/* ZD1211 USB-WLAN driver for Linux * * Copyright (C) 2005-2007 Ulrich Kunitz * Copyright (C) 2006-2007 Daniel Drake * Copyright (C) 2006-2007 Michael Wu * Copyright (C) 2007-2008 Luis R. Rodriguez * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include "zd_def.h" #include "zd_chip.h" #include "zd_mac.h" #include "zd_rf.h" struct zd_reg_alpha2_map { u32 reg; char alpha2[2]; }; static struct zd_reg_alpha2_map reg_alpha2_map[] = { { ZD_REGDOMAIN_FCC, "US" }, { ZD_REGDOMAIN_IC, "CA" }, { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */ { ZD_REGDOMAIN_JAPAN, "JP" }, { ZD_REGDOMAIN_JAPAN_ADD, "JP" }, { ZD_REGDOMAIN_SPAIN, "ES" }, { ZD_REGDOMAIN_FRANCE, "FR" }, }; /* This table contains the hardware specific values for the modulation rates. */ static const struct ieee80211_rate zd_rates[] = { { .bitrate = 10, .hw_value = ZD_CCK_RATE_1M, }, { .bitrate = 20, .hw_value = ZD_CCK_RATE_2M, .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = ZD_CCK_RATE_5_5M, .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = ZD_CCK_RATE_11M, .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = ZD_OFDM_RATE_6M, .flags = 0 }, { .bitrate = 90, .hw_value = ZD_OFDM_RATE_9M, .flags = 0 }, { .bitrate = 120, .hw_value = ZD_OFDM_RATE_12M, .flags = 0 }, { .bitrate = 180, .hw_value = ZD_OFDM_RATE_18M, .flags = 0 }, { .bitrate = 240, .hw_value = ZD_OFDM_RATE_24M, .flags = 0 }, { .bitrate = 360, .hw_value = ZD_OFDM_RATE_36M, .flags = 0 }, { .bitrate = 480, .hw_value = ZD_OFDM_RATE_48M, .flags = 0 }, { .bitrate = 540, .hw_value = ZD_OFDM_RATE_54M, .flags = 0 }, }; static const struct ieee80211_channel zd_channels[] = { { .center_freq = 2412, .hw_value = 1 }, { .center_freq = 2417, .hw_value = 2 }, { .center_freq = 2422, .hw_value = 3 }, { .center_freq = 2427, .hw_value = 4 }, { .center_freq = 2432, .hw_value = 5 }, { .center_freq = 2437, .hw_value = 6 }, { .center_freq = 2442, .hw_value = 7 }, { .center_freq = 2447, .hw_value = 8 }, { .center_freq = 2452, .hw_value = 9 }, { .center_freq = 2457, .hw_value = 10 }, { .center_freq = 2462, .hw_value = 11 }, { .center_freq = 2467, .hw_value = 12 }, { .center_freq = 2472, .hw_value = 13 }, { .center_freq = 2484, .hw_value = 14 }, }; static void housekeeping_init(struct zd_mac *mac); static void housekeeping_enable(struct zd_mac *mac); static void housekeeping_disable(struct zd_mac *mac); static int zd_reg2alpha2(u8 regdomain, char *alpha2) { unsigned int i; struct zd_reg_alpha2_map *reg_map; for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) { reg_map = ®_alpha2_map[i]; if (regdomain == reg_map->reg) { alpha2[0] = reg_map->alpha2[0]; alpha2[1] = reg_map->alpha2[1]; return 0; } } return 1; } int zd_mac_preinit_hw(struct ieee80211_hw *hw) { int r; u8 addr[ETH_ALEN]; struct zd_mac *mac = zd_hw_mac(hw); r = zd_chip_read_mac_addr_fw(&mac->chip, addr); if (r) return r; SET_IEEE80211_PERM_ADDR(hw, addr); return 0; } int zd_mac_init_hw(struct ieee80211_hw *hw) { int r; struct zd_mac *mac = zd_hw_mac(hw); struct zd_chip *chip = &mac->chip; char alpha2[2]; u8 default_regdomain; r = zd_chip_enable_int(chip); if (r) goto out; r = zd_chip_init_hw(chip); if (r) goto disable_int; ZD_ASSERT(!irqs_disabled()); r = zd_read_regdomain(chip, &default_regdomain); if (r) goto disable_int; spin_lock_irq(&mac->lock); mac->regdomain = mac->default_regdomain = default_regdomain; spin_unlock_irq(&mac->lock); /* We must inform the device that we are doing encryption/decryption in * software at the moment. */ r = zd_set_encryption_type(chip, ENC_SNIFFER); if (r) goto disable_int; r = zd_reg2alpha2(mac->regdomain, alpha2); if (r) goto disable_int; r = regulatory_hint(hw->wiphy, alpha2); disable_int: zd_chip_disable_int(chip); out: return r; } void zd_mac_clear(struct zd_mac *mac) { flush_workqueue(zd_workqueue); zd_chip_clear(&mac->chip); ZD_ASSERT(!spin_is_locked(&mac->lock)); ZD_MEMCLEAR(mac, sizeof(struct zd_mac)); } static int set_rx_filter(struct zd_mac *mac) { unsigned long flags; u32 filter = STA_RX_FILTER; spin_lock_irqsave(&mac->lock, flags); if (mac->pass_ctrl) filter |= RX_FILTER_CTRL; spin_unlock_irqrestore(&mac->lock, flags); return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter); } static int set_mc_hash(struct zd_mac *mac) { struct