/* * Standard PCI Hot Plug Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to , * */ #include #include #include #include #include #include #include #include #include #include #include #include "shpchp.h" #ifdef DEBUG #define DBG_K_TRACE_ENTRY ((unsigned int)0x00000001) /* On function entry */ #define DBG_K_TRACE_EXIT ((unsigned int)0x00000002) /* On function exit */ #define DBG_K_INFO ((unsigned int)0x00000004) /* Info messages */ #define DBG_K_ERROR ((unsigned int)0x00000008) /* Error messages */ #define DBG_K_TRACE (DBG_K_TRACE_ENTRY|DBG_K_TRACE_EXIT) #define DBG_K_STANDARD (DBG_K_INFO|DBG_K_ERROR|DBG_K_TRACE) /* Redefine this flagword to set debug level */ #define DEBUG_LEVEL DBG_K_STANDARD #define DEFINE_DBG_BUFFER char __dbg_str_buf[256]; #define DBG_PRINT( dbg_flags, args... ) \ do { \ if ( DEBUG_LEVEL & ( dbg_flags ) ) \ { \ int len; \ len = sprintf( __dbg_str_buf, "%s:%d: %s: ", \ __FILE__, __LINE__, __FUNCTION__ ); \ sprintf( __dbg_str_buf + len, args ); \ printk( KERN_NOTICE "%s\n", __dbg_str_buf ); \ } \ } while (0) #define DBG_ENTER_ROUTINE DBG_PRINT (DBG_K_TRACE_ENTRY, "%s", "[Entry]"); #define DBG_LEAVE_ROUTINE DBG_PRINT (DBG_K_TRACE_EXIT, "%s", "[Exit]"); #else #define DEFINE_DBG_BUFFER #define DBG_ENTER_ROUTINE #define DBG_LEAVE_ROUTINE #endif /* DEBUG */ /* Slot Available Register I field definition */ #define SLOT_33MHZ 0x0000001f #define SLOT_66MHZ_PCIX 0x00001f00 #define SLOT_100MHZ_PCIX 0x001f0000 #define SLOT_133MHZ_PCIX 0x1f000000 /* Slot Available Register II field definition */ #define SLOT_66MHZ 0x0000001f #define SLOT_66MHZ_PCIX_266 0x00000f00 #define SLOT_100MHZ_PCIX_266 0x0000f000 #define SLOT_133MHZ_PCIX_266 0x000f0000 #define SLOT_66MHZ_PCIX_533 0x00f00000 #define SLOT_100MHZ_PCIX_533 0x0f000000 #define SLOT_133MHZ_PCIX_533 0xf0000000 /* Secondary Bus Configuration Register */ /* For PI = 1, Bits 0 to 2 have been encoded as follows to show current bus speed/mode */ #define PCI_33MHZ 0x0 #define PCI_66MHZ 0x1 #define PCIX_66MHZ 0x2 #define PCIX_100MHZ 0x3 #define PCIX_133MHZ 0x4 /* For PI = 2, Bits 0 to 3 have been encoded as follows to show current bus speed/mode */ #define PCI_33MHZ 0x0 #define PCI_66MHZ 0x1 #define PCIX_66MHZ 0x2 #define PCIX_100MHZ 0x3 #define PCIX_133MHZ 0x4 #define PCIX_66MHZ_ECC 0x5 #define PCIX_100MHZ_ECC 0x6 #define PCIX_133MHZ_ECC 0x7 #define PCIX_66MHZ_266 0x9 #define PCIX_100MHZ_266 0xa #define PCIX_133MHZ_266 0xb #define PCIX_66MHZ_533 0x11 #define PCIX_100MHZ_533 0x12 #define PCIX_133MHZ_533 0x13 /* Slot Configuration */ #define SLOT_NUM 0x0000001F #define FIRST_DEV_NUM 0x00001F00 #define PSN 0x07FF0000 #define UPDOWN 0x20000000 #define MRLSENSOR 0x40000000 #define ATTN_BUTTON 0x80000000 /* Slot Status Field Definitions */ /* Slot State */ #define PWR_ONLY 0x0001 #define ENABLED 0x0002 #define DISABLED 0x0003 /* Power Indicator State */ #define PWR_LED_ON 0x0004 #define PWR_LED_BLINK 0x0008 #define PWR_LED_OFF 0x000c /* Attention Indicator State */ #define ATTEN_LED_ON 0x0010 #define ATTEN_LED_BLINK 0x0020 #define ATTEN_LED_OFF 0x0030 /* Power Fault */ #define pwr_fault 0x0040 /* Attention Button */ #define ATTEN_BUTTON 0x0080 /* MRL Sensor */ #define MRL_SENSOR 0x0100 /* 66 MHz Capable */ #define IS_66MHZ_CAP 0x0200 /* PRSNT1#/PRSNT2# */ #define SLOT_EMP 0x0c00 /* PCI-X Capability */ #define NON_PCIX 0x0000 #define PCIX_66 0x1000 #define PCIX_133 0x3000 #define PCIX_266 0x4000 /* For PI = 2 only */ #define PCIX_533 0x5000 /* For PI = 2 only */ /* SHPC 'write' operations/commands */ /* Slot operation - 0x00h to 0x3Fh */ #define NO_CHANGE 0x00 /* Slot state - Bits 0 & 1 of controller command register */ #define SET_SLOT_PWR 0x01 #define SET_SLOT_ENABLE 0x02 #define SET_SLOT_DISABLE 0x03 /* Power indicator state - Bits 2 & 3 of controller command register*/ #define SET_PWR_ON 0x04 #define SET_PWR_BLINK 0x08 #define SET_PWR_OFF 0x0C /* Attention indicator state - Bits 4 & 5 of controller command register*/ #define SET_ATTN_ON 0x010 #define SET_ATTN_BLINK 0x020 #define SET_ATTN_OFF 0x030 /* Set bus speed/mode A - 0x40h to 0x47h */ #define SETA_PCI_33MHZ 0x40 #define SETA_PCI_66MHZ 0x41 #define SETA_PCIX_66MHZ 0x42 #define SETA_PCIX_100MHZ 0x43 #define SETA_PCIX_133MHZ 0x44 #define RESERV_1 0x45 #define RESERV_2 0x46 #define RESERV_3 0x47 /* Set bus speed/mode B - 0x50h to 0x5fh */ #define SETB_PCI_33MHZ 0x50 #define SETB_PCI_66MHZ 0x51 #define SETB_PCIX_66MHZ_PM 0x52 #define SETB_PCIX_100MHZ_PM 0x53 #define SETB_PCIX_133MHZ_PM 0x54 #define SETB_PCIX_66MHZ_EM 0x55 #define SETB_PCIX_100MHZ_EM 0x56 #define SETB_PCIX_133MHZ_EM 0x57 #define SETB_PCIX_66MHZ_266 0x58 #define SETB_PCIX_100MHZ_266 0x59 #define SETB_PCIX_133MHZ_266 0x5a #define SETB_PCIX_66MHZ_533 0x5b #define SETB_PCIX_100MHZ_533 0x5c #define SETB_PCIX_133MHZ_533 0x5d /* Power-on all slots - 0x48h */ #define SET_PWR_ON_ALL 0x48 /* Enable all slots - 0x49h */ #define SET_ENABLE_ALL 0x49 /* SHPC controller command error code */ #define SWITCH_OPEN 0x1 #define INVALID_CMD 0x2 #define INVALID_SPEED_MODE 0x4 /* For accessing SHPC Working Register Set */ #define DWORD_SELECT 0x2 #define DWORD_DATA 0x4 #define BASE_OFFSET 0x0 /* Field Offset in Logical Slot Register - byte boundary */ #define SLOT_EVENT_LATCH 0x2 #define SLOT_SERR_INT_MASK 0x3 static spinlock_t hpc_event_lock; DEFINE_DBG_BUFFER /* Debug string buffer for entire HPC defined here */ static struct php_ctlr_state_s *php_ctlr_list_head; /* HPC state linked list */ static int ctlr_seq_num = 0; /* Controller sequenc # */ static spinlock_t list_lock; static irqreturn_t shpc_isr(int IRQ, void *dev_id, struct pt_regs *regs); static void start_int_poll_timer(struct php_ctlr_state_s *php_ctlr, int seconds); /* This is the interrupt polling timeout function. */ static void int_poll_timeout(unsigned long lphp_ctlr) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *)lphp_ctlr; DBG_ENTER_ROUTINE if ( !php_ctlr ) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return; } /* Poll for interrupt events. regs == NULL => polling */ shpc_isr( 0, (void *)php_ctlr, NULL ); init_timer(&php_ctlr->int_poll_timer); if (!shpchp_poll_time) shpchp_poll_time = 2; /* reset timer to poll in 2 secs if user doesn't specify at module installation*/ start_int_poll_timer(php_ctlr, shpchp_poll_time); return; } /* This function starts the interrupt polling timer. */ static void start_int_poll_timer(struct php_ctlr_state_s *php_ctlr, int seconds) { if (!php_ctlr) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return; } if ( ( seconds <= 0 ) || ( seconds > 60 ) ) seconds = 2; /* Clamp to sane value */ php_ctlr->int_poll_timer.function = &int_poll_timeout; php_ctlr->int_poll_timer.data = (unsigned long)php_ctlr; /* Instance data */ php_ctlr->int_poll_timer.expires = jiffies + seconds * HZ; add_timer(&php_ctlr->int_poll_timer); return; } static int shpc_write_cmd(struct slot *slot, u8 t_slot, u8 cmd) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u16 cmd_status; int retval = 0; u16 temp_word; int i; DBG_ENTER_ROUTINE if (!php_ctlr) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } for (i = 0; i < 10; i++) { cmd_status = readw(php_ctlr->creg + CMD_STATUS); if (!(cmd_status & 0x1)) break; /* Check every 0.1 sec for a total of 1 sec*/ msleep(100); } cmd_status = readw(php_ctlr->creg + CMD_STATUS); if (cmd_status & 0x1) { /* After 1 sec and and the controller is still busy */ err("%s : Controller is still busy after 1 sec.\n", __FUNCTION__); return -1; } ++t_slot; temp_word = (t_slot << 8) | (cmd & 0xFF); dbg("%s: t_slot %x cmd %x\n", __FUNCTION__, t_slot, cmd); /* To make sure the Controller Busy bit is 0 before we send out the * command. */ writew(temp_word, php_ctlr->creg + CMD); dbg("%s: temp_word written %x\n", __FUNCTION__, temp_word); DBG_LEAVE_ROUTINE return retval; } static int hpc_check_cmd_status(struct controller *ctrl) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) ctrl->hpc_ctlr_handle; u16 cmd_status; int retval = 0; DBG_ENTER_ROUTINE if (!ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } cmd_status = readw(php_ctlr->creg + CMD_STATUS) & 0x000F; switch (cmd_status >> 1) { case 0: retval = 0; break; case 1: retval = SWITCH_OPEN; err("%s: Switch opened!\n", __FUNCTION__); break; case 2: retval = INVALID_CMD; err("%s: Invalid HPC command!\n", __FUNCTION__); break; case 4: retval = INVALID_SPEED_MODE; err("%s: Invalid bus speed/mode!