/* * PCI Express PCI Hot Plug Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <greg@kroah.com>,<kristen.c.accardi@intel.com> * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/signal.h> #include <linux/jiffies.h> #include <linux/timer.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/time.h> #include "../pci.h" #include "pciehp.h" #ifdef DEBUG #define DBG_K_TRACE_ENTRY ((unsigned int)0x00000001) /* On function entry */ #define DBG_K_TRACE_EXIT ((unsigned int)0x00000002) /* On function exit */ #define DBG_K_INFO ((unsigned int)0x00000004) /* Info messages */ #define DBG_K_ERROR ((unsigned int)0x00000008) /* Error messages */ #define DBG_K_TRACE (DBG_K_TRACE_ENTRY|DBG_K_TRACE_EXIT) #define DBG_K_STANDARD (DBG_K_INFO|DBG_K_ERROR|DBG_K_TRACE) /* Redefine this flagword to set debug level */ #define DEBUG_LEVEL DBG_K_STANDARD #define DEFINE_DBG_BUFFER char __dbg_str_buf[256]; #define DBG_PRINT( dbg_flags, args... ) \ do { \ if ( DEBUG_LEVEL & ( dbg_flags ) ) \ { \ int len; \ len = sprintf( __dbg_str_buf, "%s:%d: %s: ", \ __FILE__, __LINE__, __FUNCTION__ ); \ sprintf( __dbg_str_buf + len, args ); \ printk( KERN_NOTICE "%s\n", __dbg_str_buf ); \ } \ } while (0) #define DBG_ENTER_ROUTINE DBG_PRINT (DBG_K_TRACE_ENTRY, "%s", "[Entry]"); #define DBG_LEAVE_ROUTINE DBG_PRINT (DBG_K_TRACE_EXIT, "%s", "[Exit]"); #else #define DEFINE_DBG_BUFFER #define DBG_ENTER_ROUTINE #define DBG_LEAVE_ROUTINE #endif /* DEBUG */ static atomic_t pciehp_num_controllers = ATOMIC_INIT(0); struct ctrl_reg { u8 cap_id; u8 nxt_ptr; u16 cap_reg; u32 dev_cap; u16 dev_ctrl; u16 dev_status; u32 lnk_cap; u16 lnk_ctrl; u16 lnk_status; u32 slot_cap; u16 slot_ctrl; u16 slot_status; u16 root_ctrl; u16 rsvp; u32 root_status; } __attribute__ ((packed)); /* offsets to the controller registers based on the above structure layout */ enum ctrl_offsets { PCIECAPID = offsetof(struct ctrl_reg, cap_id), NXTCAPPTR = offsetof(struct ctrl_reg, nxt_ptr), CAPREG = offsetof(struct ctrl_reg, cap_reg), DEVCAP = offsetof(struct ctrl_reg, dev_cap), DEVCTRL = offsetof(struct ctrl_reg, dev_ctrl), DEVSTATUS = offsetof(struct ctrl_reg, dev_status), LNKCAP = offsetof(struct ctrl_reg, lnk_cap), LNKCTRL = offsetof(struct ctrl_reg, lnk_ctrl), LNKSTATUS = offsetof(struct ctrl_reg, lnk_status), SLOTCAP = offsetof(struct ctrl_reg, slot_cap), SLOTCTRL = offsetof(struct ctrl_reg, slot_ctrl), SLOTSTATUS = offsetof(struct ctrl_reg, slot_status), ROOTCTRL = offsetof(struct ctrl_reg, root_ctrl), ROOTSTATUS = offsetof(struct ctrl_reg, root_status), }; static inline int pciehp_readw(struct controller *ctrl, int reg, u16 *value) { struct pci_dev *dev = ctrl->pci_dev; return pci_read_config_word(dev, ctrl->cap_base + reg, value); } static inline int pciehp_readl(struct controller *ctrl, int reg, u32 *value) { struct pci_dev *dev = ctrl->pci_dev; return pci_read_config_dword(dev, ctrl->cap_base + reg, value); } static inline int pciehp_writew(struct controller *ctrl, int reg, u16 value) { struct pci_dev *dev = ctrl->pci_dev; return pci_write_config_word(dev, ctrl->cap_base + reg, value); } static inline int pciehp_writel(struct controller *ctrl, int reg, u32 value) { struct pci_dev *dev = ctrl->pci_dev; return pci_write_config_dword(dev, ctrl->cap_base + reg, value); } /* Field definitions in PCI Express Capabilities Register */ #define CAP_VER 0x000F #define DEV_PORT_TYPE 0x00F0 #define SLOT_IMPL 0x0100 #define MSG_NUM 0x3E00 /* Device or Port Type */ #define NAT_ENDPT 0x00 #define LEG_ENDPT 0x01 #define ROOT_PORT 0x04 #define UP_STREAM 0x05 #define DN_STREAM 0x06 #define PCIE_PCI_BRDG 0x07 #define PCI_PCIE_BRDG 0x10 /* Field definitions in Device Capabilities Register */ #define DATTN_BUTTN_PRSN 0x1000 #define DATTN_LED_PRSN 0x2000 #define DPWR_LED_PRSN 0x4000 /* Field definitions in Link Capabilities Register */ #define MAX_LNK_SPEED 0x000F #define MAX_LNK_WIDTH 0x03F0 /* Link Width Encoding */ #define LNK_X1 0x01 #define LNK_X2 0x02 #define LNK_X4 0x04 #define LNK_X8 0x08 #define LNK_X12 0x0C #define LNK_X16 0x10 #define LNK_X32 0x20 /*Field definitions of Link Status Register */ #define LNK_SPEED 0x000F #define NEG_LINK_WD 0x03F0 #define LNK_TRN_ERR 0x0400 #define LNK_TRN 0x0800 #define SLOT_CLK_CONF 0x1000 /* Field definitions in Slot Capabilities Register */ #define ATTN_BUTTN_PRSN 0x00000001 #define PWR_CTRL_PRSN 0x00000002 #define MRL_SENS_PRSN 0x00000004 #define ATTN_LED_PRSN 0x00000008 #define PWR_LED_PRSN 0x00000010 #define HP_SUPR_RM_SUP 0x00000020 #define HP_CAP 0x00000040 #define SLOT_PWR_VALUE 0x000003F8 #define SLOT_PWR_LIMIT 0x00000C00 #define PSN 0xFFF80000 /* PSN: Physical Slot Number */ /* Field definitions in Slot Control Register */ #define ATTN_BUTTN_ENABLE 0x0001 #define PWR_FAULT_DETECT_ENABLE 0x0002 #define MRL_DETECT_ENABLE 0x0004 #define PRSN_DETECT_ENABLE 0x0008 #define CMD_CMPL_INTR_ENABLE 0x0010 #define HP_INTR_ENABLE 0x0020 #define ATTN_LED_CTRL 0x00C0 #define PWR_LED_CTRL 0x0300 #define PWR_CTRL 0x0400 #define EMI_CTRL 0x0800 /* Attention indicator and Power indicator states */ #define LED_ON 0x01 #define LED_BLINK 0x10 #define LED_OFF 0x11 /* Power Control Command */ #define POWER_ON 0 #define POWER_OFF 0x0400 /* EMI Status defines */ #define EMI_DISENGAGED 0 #define EMI_ENGAGED 1 /* Field definitions in Slot Status Register */ #define ATTN_BUTTN_PRESSED 0x0001 #define PWR_FAULT_DETECTED 0x0002 #define MRL_SENS_CHANGED 0x0004 #define PRSN_DETECT_CHANGED 0x0008 #define CMD_COMPLETED 0x0010 #define MRL_STATE 0x0020 #define PRSN_STATE 0x0040 #define EMI_STATE 0x0080 #define EMI_STATUS_BIT 7 DEFINE_DBG_BUFFER /* Debug string buffer for entire HPC defined here */ static irqreturn_t pcie_isr(int irq, void *dev_id); static void start_int_poll_timer(struct controller *ctrl, int sec); /* This is the interrupt polling timeout function. */ static void int_poll_timeout(unsigned long data) { struct controller *ctrl = (struct controller *)data; DBG_ENTER_ROUTINE /* Poll for interrupt events. regs == NULL => polling */ pcie_isr(0, ctrl); init_timer(&ctrl->poll_timer); if (!pciehp_poll_time) pciehp_poll_time = 2; /* reset timer to poll in 2 secs if user doesn't specify at module installation*/ start_int_poll_timer(ctrl, pciehp_poll_time); } /* This function starts the interrupt polling timer. */ static void start_int_poll_timer(struct controller *ctrl, int sec) { /* Clamp to sane value */ if ((sec <= 0) || (sec > 60)) sec = 2; ctrl->poll_timer.function = &int_poll_timeout; ctrl->poll_timer.data = (unsigned long)ctrl; ctrl->poll_timer.expires = jiffies + sec * HZ; add_timer(&ctrl->poll_timer); } static inline int pcie_wait_cmd(struct controller *ctrl) { int retval = 0; unsigned int msecs = pciehp_poll_mode ? 2500 : 1000; unsigned long timeout = msecs_to_jiffies(msecs); int rc; rc = wait_event_interruptible_timeout(ctrl->queue, !ctrl->cmd_busy, timeout); if (!rc) dbg("Command not completed in 1000 msec\n"); else if (rc < 0) { retval = -EINTR; info("Command was interrupted by a signal\n"); } return retval; } /** * pcie_write_cmd - Issue controller command * @slot: slot to which the command is issued * @cmd: command value written to slot control register * @mask: bitmask of slot control register to be modified */ static int pcie_write_cmd(struct slot *slot, u16 cmd, u16 mask) { struct controller *ctrl = slot->ctrl; int retval = 0; u16 slot_status; u16 slot_ctrl; unsigned long flags; DBG_ENTER_ROUTINE mutex_lock(&ctrl->ctrl_lock); retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); goto out; } if ((slot_status & CMD_COMPLETED) == CMD_COMPLETED ) { /* After 1 sec and CMD_COMPLETED still not set, just proceed forward to issue the next command according to spec. Just print out the error message */ dbg("%s: CMD_COMPLETED not clear after 1 sec.