zd_mc_hash hash; zd_mc_clear(&hash); return zd_chip_set_multicast_hash(&mac->chip, &hash); } static int zd_op_start(struct ieee80211_hw *hw) { struct zd_mac *mac = zd_hw_mac(hw); struct zd_chip *chip = &mac->chip; struct zd_usb *usb = &chip->usb; int r; if (!usb->initialized) { r = zd_usb_init_hw(usb); if (r) goto out; } r = zd_chip_enable_int(chip); if (r < 0) goto out; r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G); if (r < 0) goto disable_int; r = set_rx_filter(mac); if (r) goto disable_int; r = set_mc_hash(mac); if (r) goto disable_int; r = zd_chip_switch_radio_on(chip); if (r < 0) goto disable_int; r = zd_chip_enable_rxtx(chip); if (r < 0) goto disable_radio; r = zd_chip_enable_hwint(chip); if (r < 0) goto disable_rxtx; housekeeping_enable(mac); return 0; disable_rxtx: zd_chip_disable_rxtx(chip); disable_radio: zd_chip_switch_radio_off(chip); disable_int: zd_chip_disable_int(chip); out: return r; } static void zd_op_stop(struct ieee80211_hw *hw) { struct zd_mac *mac = zd_hw_mac(hw); struct zd_chip *chip = &mac->chip; struct sk_buff *skb; struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue; /* The order here deliberately is a little different from the open() * method, since we need to make sure there is no opportunity for RX * frames to be processed by mac80211 after we have stopped it. */ zd_chip_disable_rxtx(chip); housekeeping_disable(mac); flush_workqueue(zd_workqueue); zd_chip_disable_hwint(chip); zd_chip_switch_radio_off(chip); zd_chip_disable_int(chip); while ((skb = skb_dequeue(ack_wait_queue))) dev_kfree_skb_any(skb); } /** * tx_status - reports tx status of a packet if required * @hw - a &struct ieee80211_hw pointer * @skb - a sk-buffer * @flags: extra flags to set in the TX status info * @ackssi: ACK signal strength * @success - True for successful transmission of the frame * * This information calls ieee80211_tx_status_irqsafe() if required by the * control information. It copies the control information into the status * information. * * If no status information has been requested, the skb is freed. */ static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, int ackssi, bool success) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); if (success) info->flags |= IEEE80211_TX_STAT_ACK; info->status.ack_signal = ackssi; ieee80211_tx_status_irqsafe(hw, skb); } /** * zd_mac_tx_failed - callback for failed frames * @dev: the mac80211 wireless device * * This function is called if a frame couldn't be succesfully be * transferred. The first frame from the tx queue, will be selected and * reported as error to the upper layers. */ void zd_mac_tx_failed(struct ieee80211_hw *hw) { struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue; struct sk_buff *skb; skb = skb_dequeue(q); if (skb == NULL) return; tx_status(hw, skb, 0, 0); } /** * zd_mac_tx_to_dev - callback for USB layer * @skb: a &sk_buff pointer * @error: error value, 0 if transmission successful * * Informs the MAC layer that the frame has successfully transferred to the * device. If an ACK is required and the transfer to the device has been * successful, the packets are put on the @ack_wait_queue with * the control set removed. */ void zd_mac_tx_to_dev(struct sk_buff *skb, int error) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hw *hw = info->rate_driver_data[0]; skb_pull(skb, sizeof(struct zd_ctrlset)); if (unlikely(error || (info->flags & IEEE80211_TX_CTL_NO_ACK))) { tx_status(hw, skb, 0, !error); } else { struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue; skb_queue_tail(q, skb); while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) zd_mac_tx_failed(hw); } } static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length) { /* ZD_PURE_RATE() must be used to remove the modulation type flag of * the zd-rate values. */ static const u8 rate_divisor[] = { [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1, [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2, /* Bits must be doubled. */ [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11, [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11, [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6, [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9, [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12, [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18, [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24, [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36, [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48, [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54, }; u32 bits = (u32)tx_length * 8; u32 divisor; divisor = rate_divisor[ZD_PURE_RATE(zd_rate)]; if (divisor == 0) return -EINVAL; switch (zd_rate) { case ZD_CCK_RATE_5_5M: bits = (2*bits) + 10; /* round up to the next integer */ break; case ZD_CCK_RATE_11M: if (service) { u32 t = bits % 11; *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION; if (0 < t && t <= 3) { *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION; } } bits += 10; /* round up to the next integer */ break; } return bits/divisor; } static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs, struct ieee80211_hdr *header, struct ieee80211_tx_info *info) { /* * CONTROL TODO: * - if backoff needed, enable bit 0 * - if burst (backoff not needed) disable bit 0 */ cs->control = 0; /* First fragment */ if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) cs->control |= ZD_CS_NEED_RANDOM_BACKOFF; /* No ACK expected (multicast, etc.) */ if (info->flags & IEEE80211_TX_CTL_NO_ACK) cs->control |= ZD_CS_NO_ACK; /* PS-POLL */ if (ieee80211_is_pspoll(header->frame_control)) cs->control |= ZD_CS_PS_POLL_FRAME; if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) cs->control |= ZD_CS_RTS; if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) cs->control |= ZD_CS_SELF_CTS; /* FIXME: Management frame? */ } static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon) { struct zd_mac *mac = zd_hw_mac(hw); int r; u32 tmp, j = 0; /* 4 more bytes for tail CRC */ u32 full_len = beacon->len + 4; r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0); if (r < 0) return r; r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp); if (r < 0) return r; while (tmp & 0x2) { r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp); if (r < 0) return r; if ((++j % 100) == 0) { printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n"); if (j >= 500) { printk(KERN_ERR "Giving up beacon config.\n"); return -ETIMEDOUT; } } msleep(1); } r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1); if (r < 0) return r; if (zd_chip_is_zd1211b(&mac->chip)) { r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1); if (r < 0) return r; } for (j = 0 ; j < beacon->len; j++) { r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, *((u8 *)(beacon->data + j))); if (r < 0) return r; } for (j = 0; j < 4; j++) { r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0); if (r < 0) return r; } r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1); if (r < 0) return r; /* 802.11b/g 2.4G CCK 1Mb * 802.11a, not yet implemented, uses different values (see GPL vendor * driver) */ return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 | (full_len << 19)); } static int fill_ctrlset(struct zd_mac *mac, struct sk_buff *skb) { int r; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; unsigned int frag_len = skb->len + FCS_LEN; unsigned int packet_length; struct ieee80211_rate *txrate; struct zd_ctrlset *cs = (struct zd_ctrlset *) skb_push(skb, sizeof(struct zd_ctrlset)); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); ZD_ASSERT(frag_len <= 0xffff); txrate = ieee80211_get_tx_rate(mac->hw, info); cs->modulation = txrate->hw_value; if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) cs->modulation = txrate->hw_value_short; cs->tx_length = cpu_to_le16(frag_len); cs_set_control(mac, cs, hdr, info); packet_length = frag_len + sizeof(struct zd_ctrlset) + 10; ZD_ASSERT(packet_length <= 0xffff); /* ZD1211B: Computing the length difference this way, gives us * flexibility to compute the packet length. */ cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ? packet_length - frag_len : packet_length); /* * CURRENT LENGTH: * - transmit frame length in microseconds * - seems to be derived from frame length * - see Cal_Us_Service() in zdinlinef.h * - if macp->bTxBurstEnable is enabled, then multiply by 4 * - bTxBurstEnable is never set in the vendor driver * * SERVICE: * - "for PLCP