\n", __FUNCTION__); break; default: retval = cmd_status; } DBG_LEAVE_ROUTINE return retval; } static int hpc_get_attention_status(struct slot *slot, u8 *status) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u32 slot_reg; u16 slot_status; u8 atten_led_state; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot)); slot_status = (u16) slot_reg; atten_led_state = (slot_status & 0x0030) >> 4; switch (atten_led_state) { case 0: *status = 0xFF; /* Reserved */ break; case 1: *status = 1; /* On */ break; case 2: *status = 2; /* Blink */ break; case 3: *status = 0; /* Off */ break; default: *status = 0xFF; break; } DBG_LEAVE_ROUTINE return 0; } static int hpc_get_power_status(struct slot * slot, u8 *status) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u32 slot_reg; u16 slot_status; u8 slot_state; int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot)); slot_status = (u16) slot_reg; slot_state = (slot_status & 0x0003); switch (slot_state) { case 0: *status = 0xFF; break; case 1: *status = 2; /* Powered only */ break; case 2: *status = 1; /* Enabled */ break; case 3: *status = 0; /* Disabled */ break; default: *status = 0xFF; break; } DBG_LEAVE_ROUTINE return retval; } static int hpc_get_latch_status(struct slot *slot, u8 *status) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u32 slot_reg; u16 slot_status; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot)); slot_status = (u16)slot_reg; *status = ((slot_status & 0x0100) == 0) ? 0 : 1; /* 0 -> close; 1 -> open */ DBG_LEAVE_ROUTINE return 0; } static int hpc_get_adapter_status(struct slot *slot, u8 *status) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u32 slot_reg; u16 slot_status; u8 card_state; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot)); slot_status = (u16)slot_reg; card_state = (u8)((slot_status & 0x0C00) >> 10); *status = (card_state != 0x3) ? 1 : 0; DBG_LEAVE_ROUTINE return 0; } static int hpc_get_prog_int(struct slot *slot, u8 *prog_int) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } *prog_int = readb(php_ctlr->creg + PROG_INTERFACE); DBG_LEAVE_ROUTINE return 0; } static int hpc_get_adapter_speed(struct slot *slot, enum pci_bus_speed *value) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u32 slot_reg; u16 slot_status, sec_bus_status; u8 m66_cap, pcix_cap, pi; int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } pi = readb(php_ctlr->creg + PROG_INTERFACE); slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot)); dbg("%s: pi = %d, slot_reg = %x\n", __FUNCTION__, pi, slot_reg); slot_status = (u16) slot_reg; dbg("%s: slot_status = %x\n", __FUNCTION__, slot_status); sec_bus_status = readw(php_ctlr->creg + SEC_BUS_CONFIG); pcix_cap = (u8) ((slot_status & 0x3000) >> 12); dbg("%s: pcix_cap = %x\n", __FUNCTION__, pcix_cap); m66_cap = (u8) ((slot_status & 0x0200) >> 9); dbg("%s: m66_cap = %x\n", __FUNCTION__, m66_cap); if (pi == 2) { switch (pcix_cap) { case 0: *value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz; break; case 1: *value = PCI_SPEED_66MHz_PCIX; break; case 3: *value = PCI_SPEED_133MHz_PCIX; break; case 4: *value = PCI_SPEED_133MHz_PCIX_266; break; case 5: *value = PCI_SPEED_133MHz_PCIX_533; break; case 2: /* Reserved */ default: *value = PCI_SPEED_UNKNOWN; retval = -ENODEV; break; } } else { switch (pcix_cap) { case 0: *value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz; break; case 1: *value = PCI_SPEED_66MHz_PCIX; break; case 3: *value = PCI_SPEED_133MHz_PCIX; break; case 2: /* Reserved */ default: *value = PCI_SPEED_UNKNOWN; retval = -ENODEV; break; } } dbg("Adapter speed = %d\n", *value); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_mode1_ECC_cap(struct slot *slot, u8 *mode) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u16 sec_bus_status; u8 pi; int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } pi = readb(php_ctlr->creg + PROG_INTERFACE); sec_bus_status = readw(php_ctlr->creg + SEC_BUS_CONFIG); if (pi == 2) { *mode = (sec_bus_status & 0x0100) >> 7; } else { retval = -1; } dbg("Mode 1 ECC cap = %d\n", *mode); DBG_LEAVE_ROUTINE return retval; } static int hpc_query_power_fault(struct slot * slot) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u32 slot_reg; u16 slot_status; u8 pwr_fault_state, status; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot)); slot_status = (u16) slot_reg; pwr_fault_state = (slot_status & 0x0040) >> 7; status = (pwr_fault_state == 1) ? 