low(struct net_device *dev) { struct strip *strip_info = netdev_priv(dev); if (strip_info->tty == NULL) return -EBUSY; strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP); netif_stop_queue(dev); /* * Free all STRIP frame buffers. */ kfree(strip_info->rx_buff); strip_info->rx_buff = NULL; kfree(strip_info->sx_buff); strip_info->sx_buff = NULL; kfree(strip_info->tx_buff); strip_info->tx_buff = NULL; del_timer(&strip_info->idle_timer); return 0; } /* * This routine is called by DDI when the * (dynamically assigned) device is registered */ static void strip_dev_setup(struct net_device *dev) { /* * Finish setting up the DEVICE info. */ SET_MODULE_OWNER(dev); dev->trans_start = 0; dev->last_rx = 0; dev->tx_queue_len = 30; /* Drop after 30 frames queued */ dev->flags = 0; dev->mtu = DEFAULT_STRIP_MTU; dev->type = ARPHRD_METRICOM; /* dtang */ dev->hard_header_len = sizeof(STRIP_Header); /* * dev->priv Already holds a pointer to our struct strip */ *(MetricomAddress *) & dev->broadcast = broadcast_address; dev->dev_addr[0] = 0; dev->addr_len = sizeof(MetricomAddress); /* * Pointers to interface service routines. */ dev->open = strip_open_low; dev->stop = strip_close_low; dev->hard_start_xmit = strip_xmit; dev->hard_header = strip_header; dev->rebuild_header = strip_rebuild_header; dev->set_mac_address = strip_set_mac_address; dev->get_stats = strip_get_stats; dev->change_mtu = strip_change_mtu; } /* * Free a STRIP channel. */ static void strip_free(struct strip *strip_info) { spin_lock_bh(&strip_lock); list_del_rcu(&strip_info->list); spin_unlock_bh(&strip_lock); strip_info->magic = 0; free_netdev(strip_info->dev); } /* * Allocate a new free STRIP channel */ static struct strip *strip_alloc(void) { struct list_head *n; struct net_device *dev; struct strip *strip_info; dev = alloc_netdev(sizeof(struct strip), "st%d", strip_dev_setup); if (!dev) return NULL; /* If no more memory, return */ strip_info = dev->priv; strip_info->dev = dev; strip_info->magic = STRIP_MAGIC; strip_info->tty = NULL; strip_info->gratuitous_arp = jiffies + LongTime; strip_info->arp_interval = 0; init_timer(&strip_info->idle_timer); strip_info->idle_timer.data = (long) dev; strip_info->idle_timer.function = strip_IdleTask; spin_lock_bh(&strip_lock); rescan: /* * Search the list to find where to put our new entry * (and in the process decide what channel number it is * going to be) */ list_for_each(n, &strip_list) { struct strip *s = hlist_entry(n, struct strip, list); if (s->dev->base_addr == dev->base_addr) { ++dev->base_addr; goto rescan; } } sprintf(dev->name, "st%ld", dev->base_addr); list_add_tail_rcu(&strip_info->list, &strip_list); spin_unlock_bh(&strip_lock); return strip_info; } /* * Open the high-level part of the STRIP channel. * This function is called by the TTY module when the * STRIP line discipline is called for. Because we are * sure the tty line exists, we only have to link it to * a free STRIP channel... */ static int strip_open(struct tty_struct *tty) { struct strip *strip_info = (struct strip *) tty->disc_data; /* * First make sure we're not already connected. */ if (strip_info && strip_info->magic == STRIP_MAGIC) return -EEXIST; /* * OK. Find a free STRIP channel to use. */ if ((strip_info = strip_alloc()) == NULL) return -ENFILE; /* * Register our newly created device so it can be ifconfig'd * strip_dev_init() will be called as a side-effect */ if (register_netdev(strip_info->dev) != 0) { printk(KERN_ERR "strip: register_netdev() failed.\n"); strip_free(strip_info); return -ENFILE; } strip_info->tty = tty; tty->disc_data = strip_info; tty->receive_room = 65536; if (tty->driver->flush_buffer) tty->driver->flush_buffer(tty); /* * Restore default settings */ strip_info->dev->type = ARPHRD_METRICOM; /* dtang */ /* * Set tty options */ tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */ tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */ tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */ printk(KERN_INFO "STRIP: device \"%s\" activated\n", strip_info->dev->name); /* * Done. We have linked the TTY line to a channel. */ return (strip_info->dev->base_addr); } /* * Close down a STRIP channel. * This means flushing out any pending queues, and then restoring the * TTY line discipline to what it was before it got hooked to STRIP * (which usually is TTY again). */ static void strip_close(struct tty_struct *tty) { struct strip *strip_info = (struct strip *) tty->disc_data; /* * First make sure we're connected. */ if (!strip_info || strip_info->magic != STRIP_MAGIC) return; unregister_netdev(strip_info->dev); tty->disc_data = NULL; strip_info->tty = NULL; printk(KERN_INFO "STRIP: device \"%s\" closed down\n", strip_info->dev->name); strip_free(strip_info); tty->disc_data = NULL; } /************************************************************************/ /* Perform I/O control calls on an active STRIP channel. */ static int strip_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) { struct strip *strip_info = (struct strip *) tty->disc_data; /* * First make sure we're connected. */ if (!strip_info || strip_info->magic != STRIP_MAGIC) return -EINVAL; switch (cmd) { case SIOCGIFNAME: if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1)) return -EFAULT; break; case SIOCSIFHWADDR: { MetricomAddress addr; //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name); if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress))) return -EFAULT; return set_mac_address(strip_info, &addr); } /* * Allow stty to read, but not set, the serial port */ case TCGETS: case TCGETA: return n_tty_ioctl(tty, file, cmd, arg); break; default: return -ENOIOCTLCMD; break; } return 0; } /************************************************************************/ /* Initialization */ static struct tty_ldisc strip_ldisc = { .magic = TTY_LDISC_MAGIC, .name = "strip", .owner = THIS_MODULE, .open = strip_open, .close = strip_close, .ioctl = strip_ioctl, .receive_buf = strip_receive_buf, .write_wakeup = strip_write_some_more, }; /* * Initialize the STRIP driver. * This routine is called at boot time, to bootstrap the multi-channel * STRIP driver */ static char signon[] __initdata = KERN_INFO "STRIP: Version %s (unlimited channels)\n"; static int __init strip_init_driver(void) { int status; printk(signon, StripVersion); /* * Fill in our line protocol discipline, and register it */ if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc))) printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", status); /* * Register the status file with /proc */ proc_net_fops_create("strip", S_IFREG | S_IRUGO, &strip_seq_fops); return status; } module_init(strip_init_driver); static const char signoff[] __exitdata = KERN_INFO "STRIP: Module Unloaded\n"; static void __exit strip_exit_driver(void) { int i; struct list_head *p,*n; /* module ref count rules assure that all entries are unregistered */ list_for_each_safe(p, n, &strip_list) { struct strip *s = list_entry(p, struct strip, list); strip_free(s); } /* Unregister with the /proc/net file here. */ proc_net_remove("strip"); if ((i = tty_unregister_ldisc(N_STRIP))) printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i); printk(signoff); } module_exit(strip_exit_driver); MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>"); MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");