\n", __FUNCTION__); } spin_lock_irqsave(&ctrl->lock, flags); retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (retval) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); goto out_spin_unlock; } slot_ctrl &= ~mask; slot_ctrl |= ((cmd & mask) | CMD_CMPL_INTR_ENABLE); ctrl->cmd_busy = 1; retval = pciehp_writew(ctrl, SLOTCTRL, slot_ctrl); if (retval) err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__); out_spin_unlock: spin_unlock_irqrestore(&ctrl->lock, flags); /* * Wait for command completion. */ if (!retval) retval = pcie_wait_cmd(ctrl); out: mutex_unlock(&ctrl->ctrl_lock); DBG_LEAVE_ROUTINE return retval; } static int hpc_check_lnk_status(struct controller *ctrl) { u16 lnk_status; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status); if (retval) { err("%s: Cannot read LNKSTATUS register\n", __FUNCTION__); return retval; } dbg("%s: lnk_status = %x\n", __FUNCTION__, lnk_status); if ( (lnk_status & LNK_TRN) || (lnk_status & LNK_TRN_ERR) || !(lnk_status & NEG_LINK_WD)) { err("%s : Link Training Error occurs \n", __FUNCTION__); retval = -1; return retval; } DBG_LEAVE_ROUTINE return retval; } static int hpc_get_attention_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_ctrl; u8 atten_led_state; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (retval) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); return retval; } dbg("%s: SLOTCTRL %x, value read %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_ctrl); atten_led_state = (slot_ctrl & ATTN_LED_CTRL) >> 6; switch (atten_led_state) { case 0: *status = 0xFF; /* Reserved */ break; case 1: *status = 1; /* On */ break; case 2: *status = 2; /* Blink */ break; case 3: *status = 0; /* Off */ break; default: *status = 0xFF; break; } DBG_LEAVE_ROUTINE return 0; } static int hpc_get_power_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_ctrl; u8 pwr_state; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (retval) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); return retval; } dbg("%s: SLOTCTRL %x value read %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_ctrl); pwr_state = (slot_ctrl & PWR_CTRL) >> 10; switch (pwr_state) { case 0: *status = 1; break; case 1: *status = 0; break; default: *status = 0xFF; break; } DBG_LEAVE_ROUTINE return retval; } static int hpc_get_latch_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_status; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); return retval; } *status = (((slot_status & MRL_STATE) >> 5) == 0) ? 0 : 1; DBG_LEAVE_ROUTINE return 0; } static int hpc_get_adapter_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_status; u8 card_state; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); return retval; } card_state = (u8)((slot_status & PRSN_STATE) >> 6); *status = (card_state == 1) ? 1 : 0; DBG_LEAVE_ROUTINE return 0; } static int hpc_query_power_fault(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_status; u8 pwr_fault; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { err("%s: Cannot check for power fault\n", __FUNCTION__); return retval; } pwr_fault = (u8)((slot_status & PWR_FAULT_DETECTED) >> 1); DBG_LEAVE_ROUTINE return pwr_fault; } static int hpc_get_emi_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_status; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { err("%s : Cannot check EMI status\n", __FUNCTION__); return retval; } *status = (slot_status & EMI_STATE) >> EMI_STATUS_BIT; DBG_LEAVE_ROUTINE return retval; } static int hpc_toggle_emi(struct slot *slot) { u16 slot_cmd; u16 cmd_mask; int rc; DBG_ENTER_ROUTINE slot_cmd = EMI_CTRL; cmd_mask = EMI_CTRL; if (!pciehp_poll_mode) { slot_cmd = slot_cmd | HP_INTR_ENABLE; cmd_mask = cmd_mask | HP_INTR_ENABLE; } rc = pcie_write_cmd(slot, slot_cmd, cmd_mask); slot->last_emi_toggle = get_seconds(); DBG_LEAVE_ROUTINE return rc; } static int hpc_set_attention_status(struct slot *slot, u8 value) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; int rc; DBG_ENTER_ROUTINE