0 : 1; DBG_LEAVE_ROUTINE /* Note: Logic 0 => fault */ return status; } static int hpc_set_attention_status(struct slot *slot, u8 value) { struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd = 0; int rc = 0; if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } switch (value) { case 0 : slot_cmd = 0x30; /* OFF */ break; case 1: slot_cmd = 0x10; /* ON */ break; case 2: slot_cmd = 0x20; /* BLINK */ break; default: return -1; } shpc_write_cmd(slot, slot->hp_slot, slot_cmd); return rc; } static void hpc_set_green_led_on(struct slot *slot) { struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd; if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return ; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return ; } slot_cmd = 0x04; shpc_write_cmd(slot, slot->hp_slot, slot_cmd); return; } static void hpc_set_green_led_off(struct slot *slot) { struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd; if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return ; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return ; } slot_cmd = 0x0C; shpc_write_cmd(slot, slot->hp_slot, slot_cmd); return; } static void hpc_set_green_led_blink(struct slot *slot) { struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd; if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return ; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return ; } slot_cmd = 0x08; shpc_write_cmd(slot, slot->hp_slot, slot_cmd); return; } int shpc_get_ctlr_slot_config(struct controller *ctrl, int *num_ctlr_slots, /* number of slots in this HPC */ int *first_device_num, /* PCI dev num of the first slot in this SHPC */ int *physical_slot_num, /* phy slot num of the first slot in this SHPC */ int *updown, /* physical_slot_num increament: 1 or -1 */ int *flags) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) ctrl->hpc_ctlr_handle; DBG_ENTER_ROUTINE if (!ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } *first_device_num = php_ctlr->slot_device_offset; /* Obtained in shpc_init() */ *num_ctlr_slots = php_ctlr->num_slots; /* Obtained in shpc_init() */ *physical_slot_num = (readl(php_ctlr->creg + SLOT_CONFIG) & PSN) >> 16; dbg("%s: physical_slot_num = %x\n", __FUNCTION__, *physical_slot_num); *updown = ((readl(php_ctlr->creg + SLOT_CONFIG) & UPDOWN ) >> 29) ? 1 : -1; DBG_LEAVE_ROUTINE return 0; } static void hpc_release_ctlr(struct controller *ctrl) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) ctrl->hpc_ctlr_handle; struct php_ctlr_state_s *p, *p_prev; DBG_ENTER_ROUTINE if (!ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return ; } if (shpchp_poll_mode) { del_timer(&php_ctlr->int_poll_timer); } else { if (php_ctlr->irq) { free_irq(php_ctlr->irq, ctrl); php_ctlr->irq = 0; pci_disable_msi(php_ctlr->pci_dev); } } if (php_ctlr->pci_dev) { dbg("%s: before calling iounmap & release_mem_region\n", __FUNCTION__); iounmap(php_ctlr->creg); release_mem_region(pci_resource_start(php_ctlr->pci_dev, 0), pci_resource_len(php_ctlr->pci_dev, 0)); dbg("%s: before calling iounmap & release_mem_region\n", __FUNCTION__); php_ctlr->pci_dev = NULL; } spin_lock(&list_lock); p = php_ctlr_list_head; p_prev = NULL; while (p) { if (p == php_ctlr) { if (p_prev) p_prev->pnext = p->pnext; else php_ctlr_list_head = p->pnext; break; } else { p_prev = p; p = p->pnext; } } spin_unlock(&list_lock); kfree(php_ctlr); DBG_LEAVE_ROUTINE } static int hpc_power_on_slot(struct slot * slot) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd; int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } slot_cmd = 0x01; retval = shpc_write_cmd(slot, slot->hp_slot, slot_cmd); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } DBG_LEAVE_ROUTINE return retval; } static int hpc_slot_enable(struct slot * slot) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd; int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } /* 3A => Slot - Enable, Power Indicator - Blink, Attention Indicator - Off */ slot_cmd = 0x3A; retval = shpc_write_cmd(slot, slot->hp_slot, slot_cmd); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } DBG_LEAVE_ROUTINE return retval; } static int hpc_slot_disable(struct slot * slot) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; u8 slot_cmd; int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } /* 1F => Slot - Disable, Power Indicator - Off, Attention Indicator - On */ slot_cmd = 0x1F; retval = shpc_write_cmd(slot, slot->hp_slot, slot_cmd); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } DBG_LEAVE_ROUTINE return retval; } static int hpc_enable_all_slots( struct slot *slot ) { int retval = 0; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } retval = shpc_write_cmd(slot, 0, SET_ENABLE_ALL); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } DBG_LEAVE_ROUTINE return retval; } static int hpc_pwr_on_all_slots(struct slot *slot) { int retval = 0; DBG_ENTER_ROUTINE retval = shpc_write_cmd(slot, 0, SET_PWR_ON_ALL); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } DBG_LEAVE_ROUTINE return retval; } static int