# # RTC class/drivers configuration # config RTC_LIB tristate menuconfig RTC_CLASS tristate "Real Time Clock" default n depends on !S390 select RTC_LIB help Generic RTC class support. If you say yes here, you will be allowed to plug one or more RTCs to your system. You will probably want to enable one or more of the interfaces below. This driver can also be built as a module. If so, the module will be called rtc-core. if RTC_CLASS config RTC_HCTOSYS bool "Set system time from RTC on startup and resume" depends on RTC_CLASS = y default y help If you say yes here, the system time (wall clock) will be set using the value read from a specified RTC device. This is useful to avoid unnecessary fsck runs at boot time, and to network better. config RTC_HCTOSYS_DEVICE string "RTC used to set the system time" depends on RTC_HCTOSYS = y default "rtc0" help The RTC device that will be used to (re)initialize the system clock, usually rtc0. Initialization is done when the system starts up, and when it resumes from a low power state. This device should record time in UTC, since the kernel won't do timezone correction. The driver for this RTC device must be loaded before late_initcall functions run, so it must usually be statically linked. This clock should be battery-backed, so that it reads the correct time when the system boots from a power-off state. Otherwise, your system will need an external clock source (like an NTP server). If the clock you specify here is not battery backed, it may still be useful to reinitialize system time when resuming from system sleep states. Do not specify an RTC here unless it stays powered during all this system's supported sleep states. config RTC_DEBUG bool "RTC debug support" depends on RTC_CLASS = y help Say yes here to enable debugging support in the RTC framework and individual RTC drivers. comment "RTC interfaces" config RTC_INTF_SYSFS boolean "/sys/class/rtc/rtcN (sysfs)" depends on SYSFS default RTC_CLASS help Say yes here if you want to use your RTCs using sysfs interfaces, /sys/class/rtc/rtc0 through /sys/.../rtcN. This driver can also be built as a module. If so, the module will be called rtc-sysfs. config RTC_INTF_PROC boolean "/proc/driver/rtc (procfs for rtc0)" depends on PROC_FS default RTC_CLASS help Say yes here if you want to use your first RTC through the proc interface, /proc/driver/rtc. Other RTCs will not be available through that API. This driver can also be built as a module. If so, the module will be called rtc-proc. config RTC_INTF_DEV boolean "/dev/rtcN (character devices)" default RTC_CLASS help Say yes here if you want to use your RTCs using the /dev interfaces, which "udev" sets up as /dev/rtc0 through /dev/rtcN. You may want to set up a symbolic link so one of these can be accessed as /dev/rtc, which is a name expected by "hwclock" and some other programs. This driver can also be built as a module. If so, the module will be called rtc-dev. config RTC_INTF_DEV_UIE_EMUL bool "RTC UIE emulation on dev interface" depends on RTC_INTF_DEV help Provides an emulation for RTC_UIE if the underlying rtc chip driver does not expose RTC_UIE ioctls. Those requests generate once-per-second update interrupts, used for synchronization. config RTC_DRV_TEST tristate "Test driver/device" help If you say yes here you get support for the RTC test driver. It's a software RTC which can be used to test the RTC subsystem APIs. It gets the time from the system clock. You want this driver only if you are doing development on the RTC subsystem. Please read the source code for further details. This driver can also be built as a module. If so, the module will be called rtc-test. comment "I2C RTC drivers" depends on I2C if I2C config RTC_DRV_DS1307 tristate "Dallas/Maxim DS1307/37/38/39/40, ST M41T00" help If you say yes here you get support for various compatible RTC chips (often with