cmd_mask = ATTN_LED_CTRL; switch (value) { case 0 : /* turn off */ slot_cmd = 0x00C0; break; case 1: /* turn on */ slot_cmd = 0x0040; break; case 2: /* turn blink */ slot_cmd = 0x0080; break; default: return -1; } if (!pciehp_poll_mode) { slot_cmd = slot_cmd | HP_INTR_ENABLE; cmd_mask = cmd_mask | HP_INTR_ENABLE; } rc = pcie_write_cmd(slot, slot_cmd, cmd_mask); dbg("%s: SLOTCTRL %x write cmd %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd); DBG_LEAVE_ROUTINE return rc; } static void hpc_set_green_led_on(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; DBG_ENTER_ROUTINE slot_cmd = 0x0100; cmd_mask = PWR_LED_CTRL; if (!pciehp_poll_mode) { slot_cmd = slot_cmd | HP_INTR_ENABLE; cmd_mask = cmd_mask | HP_INTR_ENABLE; } pcie_write_cmd(slot, slot_cmd, cmd_mask); dbg("%s: SLOTCTRL %x write cmd %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd); DBG_LEAVE_ROUTINE return; } static void hpc_set_green_led_off(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; DBG_ENTER_ROUTINE slot_cmd = 0x0300; cmd_mask = PWR_LED_CTRL; if (!pciehp_poll_mode) { slot_cmd = slot_cmd | HP_INTR_ENABLE; cmd_mask = cmd_mask | HP_INTR_ENABLE; } pcie_write_cmd(slot, slot_cmd, cmd_mask); dbg("%s: SLOTCTRL %x write cmd %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd); DBG_LEAVE_ROUTINE return; } static void hpc_set_green_led_blink(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; DBG_ENTER_ROUTINE slot_cmd = 0x0200; cmd_mask = PWR_LED_CTRL; if (!pciehp_poll_mode) { slot_cmd = slot_cmd | HP_INTR_ENABLE; cmd_mask = cmd_mask | HP_INTR_ENABLE; } pcie_write_cmd(slot, slot_cmd, cmd_mask); dbg("%s: SLOTCTRL %x write cmd %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd); DBG_LEAVE_ROUTINE return; } static void hpc_release_ctlr(struct controller *ctrl) { DBG_ENTER_ROUTINE if (pciehp_poll_mode) del_timer(&ctrl->poll_timer); else free_irq(ctrl->pci_dev->irq, ctrl); /* * If this is the last controller to be released, destroy the * pciehp work queue */ if (atomic_dec_and_test(&pciehp_num_controllers)) destroy_workqueue(pciehp_wq); DBG_LEAVE_ROUTINE } static int hpc_power_on_slot(struct slot * slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; u16 slot_status; int retval = 0; DBG_ENTER_ROUTINE dbg("%s: slot->hp_slot %x\n", __FUNCTION__, slot->hp_slot); /* Clear sticky power-fault bit from previous power failures */ retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); return retval; } slot_status &= PWR_FAULT_DETECTED; if (slot_status) { retval = pciehp_writew(ctrl, SLOTSTATUS, slot_status); if (retval) { err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__); return retval; } } slot_cmd = POWER_ON; cmd_mask = PWR_CTRL; /* Enable detection that we turned off at slot power-off time */ if (!pciehp_poll_mode) { slot_cmd = slot_cmd | PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE | HP_INTR_ENABLE; cmd_mask = cmd_mask | PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE | HP_INTR_ENABLE; } retval = pcie_write_cmd(slot, slot_cmd, cmd_mask); if (retval) { err("%s: Write %x command failed!\n", __FUNCTION__, slot_cmd); return -1; } dbg("%s: SLOTCTRL %x write cmd %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd); DBG_LEAVE_ROUTINE return retval; } static int hpc_power_off_slot(struct slot * slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; int retval = 0; DBG_ENTER_ROUTINE dbg("%s: slot->hp_slot %x\n", __FUNCTION__, slot->hp_slot); slot_cmd = POWER_OFF; cmd_mask = PWR_CTRL; /* * If we get MRL or presence detect interrupts now, the isr * will notice the sticky power-fault bit too and issue power * indicator change commands. This will lead to an endless loop * of command completions, since the power-fault bit remains on * till the slot is powered on again. */ if (!pciehp_poll_mode) { slot_cmd = (slot_cmd & ~PWR_FAULT_DETECT_ENABLE & ~MRL_DETECT_ENABLE & ~PRSN_DETECT_ENABLE) | HP_INTR_ENABLE; cmd_mask = cmd_mask | PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE | HP_INTR_ENABLE; } retval = pcie_write_cmd(slot, slot_cmd, cmd_mask); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } dbg("%s: SLOTCTRL %x write cmd %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd); DBG_LEAVE_ROUTINE return retval; } static irqreturn_t pcie_isr(int irq, void *dev_id) { struct controller *ctrl = (struct controller *)dev_id; u16 slot_status, intr_detect, intr_loc; u16 temp_word; int hp_slot = 0; /* only 1 slot per PCI Express port */ int rc = 0; unsigned long flags; rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (rc) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); return IRQ_NONE; } intr_detect = ( ATTN_BUTTN_PRESSED | PWR_FAULT_DETECTED | MRL_SENS_CHANGED | PRSN_DETECT_CHANGED | CMD_COMPLETED ); intr_loc = slot_status & intr_detect; /* Check to see if it was our interrupt */ if ( !intr_loc ) return IRQ_NONE; dbg("%s: intr_loc %x\n", __FUNCTION__, intr_loc); /* Mask Hot-plug Interrupt Enable */ if (!pciehp_poll_mode) { spin_lock_irqsave(&ctrl->lock, flags); rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word); if (rc) { err("%s: Cannot read SLOT_CTRL register\n", __FUNCTION__); spin_unlock_irqrestore(&ctrl->lock, flags); return IRQ_NONE; } dbg("%s: pciehp_readw(SLOTCTRL) with value %x\n", __FUNCTION__, temp_word); temp_word = (temp_word & ~HP_INTR_ENABLE & ~CMD_CMPL_INTR_ENABLE) | 0x00; rc = pciehp_writew(ctrl, SLOTCTRL, temp_word); if (rc) { err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__); spin_unlock_irqrestore(&ctrl->lock, flags); return IRQ_NONE; } spin_unlock_irqrestore(&ctrl->lock, flags); rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (rc) { err("%s: Cannot read SLOT_STATUS register\n", __FUNCTION__); return IRQ_NONE; } dbg("%s: pciehp_readw(SLOTSTATUS) with value %x\n", __FUNCTION__, slot_status); /* Clear command complete interrupt caused by this write */ temp_word = 0x1f; rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word); if (rc) { err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__); return IRQ_NONE; } } if (intr_loc & CMD_COMPLETED) { /* * Command Complete Interrupt Pending */ ctrl->cmd_busy = 0; wake_up_interruptible(&ctrl->queue); } if (intr_loc & MRL_SENS_CHANGED) pciehp_handle_switch_change(hp_slot, ctrl); if (intr_loc & ATTN_BUTTN_PRESSED) pciehp_handle_attention_button(hp_slot, ctrl); if (intr_loc & PRSN_DETECT_CHANGED) pciehp_handle_presence_change(hp_slot, ctrl); if (intr_loc & PWR_FAULT_DETECTED) pciehp_handle_power_fault(hp_slot, ctrl); /* Clear all events after serving them */ temp_word = 0x1F; rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word); if (rc) { err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__); return IRQ_NONE; } /* Unmask Hot-plug Interrupt Enable */ if (!pciehp_poll_mode) { spin_lock_irqsave(&ctrl->lock, flags); rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word); if (rc) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); spin_unlock_irqrestore(&ctrl->lock, flags); return IRQ_NONE; } dbg("%s: Unmask Hot-plug Interrupt Enable\n", __FUNCTION__); temp_word = (temp_word & ~HP_INTR_ENABLE) | HP_INTR_ENABLE; rc = pciehp_writew(ctrl, SLOTCTRL, temp_word); if (rc) { err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__); spin_unlock_irqrestore(&ctrl->lock, flags); return IRQ_NONE; } spin_unlock_irqrestore(&ctrl->lock, flags); rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (rc) { err("%s: Cannot read SLOT_STATUS register\n", __FUNCTION__); return IRQ_NONE; } /* Clear command complete interrupt caused by this write */ temp_word = 0x1F; rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word); if (rc) { err("%s: Cannot write to SLOTSTATUS failed\n", __FUNCTION__); return IRQ_NONE; } dbg("%s: pciehp_writew(SLOTSTATUS) with value %x\n", __FUNCTION__, temp_word); } return IRQ_HANDLED; } static int