hpc_set_bus_speed_mode(struct slot * slot, enum pci_bus_speed value) { u8 slot_cmd; u8 pi; int retval = 0; struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } pi = readb(php_ctlr->creg + PROG_INTERFACE); if (pi == 1) { switch (value) { case 0: slot_cmd = SETA_PCI_33MHZ; break; case 1: slot_cmd = SETA_PCI_66MHZ; break; case 2: slot_cmd = SETA_PCIX_66MHZ; break; case 3: slot_cmd = SETA_PCIX_100MHZ; break; case 4: slot_cmd = SETA_PCIX_133MHZ; break; default: slot_cmd = PCI_SPEED_UNKNOWN; retval = -ENODEV; return retval; } } else { switch (value) { case 0: slot_cmd = SETB_PCI_33MHZ; break; case 1: slot_cmd = SETB_PCI_66MHZ; break; case 2: slot_cmd = SETB_PCIX_66MHZ_PM; break; case 3: slot_cmd = SETB_PCIX_100MHZ_PM; break; case 4: slot_cmd = SETB_PCIX_133MHZ_PM; break; case 5: slot_cmd = SETB_PCIX_66MHZ_EM; break; case 6: slot_cmd = SETB_PCIX_100MHZ_EM; break; case 7: slot_cmd = SETB_PCIX_133MHZ_EM; break; case 8: slot_cmd = SETB_PCIX_66MHZ_266; break; case 0x9: slot_cmd = SETB_PCIX_100MHZ_266; break; case 0xa: slot_cmd = SETB_PCIX_133MHZ_266; break; case 0xb: slot_cmd = SETB_PCIX_66MHZ_533; break; case 0xc: slot_cmd = SETB_PCIX_100MHZ_533; break; case 0xd: slot_cmd = SETB_PCIX_133MHZ_533; break; default: slot_cmd = PCI_SPEED_UNKNOWN; retval = -ENODEV; return retval; } } retval = shpc_write_cmd(slot, 0, slot_cmd); if (retval) { err("%s: Write command failed!\n", __FUNCTION__); return -1; } DBG_LEAVE_ROUTINE return retval; } static irqreturn_t shpc_isr(int IRQ, void *dev_id, struct pt_regs *regs) { struct controller *ctrl = NULL; struct php_ctlr_state_s *php_ctlr; u8 schedule_flag = 0; u8 temp_byte; u32 temp_dword, intr_loc, intr_loc2; int hp_slot; if (!dev_id) return IRQ_NONE; if (!shpchp_poll_mode) { ctrl = (struct controller *)dev_id; php_ctlr = ctrl->hpc_ctlr_handle; } else { php_ctlr = (struct php_ctlr_state_s *) dev_id; ctrl = (struct controller *)php_ctlr->callback_instance_id; } if (!ctrl) return IRQ_NONE; if (!php_ctlr || !php_ctlr->creg) return IRQ_NONE; /* Check to see if it was our interrupt */ intr_loc = readl(php_ctlr->creg + INTR_LOC); if (!intr_loc) return IRQ_NONE; dbg("%s: shpc_isr proceeds\n", __FUNCTION__); dbg("%s: intr_loc = %x\n",__FUNCTION__, intr_loc); if(!shpchp_poll_mode) { /* Mask Global Interrupt Mask - see implementation note on p. 139 */ /* of SHPC spec rev 1.0*/ temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: Before masking global interrupt, temp_dword = %x\n", __FUNCTION__, temp_dword); temp_dword |= 0x00000001; dbg("%s: After masking global interrupt, temp_dword = %x\n", __FUNCTION__, temp_dword); writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE); intr_loc2 = readl(php_ctlr->creg + INTR_LOC); dbg("%s: intr_loc2 = %x\n",__FUNCTION__, intr_loc2); } if (intr_loc & 0x0001) { /* * Command Complete Interrupt Pending * RO only - clear by writing 0 to the Command Completion * Detect bit in Controller SERR-INT register */ temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: Before clearing CCIP, temp_dword = %x\n", __FUNCTION__, temp_dword); temp_dword &= 0xfffeffff; dbg("%s: After clearing CCIP, temp_dword = %x\n", __FUNCTION__, temp_dword); writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE); wake_up_interruptible(&ctrl->queue); } if ((intr_loc = (intr_loc >> 1)) == 0) { /* Unmask Global Interrupt Mask */ temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: 1-Before unmasking global interrupt, temp_dword = %x\n", __FUNCTION__, temp_dword); temp_dword &= 0xfffffffe; dbg("%s: 1-After unmasking global interrupt, temp_dword = %x\n", __FUNCTION__, temp_dword); writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE); return IRQ_NONE; } for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) { /* To find out which slot has interrupt pending */ if ((intr_loc >> hp_slot) & 0x01) { temp_dword = readl(php_ctlr->creg + SLOT1 + (4*hp_slot)); dbg("%s: Slot %x with intr, temp_dword = %x\n", __FUNCTION__, hp_slot, temp_dword); temp_byte = (temp_dword >> 16) & 0xFF; dbg("%s: Slot with intr, temp_byte = %x\n", __FUNCTION__, temp_byte); if ((php_ctlr->switch_change_callback) && (temp_byte & 0x08)) schedule_flag += php_ctlr->switch_change_callback( hp_slot, php_ctlr->callback_instance_id); if ((php_ctlr->attention_button_callback) && (temp_byte & 0x04)) schedule_flag += php_ctlr->attention_button_callback( hp_slot, php_ctlr->callback_instance_id); if ((php_ctlr->presence_change_callback) && (temp_byte & 