battery backup) connected with I2C. This driver should handle DS1307, DS1337, DS1338, DS1339, DS1340, ST M41T00, and probably other chips. In some cases the RTC must already have been initialized (by manufacturing or a bootloader). The first seven registers on these chips hold an RTC, and other registers may add features such as NVRAM, a trickle charger for the RTC/NVRAM backup power, and alarms. NVRAM is visible in sysfs, but other chip features may not be available. This driver can also be built as a module. If so, the module will be called rtc-ds1307. config RTC_DRV_DS1374 tristate "Dallas/Maxim DS1374" depends on RTC_CLASS && I2C help If you say yes here you get support for Dallas Semiconductor DS1374 real-time clock chips. If an interrupt is associated with the device, the alarm functionality is supported. This driver can also be built as a module. If so, the module will be called rtc-ds1374. config RTC_DRV_DS1672 tristate "Dallas/Maxim DS1672" help If you say yes here you get support for the Dallas/Maxim DS1672 timekeeping chip. This driver can also be built as a module. If so, the module will be called rtc-ds1672. config RTC_DRV_MAX6900 tristate "Maxim MAX6900" help If you say yes here you will get support for the Maxim MAX6900 I2C RTC chip. This driver can also be built as a module. If so, the module will be called rtc-max6900. config RTC_DRV_RS5C372 tristate "Ricoh RS5C372A/B, RV5C386, RV5C387A" help If you say yes here you get support for the Ricoh RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips. This driver can also be built as a module. If so, the module will be called rtc-rs5c372. config RTC_DRV_ISL1208 tristate "Intersil ISL1208" help If you say yes here you get support for the Intersil ISL1208 RTC chip. This driver can also be built as a module. If so, the module will be called rtc-isl1208. config RTC_DRV_X1205 tristate "Xicor/Intersil X1205" help If you say yes here you get support for the Xicor/Intersil X1205 RTC chip. This driver can also be built as a module. If so, the module will be called rtc-x1205. config RTC_DRV_PCF8563 tristate "Philips PCF8563/Epson RTC8564" help If you say yes here you get support for the Philips PCF8563 RTC chip. The Epson RTC8564 should work as well. This driver can also be built as a module. If so, the module will be called rtc-pcf8563. config RTC_DRV_PCF8583 tristate "Philips PCF8583" help If you say yes here you get support for the Philips PCF8583 RTC chip found on Acorn RiscPCs. This driver supports the platform specific method of retrieving the current year from the RTC's SRAM. It will work on other platforms with the same chip, but the year will probably have to be tweaked. This driver can also be built as a module. If so, the module will be called rtc-pcf8583. config RTC_DRV_M41T80 tristate "ST M41T80/81/82/83/84/85/87" help If you say Y here you will get support for the ST M41T80 RTC chips series. Currently following chips are supported: M41T80, M41T81, M41T82, M41T83, M41ST84, M41ST85 and M41ST87. This driver can also be built as a module. If so, the module will be called rtc-m41t80. config RTC_DRV_M41T80_WDT bool "ST M41T80 series RTC watchdog timer" depends on RTC_DRV_M41T80 help If you say Y here you will get support for the watchdog timer in ST M41T80 RTC chips series. config RTC_DRV_TWL92330 boolean "TI TWL92330/Menelaus" depends on MENELAUS help If you say yes here you get support for the RTC on the TWL92330 "Menelaus" power management chip, used with OMAP2 platforms. The support is integrated with the rest of the Menelaus driver; it's not separate module. config RTC_DRV_S35390A tristate "Seiko Instruments S-35390A" select BITREVERSE help If you say yes here you will get support for the Seiko Instruments S-35390A. This driver can also be built as a module. If so the module will be called rtc-s35390a. config RTC_DRV_FM3130 tristate "Ramtron FM3130" help If you say Y here you will get support for the Ramtron FM3130 RTC chips. Ramtron FM3130 is a chip with two separate devices inside, RTC clock and FRAM. This driver provides only RTC functionality. This driver can also be built as a module. If so the module will be called rtc-fm3130. endif # I2C comment "SPI RTC drivers" if SPI_MASTER config RTC_DRV_M41T94 tristate "ST M41T94" help If you say yes here you will get support for the ST M41T94 SPI RTC chip. This driver can also be built as a module. If so, the module will be called rtc-m41t94. config RTC_DRV_DS1305 tristate "Dallas/Maxim DS1305/DS1306" help Select this driver to get support for the Dallas/Maxim DS1305 and DS1306 real time clock chips. These support a trickle charger, alarms, and NVRAM in addition to the clock. This driver can also be built as a module. If so, the module will be called rtc-ds1305. config RTC_DRV_MAX6902 tristate "Maxim MAX6902" help If you say yes here you will get support for the Maxim MAX6902 SPI RTC chip. This driver can also be built as a module. If so, the module will be called rtc-max6902. config RTC_DRV_R9701 tristate "Epson RTC-9701JE" help If you say yes here you will get support for the Epson RTC-9701JE SPI RTC chip. This driver can also be built as a module. If so, the module will be called rtc-r9701. config RTC_DRV_RS5C348 tristate "Ricoh RS5C348A/B" help If you say yes here you get support for the Ricoh RS5C348A and RS5C348B RTC chips. This driver can also be built as a module. If so, the module will be called rtc-rs5c348. endif # SPI_MASTER comment "Platform RTC drivers" # this 'CMOS' RTC driver is arch dependent because # requires defining CMOS_READ/CMOS_WRITE, and a # global rtc_lock ... it's not yet just another platform_device. config RTC_DRV_CMOS tristate "PC-style 'CMOS'" depends on X86 || ALPHA || ARM || M32R || ATARI || PPC || MIPS || SPARC default y if X86 help Say "yes" here to get direct support for the real time clock found in every PC or ACPI-based system, and some other boards. Specifically the original MC146818, compatibles like those in PC south bridges, the DS12887 or M48T86, some multifunction or LPC bus chips, and so on. Your system will need to define the platform device used by this driver, otherwise it won't be accessible. This means you can safely enable this driver if you don't know whether or not your board has this kind of hardware. This driver can also be built as a module. If so, the module will be called rtc-cmos. config RTC_DRV_DS1216 tristate "Dallas DS1216" depends on SNI_RM help If you say yes here you get support for the Dallas DS1216 RTC chips. config RTC_DRV_DS1302 tristate "Dallas DS1302" depends on SH_SECUREEDGE5410 help If you say yes here you get support for the Dallas DS1302 RTC chips. config RTC_DRV_DS1511 tristate "Dallas DS1511" depends on RTC_CLASS help If you say yes here you get support for the Dallas DS1511 timekeeping/watchdog chip. This driver can also be built as a module. If so, the module will be called rtc-ds1511. config RTC_DRV_DS1553 tristate "Maxim/Dallas DS1553" help If you say yes here you get support for the Maxim/Dallas DS1553 timekeeping chip. This driver can also be built as a module. If so, the module will be called rtc-ds1553. config RTC_DRV_DS1742 tristate "Maxim/Dallas DS1742/1743" help If you say yes here you get support for the Maxim/Dallas DS1742/1743 timekeeping chip. This driver can also be built as a module. If so, the module will be called rtc-ds1742. config RTC_DRV_STK17TA8 tristate "Simtek STK17TA8" depends on RTC_CLASS help If you say yes here you get support for the Simtek STK17TA8 timekeeping chip. This driver can also be built as a module. If so, the module will be called rtc-stk17ta8. config RTC_DRV_M48T86 tristate "ST M48T86/Dallas DS12887" help If you say Y here you will get support for the ST M48T86 and