hpc_get_max_lnk_speed (struct slot *slot, enum pci_bus_speed *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_speed lnk_speed; u32 lnk_cap; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readl(ctrl, LNKCAP, &lnk_cap); if (retval) { err("%s: Cannot read LNKCAP register\n", __FUNCTION__); return retval; } switch (lnk_cap & 0x000F) { case 1: lnk_speed = PCIE_2PT5GB; break; default: lnk_speed = PCIE_LNK_SPEED_UNKNOWN; break; } *value = lnk_speed; dbg("Max link speed = %d\n", lnk_speed); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_max_lnk_width (struct slot *slot, enum pcie_link_width *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_width lnk_wdth; u32 lnk_cap; int retval = 0; DBG_ENTER_ROUTINE retval = pciehp_readl(ctrl, LNKCAP, &lnk_cap); if (retval) { err("%s: Cannot read LNKCAP register\n", __FUNCTION__); return retval; } switch ((lnk_cap & 0x03F0) >> 4){ case 0: lnk_wdth = PCIE_LNK_WIDTH_RESRV; break; case 1: lnk_wdth = PCIE_LNK_X1; break; case 2: lnk_wdth = PCIE_LNK_X2; break; case 4: lnk_wdth = PCIE_LNK_X4; break; case 8: lnk_wdth = PCIE_LNK_X8; break; case 12: lnk_wdth = PCIE_LNK_X12; break; case 16: lnk_wdth = PCIE_LNK_X16; break; case 32: lnk_wdth = PCIE_LNK_X32; break; default: lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN; break; } *value = lnk_wdth; dbg("Max link width = %d\n", lnk_wdth); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_cur_lnk_speed (struct slot *slot, enum pci_bus_speed *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_speed lnk_speed = PCI_SPEED_UNKNOWN; int retval = 0; u16 lnk_status; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status); if (retval) { err("%s: Cannot read LNKSTATUS register\n", __FUNCTION__); return retval; } switch (lnk_status & 0x0F) { case 1: lnk_speed = PCIE_2PT5GB; break; default: lnk_speed = PCIE_LNK_SPEED_UNKNOWN; break; } *value = lnk_speed; dbg("Current link speed = %d\n", lnk_speed); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_cur_lnk_width (struct slot *slot, enum pcie_link_width *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_width lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN; int retval = 0; u16 lnk_status; DBG_ENTER_ROUTINE retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status); if (retval) { err("%s: Cannot read LNKSTATUS register\n", __FUNCTION__); return retval; } switch ((lnk_status & 0x03F0) >> 4){ case 0: lnk_wdth = PCIE_LNK_WIDTH_RESRV; break; case 1: lnk_wdth = PCIE_LNK_X1; break; case 2: lnk_wdth = PCIE_LNK_X2; break; case 4: lnk_wdth = PCIE_LNK_X4; break; case 8: lnk_wdth = PCIE_LNK_X8; break; case 12: lnk_wdth = PCIE_LNK_X12; break; case 16: lnk_wdth = PCIE_LNK_X16; break; case 32: lnk_wdth = PCIE_LNK_X32; break; default: lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN; break; } *value = lnk_wdth; dbg("Current link width = %d\n", lnk_wdth); DBG_LEAVE_ROUTINE return retval; } static struct hpc_ops pciehp_hpc_ops = { .power_on_slot = hpc_power_on_slot, .power_off_slot = hpc_power_off_slot, .set_attention_status = hpc_set_attention_status, .get_power_status = hpc_get_power_status, .get_attention_status = hpc_get_attention_status, .get_latch_status = hpc_get_latch_status, .get_adapter_status = hpc_get_adapter_status, .get_emi_status = hpc_get_emi_status, .toggle_emi = hpc_toggle_emi, .get_max_bus_speed = hpc_get_max_lnk_speed, .get_cur_bus_speed = hpc_get_cur_lnk_speed, .get_max_lnk_width = hpc_get_max_lnk_width, .get_cur_lnk_width = hpc_get_cur_lnk_width, .query_power_fault = hpc_query_power_fault, .green_led_on = hpc_set_green_led_on, .green_led_off = hpc_set_green_led_off, .green_led_blink = hpc_set_green_led_blink, .release_ctlr = hpc_release_ctlr, .check_lnk_status = hpc_check_lnk_status, }; #ifdef CONFIG_ACPI int pciehp_acpi_get_hp_hw_control_from_firmware(struct pci_dev *dev) { acpi_status status; acpi_handle chandle, handle = DEVICE_ACPI_HANDLE(&(dev->dev)); struct