0x01)) schedule_flag += php_ctlr->presence_change_callback( hp_slot , php_ctlr->callback_instance_id); if ((php_ctlr->power_fault_callback) && (temp_byte & 0x12)) schedule_flag += php_ctlr->power_fault_callback( hp_slot, php_ctlr->callback_instance_id); /* Clear all slot events */ temp_dword = 0xe01f3fff; dbg("%s: Clearing slot events, temp_dword = %x\n", __FUNCTION__, temp_dword); writel(temp_dword, php_ctlr->creg + SLOT1 + (4*hp_slot)); intr_loc2 = readl(php_ctlr->creg + INTR_LOC); dbg("%s: intr_loc2 = %x\n",__FUNCTION__, intr_loc2); } } if (!shpchp_poll_mode) { /* Unmask Global Interrupt Mask */ temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: 2-Before unmasking global interrupt, temp_dword = %x\n", __FUNCTION__, temp_dword); temp_dword &= 0xfffffffe; dbg("%s: 2-After unmasking global interrupt, temp_dword = %x\n", __FUNCTION__, temp_dword); writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE); } return IRQ_HANDLED; } static int hpc_get_max_bus_speed (struct slot *slot, enum pci_bus_speed *value) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN; int retval = 0; u8 pi; u32 slot_avail1, slot_avail2; int slot_num; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } pi = readb(php_ctlr->creg + PROG_INTERFACE); slot_avail1 = readl(php_ctlr->creg + SLOT_AVAIL1); slot_avail2 = readl(php_ctlr->creg + SLOT_AVAIL2); if (pi == 2) { if ((slot_num = ((slot_avail2 & SLOT_133MHZ_PCIX_533) >> 27) ) != 0 ) bus_speed = PCIX_133MHZ_533; else if ((slot_num = ((slot_avail2 & SLOT_100MHZ_PCIX_533) >> 23) ) != 0 ) bus_speed = PCIX_100MHZ_533; else if ((slot_num = ((slot_avail2 & SLOT_66MHZ_PCIX_533) >> 19) ) != 0 ) bus_speed = PCIX_66MHZ_533; else if ((slot_num = ((slot_avail2 & SLOT_133MHZ_PCIX_266) >> 15) ) != 0 ) bus_speed = PCIX_133MHZ_266; else if ((slot_num = ((slot_avail2 & SLOT_100MHZ_PCIX_266) >> 11) ) != 0 ) bus_speed = PCIX_100MHZ_266; else if ((slot_num = ((slot_avail2 & SLOT_66MHZ_PCIX_266) >> 7) ) != 0 ) bus_speed = PCIX_66MHZ_266; else if ((slot_num = ((slot_avail1 & SLOT_133MHZ_PCIX) >> 23) ) != 0 ) bus_speed = PCIX_133MHZ; else if ((slot_num = ((slot_avail1 & SLOT_100MHZ_PCIX) >> 15) ) != 0 ) bus_speed = PCIX_100MHZ; else if ((slot_num = ((slot_avail1 & SLOT_66MHZ_PCIX) >> 7) ) != 0 ) bus_speed = PCIX_66MHZ; else if ((slot_num = (slot_avail2 & SLOT_66MHZ)) != 0 ) bus_speed = PCI_66MHZ; else if ((slot_num = (slot_avail1 & SLOT_33MHZ)) != 0 ) bus_speed = PCI_33MHZ; else bus_speed = PCI_SPEED_UNKNOWN; } else { if ((slot_num = ((slot_avail1 & SLOT_133MHZ_PCIX) >> 23) ) != 0 ) bus_speed = PCIX_133MHZ; else if ((slot_num = ((slot_avail1 & SLOT_100MHZ_PCIX) >> 15) ) != 0 ) bus_speed = PCIX_100MHZ; else if ((slot_num = ((slot_avail1 & SLOT_66MHZ_PCIX) >> 7) ) != 0 ) bus_speed = PCIX_66MHZ; else if ((slot_num = (slot_avail2 & SLOT_66MHZ)) != 0 ) bus_speed = PCI_66MHZ; else if ((slot_num = (slot_avail1 & SLOT_33MHZ)) != 0 ) bus_speed = PCI_33MHZ; else bus_speed = PCI_SPEED_UNKNOWN; } *value = bus_speed; dbg("Max bus speed = %d\n", bus_speed); DBG_LEAVE_ROUTINE return retval; } static int hpc_get_cur_bus_speed (struct slot *slot, enum pci_bus_speed *value) { struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle; enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN; u16 sec_bus_status; int retval = 0; u8 pi; DBG_ENTER_ROUTINE if (!slot->ctrl->hpc_ctlr_handle) { err("%s: Invalid HPC controller handle!\n", __FUNCTION__); return -1; } if (slot->hp_slot >= php_ctlr->num_slots) { err("%s: Invalid HPC slot number!\n", __FUNCTION__); return -1; } pi = readb(php_ctlr->creg + PROG_INTERFACE); sec_bus_status = readw(php_ctlr->creg + SEC_BUS_CONFIG); if (pi == 2) { switch (sec_bus_status & 0x000f) { case 0: bus_speed = PCI_SPEED_33MHz; break; case 1: bus_speed = PCI_SPEED_66MHz; break; case 2: bus_speed = PCI_SPEED_66MHz_PCIX; break; case 3: bus_speed = PCI_SPEED_100MHz_PCIX; break; case 4: bus_speed = PCI_SPEED_133MHz_PCIX; break; case 5: bus_speed = PCI_SPEED_66MHz_PCIX_ECC; break; case 6: bus_speed = PCI_SPEED_100MHz_PCIX_ECC; break; case 7: bus_speed = PCI_SPEED_133MHz_PCIX_ECC; break; case 8: bus_speed = PCI_SPEED_66MHz_PCIX_266; break; case 9: bus_speed = PCI_SPEED_100MHz_PCIX_266; break; case 0xa: bus_speed = PCI_SPEED_133MHz_PCIX_266; break; case 0xb: bus_speed = PCI_SPEED_66MHz_PCIX_533; break; case 0xc: bus_speed = PCI_SPEED_100MHz_PCIX_533; break; case 0xd: bus_speed = PCI_SPEED_133MHz_PCIX_533; break; case 0xe: case 0xf: default: bus_speed = PCI_SPEED_UNKNOWN; break; } } else { /* In the case where pi is undefined, default it to 1 */ switch (sec_bus_status & 0x0007) { case 0: bus_speed = PCI_SPEED_33MHz; break; case 1: bus_speed = PCI_SPEED_66MHz; break; case 2: bus_speed = PCI_SPEED_66MHz_PCIX; break; case 3: bus_speed = PCI_SPEED_100MHz_PCIX; break; case 4: bus_speed = PCI_SPEED_133MHz_PCIX; break; case 5: bus_speed = PCI_SPEED_UNKNOWN; /* Reserved */ break; case 6: bus_speed = PCI_SPEED_UNKNOWN; /* Reserved */ break; case 7: bus_speed = PCI_SPEED_UNKNOWN; /* Reserved */ break; default: bus_speed = PCI_SPEED_UNKNOWN; break; } } *value = bus_speed; dbg("Current bus speed = %d\n", bus_speed); DBG_LEAVE_ROUTINE return retval; } static struct hpc_ops shpchp_hpc_ops = { .power_on_slot = hpc_power_on_slot, .slot_enable = hpc_slot_enable, .slot_disable = hpc_slot_disable, .enable_all_slots = hpc_enable_all_slots, .pwr_on_all_slots = hpc_pwr_on_all_slots, .set_bus_speed_mode = hpc_set_bus_speed_mode, .set_attention_status = hpc_set_attention_status, .get_power_status = hpc_get_power_status, .get_attention_status = hpc_get_attention_status, .get_latch_status = hpc_get_latch_status, .get_adapter_status = hpc_get_adapter_status, .get_max_bus_speed = hpc_get_max_bus_speed, .get_cur_bus_speed = hpc_get_cur_bus_speed, .get_adapter_speed = hpc_get_adapter_speed, .get_mode1_ECC_cap = hpc_get_mode1_ECC_cap, .get_prog_int = hpc_get_prog_int, .query_power_fault = hpc_query_power_fault, .green_led_on = hpc_set_green_led_on, .green_led_off = hpc_set_green_led_off, .green_led_blink = hpc_set_green_led_blink, .release_ctlr = hpc_release_ctlr, .check_cmd_status = hpc_check_cmd_status, }; int shpc_init(struct controller * ctrl, struct pci_dev * pdev, php_intr_callback_t attention_button_callback, php_intr_callback_t switch_change_callback, php_intr_callback_t presence_change_callback, php_intr_callback_t power_fault_callback) { struct php_ctlr_state_s *php_ctlr, *p; void *instance_id = ctrl; int rc; u8 hp_slot; static int first = 1; u32 shpc_cap_offset, shpc_base_offset; u32 tempdword, slot_reg; u16 vendor_id, device_id; u8 i; DBG_ENTER_ROUTINE spin_lock_init(&list_lock); php_ctlr = (struct php_ctlr_state_s *) kmalloc(sizeof(struct php_ctlr_state_s), GFP_KERNEL); if (!php_ctlr) { /* allocate controller state data */ err("%s: HPC controller memory allocation error!\n", __FUNCTION__); goto abort; } memset(php_ctlr, 0, sizeof(struct php_ctlr_state_s)); php_ctlr->pci_dev = pdev; /* save pci_dev in context */ rc = pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor_id); dbg("%s: Vendor ID: %x\n",__FUNCTION__, vendor_id); if (rc) { err("%s: unable to read PCI configuration data\n", __FUNCTION__); goto abort_free_ctlr; } rc = pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); dbg("%s: Device ID: %x\n",__FUNCTION__, device_id); if (rc) { err("%s: unable to read PCI configuration data\n", __FUNCTION__); goto abort_free_ctlr; } if ((vendor_id == PCI_VENDOR_ID_AMD) || (device_id == PCI_DEVICE_ID_AMD_GOLAM_7450)) { shpc_base_offset = 0; /* amd shpc driver doesn't use this; assume 0 */ } else { if ((shpc_cap_offset = pci_find_capability(pdev, PCI_CAP_ID_SHPC)) == 0) { err("%s : shpc_cap_offset == 0\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: shpc_cap_offset = %x\n", __FUNCTION__, shpc_cap_offset); rc = pci_write_config_byte(pdev, (u8)shpc_cap_offset + DWORD_SELECT , BASE_OFFSET); if (rc) { err("%s : pci_word_config_byte failed\n", __FUNCTION__); goto abort_free_ctlr; } rc = pci_read_config_dword(pdev, (u8)shpc_cap_offset + DWORD_DATA, &shpc_base_offset); if (rc) { err("%s : pci_read_config_dword failed\n", __FUNCTION__); goto abort_free_ctlr; } for (i = 0; i <= 14; i++) { rc = pci_write_config_byte(pdev, (u8)shpc_cap_offset + DWORD_SELECT , i); if (rc) { err("%s : pci_word_config_byte failed\n", __FUNCTION__); goto abort_free_ctlr; } rc = pci_read_config_dword(pdev, (u8)shpc_cap_offset + DWORD_DATA, &tempdword); if (rc) { err("%s : pci_read_config_dword failed\n", __FUNCTION__); goto abort_free_ctlr; } dbg("%s: offset %d: tempdword %x\n", __FUNCTION__,i, tempdword); } } if (first) { spin_lock_init(&hpc_event_lock); first = 0; } dbg("pdev = %p: b:d:f:irq=0x%x:%x:%x:%x\n", pdev, pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pdev->irq); for ( rc = 0; rc < DEVICE_COUNT_RESOURCE; rc++) if (pci_resource_len(pdev, rc) > 0) dbg("pci resource[%d] start=0x%lx(len=0x%lx), shpc_base_offset %x\n", rc, pci_resource_start(pdev, rc), pci_resource_len(pdev, rc), shpc_base_offset); info("HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); if (pci_enable_device(pdev)) goto abort_free_ctlr; if (!request_mem_region(pci_resource_start(pdev, 0) + shpc_base_offset, pci_resource_len(pdev, 0), MY_NAME)) { err("%s: cannot reserve MMIO region\n", __FUNCTION__); goto abort_free_ctlr; } php_ctlr->creg = ioremap(pci_resource_start(pdev, 0) + shpc_base_offset, pci_resource_len(pdev, 0)); if (!php_ctlr->creg) { err("%s: cannot remap MMIO region %lx @ %lx\n", __FUNCTION__, pci_resource_len(pdev, 0), pci_resource_start(pdev, 0) + shpc_base_offset); release_mem_region(pci_resource_start(pdev, 0) + shpc_base_offset, pci_resource_len(pdev, 0)); goto abort_free_ctlr; } dbg("%s: php_ctlr->creg %p\n", __FUNCTION__, php_ctlr->creg); dbg("%s: physical addr %p\n", __FUNCTION__, (void*)pci_resource_start(pdev, 0)); init_MUTEX(&ctrl->crit_sect); /* Setup wait queue */ init_waitqueue_head(&ctrl->queue); /* Find the IRQ */ php_ctlr->irq = pdev->irq; dbg("HPC interrupt = %d\n", php_ctlr->irq); /* Save interrupt callback info */ php_ctlr->attention_button_callback = attention_button_callback; php_ctlr->switch_change_callback = switch_change_callback; php_ctlr->presence_change_callback = presence_change_callback; php_ctlr->power_fault_callback = power_fault_callback; php_ctlr->callback_instance_id = instance_id; /* Return PCI Controller Info */ php_ctlr->slot_device_offset = (readl(php_ctlr->creg + SLOT_CONFIG) & FIRST_DEV_NUM ) >> 8; php_ctlr->num_slots = readl(php_ctlr->creg + SLOT_CONFIG) & SLOT_NUM; dbg("%s: slot_device_offset %x\n", __FUNCTION__, php_ctlr->slot_device_offset); dbg("%s: num_slots %x\n", __FUNCTION__, php_ctlr->num_slots); /* Mask Global Interrupt Mask & Command Complete Interrupt Mask */ tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword); tempdword = 0x0003000f; writel(tempdword, php_ctlr->creg + SERR_INTR_ENABLE); tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword); /* Mask the MRL sensor SERR Mask of individual slot in * Slot SERR-INT Mask & clear all the existing event if any */ for (hp_slot = 0; hp_slot < php_ctlr->num_slots; hp_slot++) { slot_reg = readl(php_ctlr->creg + SLOT1 + 4*hp_slot ); dbg("%s: Default Logical Slot Register %d value %x\n", __FUNCTION__, hp_slot, slot_reg); tempdword = 0xffff3fff; writel(tempdword, php_ctlr->creg + SLOT1 + (4*hp_slot)); } if (shpchp_poll_mode) {/* Install interrupt polling code */ /* Install and start the interrupt polling timer */ init_timer(&php_ctlr->int_poll_timer); start_int_poll_timer( php_ctlr, 10 ); /* start with 10 second delay */ } else { /* Installs the interrupt handler */ rc = pci_enable_msi(pdev); if (rc) { info("Can't get msi for the hotplug controller\n"); info("Use INTx for the hotplug controller\n"); dbg("%s: rc = %x\n", __FUNCTION__, rc); } else php_ctlr->irq = pdev->irq; rc = request_irq(php_ctlr->irq, shpc_isr, SA_SHIRQ, MY_NAME, (void *) ctrl); dbg("%s: request_irq %d for hpc%d (returns %d)\n", __FUNCTION__, php_ctlr->irq, ctlr_seq_num, rc); if (rc) { err("Can't get irq %d for the hotplug controller\n", php_ctlr->irq); goto abort_free_ctlr; } } get_hp_hw_control_from_firmware(pdev); dbg("%s: Before adding HPC to HPC list\n", __FUNCTION__); /* Add this HPC instance into the HPC list */ spin_lock(&list_lock); if (php_ctlr_list_head == 0) { php_ctlr_list_head = php_ctlr; p = php_ctlr_list_head; p->pnext = NULL; } else { p = php_ctlr_list_head; while (p->pnext) p = p->pnext; p->pnext = php_ctlr; } spin_unlock(&list_lock); ctlr_seq_num++; ctrl->hpc_ctlr_handle = php_ctlr; ctrl->hpc_ops = &shpchp_hpc_ops; for (hp_slot = 0; hp_slot < php_ctlr->num_slots; hp_slot++) { slot_reg = readl(php_ctlr->creg + SLOT1 + 4*hp_slot ); dbg("%s: Default Logical Slot Register %d value %x\n", __FUNCTION__, hp_slot, slot_reg); tempdword = 0xe01f3fff; writel(tempdword, php_ctlr->creg + SLOT1 + (4*hp_slot)); } if (!shpchp_poll_mode) { /* Unmask all general input interrupts and SERR */ tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE); tempdword = 0x0000000a; writel(tempdword, php_ctlr->creg + SERR_INTR_ENABLE); tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE); dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword); } dbg("%s: Leaving shpc_init\n", __FUNCTION__); DBG_LEAVE_ROUTINE return 0; /* We end up here for the many possible ways to fail this API. */ abort_free_ctlr: kfree(php_ctlr); abort: DBG_LEAVE_ROUTINE return -1; }