configuration" * - always 0 except in some situations at 802.11b 11M * - see line 53 of zdinlinef.h */ cs->service = 0; r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation), le16_to_cpu(cs->tx_length)); if (r < 0) return r; cs->current_length = cpu_to_le16(r); cs->next_frame_length = 0; return 0; } /** * zd_op_tx - transmits a network frame to the device * * @dev: mac80211 hardware device * @skb: socket buffer * @control: the control structure * * This function transmit an IEEE 802.11 network frame to the device. The * control block of the skbuff will be initialized. If necessary the incoming * mac80211 queues will be stopped. */ static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct zd_mac *mac = zd_hw_mac(hw); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int r; r = fill_ctrlset(mac, skb); if (r) goto fail; info->rate_driver_data[0] = hw; r = zd_usb_tx(&mac->chip.usb, skb); if (r) goto fail; return 0; fail: dev_kfree_skb(skb); return 0; } /** * filter_ack - filters incoming packets for acknowledgements * @dev: the mac80211 device * @rx_hdr: received header * @stats: the status for the received packet * * This functions looks for ACK packets and tries to match them with the * frames in the tx queue. If a match is found the frame will be dequeued and * the upper layers is informed about the successful transmission. If * mac80211 queues have been stopped and the number of frames still to be * transmitted is low the queues will be opened again. * * Returns 1 if the frame was an ACK, 0 if it was ignored. */ static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, struct ieee80211_rx_status *stats) { struct sk_buff *skb; struct sk_buff_head *q; unsigned long flags; if (!ieee80211_is_ack(rx_hdr->frame_control)) return 0; q = &zd_hw_mac(hw)->ack_wait_queue; spin_lock_irqsave(&q->lock, flags); skb_queue_walk(q, skb) { struct ieee80211_hdr *tx_hdr; tx_hdr = (struct ieee80211_hdr *)skb->data; if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN))) { __skb_unlink(skb, q); tx_status(hw, skb, stats->signal, 1); goto out; } } out: spin_unlock_irqrestore(&q->lock, flags); return 1; } int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) { struct zd_mac *mac = zd_hw_mac(hw); struct ieee80211_rx_status stats; const struct rx_status *status; struct sk_buff *skb; int bad_frame = 0; __le16 fc; int need_padding; int i; u8 rate; if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ + FCS_LEN + sizeof(struct rx_status)) return -EINVAL; memset(&stats, 0, sizeof(stats)); /* Note about pass_failed_fcs and pass_ctrl access below: * mac locking intentionally omitted here, as this is the only unlocked * reader and the only writer is configure_filter. Plus, if there were * any races accessing these variables, it wouldn't really matter. * If mac80211 ever provides a way for us to access filter flags * from outside configure_filter, we could improve on this. Also, this * situation may change once we implement some kind of DMA-into-skb * RX path. */ /* Caller has to ensure that length >= sizeof(struct rx_status). */ status = (struct rx_status *) (buffer + (length - sizeof(struct rx_status))); if (status->frame_status & ZD_RX_ERROR) { if (mac->pass_failed_fcs && (status->frame_status & ZD_RX_CRC32_ERROR)) { stats.flag |= RX_FLAG_FAILED_FCS_CRC; bad_frame = 1; } else { return -EINVAL; } } stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq; stats.band = IEEE80211_BAND_2GHZ; stats.signal = status->signal_strength; stats.qual = zd_rx_qual_percent(buffer, length - sizeof(struct rx_status), status); rate = zd_rx_rate(buffer, status); /* todo: return index in the big switches in zd_rx_rate instead */ for (i = 0; i < mac->band.n_bitrates; i++) if (rate == mac->band.bitrates[i].hw_value) stats.rate_idx = i; length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status); buffer += ZD_PLCP_HEADER_SIZE; /* Except for bad frames, filter each frame to see if it is an ACK, in * which case our internal TX tracking is updated. Normally we then * bail here as there's no need to pass ACKs on up to the stack, but * there is also the case where the stack has requested us to pass * control frames on up (pass_ctrl) which we must consider. */ if (!bad_frame && filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) && !mac->pass_ctrl) return 0; fc = get_unaligned((__le16*)buffer); need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); skb = dev_alloc_skb(length + (need_padding ? 