pci_dev *pdev = dev; struct pci_bus *parent; struct acpi_buffer string = { ACPI_ALLOCATE_BUFFER, NULL }; /* * Per PCI firmware specification, we should run the ACPI _OSC * method to get control of hotplug hardware before using it. * If an _OSC is missing, we look for an OSHP to do the same thing. * To handle different BIOS behavior, we look for _OSC and OSHP * within the scope of the hotplug controller and its parents, upto * the host bridge under which this controller exists. */ while (!handle) { /* * This hotplug controller was not listed in the ACPI name * space at all. Try to get acpi handle of parent pci bus. */ if (!pdev || !pdev->bus->parent) break; parent = pdev->bus->parent; dbg("Could not find %s in acpi namespace, trying parent\n", pci_name(pdev)); if (!parent->self) /* Parent must be a host bridge */ handle = acpi_get_pci_rootbridge_handle( pci_domain_nr(parent), parent->number); else handle = DEVICE_ACPI_HANDLE( &(parent->self->dev)); pdev = parent->self; } while (handle) { acpi_get_name(handle, ACPI_FULL_PATHNAME, &string); dbg("Trying to get hotplug control for %s \n", (char *)string.pointer); status = pci_osc_control_set(handle, OSC_PCI_EXPRESS_NATIVE_HP_CONTROL); if (status == AE_NOT_FOUND) status = acpi_run_oshp(handle); if (ACPI_SUCCESS(status)) { dbg("Gained control for hotplug HW for pci %s (%s)\n", pci_name(dev), (char *)string.pointer); kfree(string.pointer); return 0; } if (acpi_root_bridge(handle)) break; chandle = handle; status = acpi_get_parent(chandle, &handle); if (ACPI_FAILURE(status)) break; } err("Cannot get control of hotplug hardware for pci %s\n", pci_name(dev)); kfree(string.pointer); return -1; } #endif int pcie_init(struct controller * ctrl, struct pcie_device *dev) { int rc; u16 temp_word; u16 cap_reg; u16 intr_enable = 0; u32 slot_cap; int cap_base; u16 slot_status, slot_ctrl; struct pci_dev *pdev; DBG_ENTER_ROUTINE pdev = dev->port; ctrl->pci_dev = pdev; /* save pci_dev in context */ dbg("%s: hotplug controller vendor id 0x%x device id 0x%x\n", __FUNCTION__, pdev->vendor, pdev->device); if ((cap_base = pci_find_capability(pdev, PCI_CAP_ID_EXP)) == 0) { dbg("%s: Can't find PCI_CAP_ID_EXP (0x10)\n", __FUNCTION__); goto abort_free_ctlr; } ctrl->cap_base = cap_base; dbg("%s: pcie_cap_base %x\n", __FUNCTION__, cap_base); rc = pciehp_readw(ctrl, CAPREG, &cap_reg); if (rc) { err("%s: Cannot read CAPREG register\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: CAPREG offset %x cap_reg %x\n", __FUNCTION__, ctrl->cap_base + CAPREG, cap_reg); if (((cap_reg & SLOT_IMPL) == 0) || (((cap_reg & DEV_PORT_TYPE) != 0x0040) && ((cap_reg & DEV_PORT_TYPE) != 0x0060))) { dbg("%s : This is not a root port or the port is not connected to a slot\n", __FUNCTION__); goto abort_free_ctlr; } rc = pciehp_readl(ctrl, SLOTCAP, &slot_cap); if (rc) { err("%s: Cannot read SLOTCAP register\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: SLOTCAP offset %x slot_cap %x\n", __FUNCTION__, ctrl->cap_base + SLOTCAP, slot_cap); if (!(slot_cap & HP_CAP)) { dbg("%s : This slot is not hot-plug capable\n", __FUNCTION__); goto abort_free_ctlr; } /* For debugging purpose */ rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (rc) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: SLOTSTATUS offset %x slot_status %x\n", __FUNCTION__, ctrl->cap_base + SLOTSTATUS, slot_status); rc = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (rc) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: SLOTCTRL offset %x slot_ctrl %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_ctrl); for ( rc = 0; rc < DEVICE_COUNT_RESOURCE; rc++) if (pci_resource_len(pdev, rc) > 0) dbg("pci resource[%d] start=0x%llx(len=0x%llx)\n", rc, (unsigned long long)pci_resource_start(pdev, rc), (unsigned long long)pci_resource_len(pdev, rc)); info("HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); mutex_init(&ctrl->crit_sect); mutex_init(&ctrl->ctrl_lock); spin_lock_init(&ctrl->lock); /* setup wait queue */ init_waitqueue_head(&ctrl->queue); /* return PCI Controller Info */ ctrl->slot_device_offset = 0; ctrl->num_slots = 1; ctrl->first_slot = slot_cap >> 19; ctrl->ctrlcap = slot_cap & 0x0000007f; /* Mask Hot-plug Interrupt Enable */ rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word); if (rc) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: SLOTCTRL %x value read %x\n", __FUNCTION__, ctrl->cap_base + SLOTCTRL, temp_word); temp_word = (temp_word & ~HP_INTR_ENABLE & ~CMD_CMPL_INTR_ENABLE) | 0x00; rc = pciehp_writew(ctrl, SLOTCTRL, temp_word); if (rc) { err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__); goto abort_free_ctlr; } rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (rc) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); goto abort_free_ctlr; } temp_word = 0x1F; /* Clear all events */ rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word); if (rc) { err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__); goto abort_free_ctlr; } if (pciehp_poll_mode) { /* Install interrupt polling timer. Start with 10 sec delay */ init_timer(&ctrl->poll_timer); start_int_poll_timer(ctrl, 10); } else { /* Installs the interrupt handler */ rc = request_irq(ctrl->pci_dev->irq, pcie_isr, IRQF_SHARED, MY_NAME, (void *)ctrl); dbg("%s: request_irq %d for hpc%d (returns %d)\n", __FUNCTION__, ctrl->pci_dev->irq, atomic_read(&pciehp_num_controllers), rc); if (rc) { err("Can't get irq %d for the hotplug controller\n", ctrl->pci_dev->irq); goto abort_free_ctlr; } } dbg("pciehp ctrl b:d:f:irq=0x%x:%x:%x:%x\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), dev->irq); /* * If this is the first controller to be initialized, * initialize the pciehp work queue */ if (atomic_add_return(1, &pciehp_num_controllers) == 1) { pciehp_wq = create_singlethread_workqueue("pciehpd"); if (!pciehp_wq) { rc = -ENOMEM; goto abort_free_irq; } } rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word); if (rc) { err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__); goto abort_free_irq; } intr_enable = intr_enable | PRSN_DETECT_ENABLE; if (ATTN_BUTTN(slot_cap)) intr_enable = intr_enable | ATTN_BUTTN_ENABLE; if (POWER_CTRL(slot_cap)) intr_enable = intr_enable | PWR_FAULT_DETECT_ENABLE; if (MRL_SENS(slot_cap)) intr_enable = intr_enable | MRL_DETECT_ENABLE; temp_word = (temp_word & ~intr_enable) | intr_enable; if (pciehp_poll_mode) { temp_word = (temp_word & ~HP_INTR_ENABLE) | 0x0; } else { temp_word = (temp_word & ~HP_INTR_ENABLE) | HP_INTR_ENABLE; } /* Unmask Hot-plug Interrupt Enable for the interrupt notification mechanism case */ rc = pciehp_writew(ctrl, SLOTCTRL, temp_word); if (rc) { err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__); goto abort_free_irq; } rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (rc) { err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__); goto abort_disable_intr; } temp_word = 0x1F; /* Clear all events */ rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word); if (rc) { err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__); goto abort_disable_intr; } if (pciehp_force) { dbg("Bypassing BIOS check for pciehp use on %s\n", pci_name(ctrl->pci_dev)); } else { rc = pciehp_get_hp_hw_control_from_firmware(ctrl->pci_dev); if (rc) goto abort_disable_intr; } ctrl->hpc_ops = &pciehp_hpc_ops; DBG_LEAVE_ROUTINE return 0; /* We end up here for the many possible ways to fail this API. */ abort_disable_intr: rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word); if (!rc) { temp_word &= ~(intr_enable | HP_INTR_ENABLE); rc = pciehp_writew(ctrl, SLOTCTRL, temp_word); } if (rc) err("%s : disabling interrupts failed\n", __FUNCTION__); abort_free_irq: if (pciehp_poll_mode) del_timer_sync(&ctrl->poll_timer); else free_irq(ctrl->pci_dev->irq, ctrl); abort_free_ctlr: DBG_LEAVE_ROUTINE return -1; }