2 : 0)); if (skb == NULL) return -ENOMEM; if (need_padding) { /* Make sure the the payload data is 4 byte aligned. */ skb_reserve(skb, 2); } memcpy(skb_put(skb, length), buffer, length); memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); ieee80211_rx_irqsafe(hw, skb); return 0; } static int zd_op_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct zd_mac *mac = zd_hw_mac(hw); /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */ if (mac->type != NL80211_IFTYPE_UNSPECIFIED) return -EOPNOTSUPP; switch (conf->type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: mac->type = conf->type; break; default: return -EOPNOTSUPP; } return zd_write_mac_addr(&mac->chip, conf->mac_addr); } static void zd_op_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct zd_mac *mac = zd_hw_mac(hw); mac->type = NL80211_IFTYPE_UNSPECIFIED; zd_set_beacon_interval(&mac->chip, 0); zd_write_mac_addr(&mac->chip, NULL); } static int zd_op_config(struct ieee80211_hw *hw, u32 changed) { struct zd_mac *mac = zd_hw_mac(hw); struct ieee80211_conf *conf = &hw->conf; return zd_chip_set_channel(&mac->chip, conf->channel->hw_value); } static void zd_process_intr(struct work_struct *work) { u16 int_status; struct zd_mac *mac = container_of(work, struct zd_mac, process_intr); int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4)); if (int_status & INT_CFG_NEXT_BCN) dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n"); else dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n"); zd_chip_enable_hwint(&mac->chip); } static void set_multicast_hash_handler(struct work_struct *work) { struct zd_mac *mac = container_of(work, struct zd_mac, set_multicast_hash_work); struct zd_mc_hash hash; spin_lock_irq(&mac->lock); hash = mac->multicast_hash; spin_unlock_irq(&mac->lock); zd_chip_set_multicast_hash(&mac->chip, &hash); } static void set_rx_filter_handler(struct work_struct *work) { struct zd_mac *mac = container_of(work, struct zd_mac, set_rx_filter_work); int r; dev_dbg_f(zd_mac_dev(mac), "\n"); r = set_rx_filter(mac); if (r) dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r); } #define SUPPORTED_FIF_FLAGS \ (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) static void zd_op_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *new_flags, int mc_count, struct dev_mc_list *mclist) { struct zd_mc_hash hash; struct zd_mac *mac = zd_hw_mac(hw); unsigned long flags; int i; /* Only deal with supported flags */ changed_flags &= SUPPORTED_FIF_FLAGS; *new_flags &= SUPPORTED_FIF_FLAGS; /* changed_flags is always populated but this driver * doesn't support all FIF flags so its possible we don't * need to do anything */ if (!changed_flags) return; if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) { zd_mc_add_all(&hash); } else { zd_mc_clear(&hash); for (i = 0; i < mc_count; i++) { if (!mclist) break; dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", mclist->dmi_addr); zd_mc_add_addr(&hash, mclist->dmi_addr); mclist = mclist->next; } } spin_lock_irqsave(&mac->lock, flags); mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); mac->multicast_hash = hash; spin_unlock_irqrestore(&mac->lock, flags); queue_work(zd_workqueue, &mac->set_multicast_hash_work); if (changed_flags & FIF_CONTROL) queue_work(zd_workqueue, &mac->set_rx_filter_work); /* no handling required for FIF_OTHER_BSS as we don't currently * do BSSID filtering */ /* FIXME: in future it would be nice to enable the probe response * filter (so that the driver doesn't see them) until * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd * have to schedule work to enable prbresp reception, which might * happen too late. For now we'll just listen and forward them all the * time. */ } static void set_rts_cts_work(struct work_struct *work) { struct zd_mac *mac = container_of(work, struct zd_mac, set_rts_cts_work); unsigned long flags; unsigned int short_preamble; mutex_lock(&mac->chip.mutex); spin_lock_irqsave(&mac->lock, flags); mac->updating_rts_rate = 0; short_preamble = mac->short_preamble; spin_unlock_irqrestore(&mac->lock, flags); zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble); mutex_unlock(&mac->chip.mutex); } static void zd_op_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changes) { struct zd_mac *mac = zd_hw_mac(hw); unsigned long flags; int associated; dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes); if (mac->type == NL80211_IFTYPE_MESH_POINT || mac->type == NL80211_IFTYPE_ADHOC) { associated = true; if (changes & BSS_CHANGED_BEACON) { struct sk_buff *beacon = ieee80211_beacon_get(hw, vif); if (beacon) { zd_mac_config_beacon(hw, beacon); kfree_skb(beacon); } } if (changes & BSS_CHANGED_BEACON_ENABLED) { u32 interval; if (bss_conf->enable_beacon) interval = BCN_MODE_IBSS | bss_conf->beacon_int; else interval = 0; zd_set_beacon_interval(&mac->chip, interval); } } else associated = is_valid_ether_addr(bss_conf->bssid); spin_lock_irq(&mac->lock); mac->associated = associated; spin_unlock_irq(&mac->lock); /* TODO: do hardware bssid filtering */ if (changes & BSS_CHANGED_ERP_PREAMBLE) { spin_lock_irqsave(&mac->lock, flags); mac->short_preamble = bss_conf->use_short_preamble; if (!mac->updating_rts_rate) { mac->updating_rts_rate = 1; /* FIXME: should disable TX here, until work has * completed and RTS_CTS reg is updated */ queue_work(zd_workqueue, &mac->set_rts_cts_work); } spin_unlock_irqrestore(&mac->lock, flags); } } static u64 zd_op_get_tsf(struct ieee80211_hw *hw) { struct zd_mac *mac = zd_hw_mac(hw); return zd_chip_get_tsf(&mac->chip); } static const struct ieee80211_ops zd_ops = { .tx = zd_op_tx, .start = zd_op_start, .stop = zd_op_stop, .add_interface = zd_op_add_interface, .remove_interface = zd_op_remove_interface, .config = zd_op_config, .configure_filter = zd_op_configure_filter, .bss_info_changed = zd_op_bss_info_changed, .get_tsf = zd_op_get_tsf, }; struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf) { struct zd_mac *mac; struct ieee80211_hw *hw; hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops); if (!hw) { dev_dbg_f(&intf->dev, "out of memory\n"); return NULL; } mac = zd_hw_mac(hw); memset(mac, 0, sizeof(*mac)); spin_lock_init(&mac->lock); mac->hw = hw; mac->type = NL80211_IFTYPE_UNSPECIFIED; memcpy(mac->channels, zd_channels, sizeof(zd_channels)); memcpy(mac->rates, zd_rates, sizeof(zd_rates)); mac->band.n_bitrates = ARRAY_SIZE(zd_rates); mac->band.bitrates = mac->rates; mac->band.n_channels = ARRAY_SIZE(zd_channels); mac->band.channels = mac->channels; hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band; hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_SIGNAL_UNSPEC; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_MESH_POINT) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); hw->max_signal = 100; hw->queues = 1; hw->extra_tx_headroom = sizeof(struct zd_ctrlset); skb_queue_head_init(&mac->ack_wait_queue); zd_chip_init(&mac->chip, hw, intf); housekeeping_init(mac); INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler); INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work); INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler); INIT_WORK(&mac->process_intr, zd_process_intr); SET_IEEE80211_DEV(hw, &intf->dev); return hw; } #define LINK_LED_WORK_DELAY HZ static void link_led_handler(struct work_struct *work) { struct zd_mac *mac = container_of(work, struct zd_mac, housekeeping.link_led_work.work); struct zd_chip *chip = &mac->chip; int is_associated; int r; spin_lock_irq(&mac->lock); is_associated = mac->associated; spin_unlock_irq(&mac->lock); r = zd_chip_control_leds(chip, is_associated ? LED_ASSOCIATED : LED_SCANNING); if (r) dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r); queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, LINK_LED_WORK_DELAY); } static void housekeeping_init(struct zd_mac *mac) { INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler); } static void housekeeping_enable(struct zd_mac *mac) { dev_dbg_f(zd_mac_dev(mac), "\n"); queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work, 0); } static void housekeeping_disable(struct zd_mac *mac) { dev_dbg_f(zd_mac_dev(mac), "\n"); cancel_rearming_delayed_workqueue(zd_workqueue, &mac->housekeeping.link_led_work); zd_chip_control_leds(&mac->chip, LED_OFF); }