Dallas DS12887 RTC chips. This driver can also be built as a module. If so, the module will be called rtc-m48t86. config RTC_DRV_M48T59 tristate "ST M48T59" help If you say Y here you will get support for the ST M48T59 RTC chip. This driver can also be built as a module, if so, the module will be called "rtc-m48t59". config RTC_DRV_V3020 tristate "EM Microelectronic V3020" help If you say yes here you will get support for the EM Microelectronic v3020 RTC chip. This driver can also be built as a module. If so, the module will be called rtc-v3020. comment "on-CPU RTC drivers" config RTC_DRV_OMAP tristate "TI OMAP1" depends on ARCH_OMAP15XX || ARCH_OMAP16XX || ARCH_OMAP730 help Say "yes" here to support the real time clock on TI OMAP1 chips. This driver can also be built as a module called rtc-omap. config RTC_DRV_S3C tristate "Samsung S3C series SoC RTC" depends on ARCH_S3C2410 help RTC (Realtime Clock) driver for the clock inbuilt into the Samsung S3C24XX series of SoCs. This can provide periodic interrupt rates from 1Hz to 64Hz for user programs, and wakeup from Alarm. The driver currently supports the common features on all the S3C24XX range, such as the S3C2410, S3C2412, S3C2413, S3C2440 and S3C2442. This driver can also be build as a module. If so, the module will be called rtc-s3c. config RTC_DRV_EP93XX tristate "Cirrus Logic EP93XX" depends on ARCH_EP93XX help If you say yes here you get support for the RTC embedded in the Cirrus Logic EP93XX processors. This driver can also be built as a module. If so, the module will be called rtc-ep93xx. config RTC_DRV_SA1100 tristate "SA11x0/PXA2xx" depends on ARCH_SA1100 || ARCH_PXA help If you say Y here you will get access to the real time clock built into your SA11x0 or PXA2xx CPU. To compile this driver as a module, choose M here: the module will be called rtc-sa1100. config RTC_DRV_SH tristate "SuperH On-Chip RTC" depends on RTC_CLASS && SUPERH help Say Y here to enable support for the on-chip RTC found in most SuperH processors. To compile this driver as a module, choose M here: the module will be called rtc-sh. config RTC_DRV_VR41XX tristate "NEC VR41XX" depends on CPU_VR41XX help If you say Y here you will get access to the real time clock built into your NEC VR41XX CPU. To compile this driver as a module, choose M here: the module will be called rtc-vr41xx. config RTC_DRV_PL030 tristate "ARM AMBA PL030 RTC" depends on ARM_AMBA help If you say Y here you will get access to ARM AMBA PrimeCell PL030 RTC found on certain ARM SOCs. To compile this driver as a module, choose M here: the module will be called rtc-pl030. config RTC_DRV_PL031 tristate "ARM AMBA PL031 RTC" depends on ARM_AMBA help If you say Y here you will get access to ARM AMBA PrimeCell PL031 RTC found on certain ARM SOCs. To compile this driver as a module, choose M here: the module will be called rtc-pl031. config RTC_DRV_AT32AP700X tristate "AT32AP700X series RTC" depends on PLATFORM_AT32AP help Driver for the internal RTC (Realtime Clock) on Atmel AVR32 AT32AP700x family processors. config RTC_DRV_AT91RM9200 tristate "AT91RM9200 or AT91SAM9RL" depends on ARCH_AT91RM9200 || ARCH_AT91SAM9RL help Driver for the internal RTC (Realtime Clock) module found on Atmel AT91RM9200's and AT91SAM9RL chips. On SAM9RL chips this is powered by the backup power supply. config RTC_DRV_AT91SAM9 tristate "AT91SAM9x/AT91CAP9" depends on ARCH_AT91 && !(ARCH_AT91RM9200 || ARCH_AT91X40) help RTC driver for the Atmel AT91SAM9x and AT91CAP9 internal RTT (Real Time Timer). These timers are powered by the backup power supply (such as a small coin cell battery), but do not need to be used as RTCs. (On AT91SAM9rl chips you probably want to use the dedicated RTC module and leave the RTT available for other uses.) config RTC_DRV_AT91SAM9_RTT int range 0 1 default 0 prompt "RTT module Number" if ARCH_AT91SAM9263 depends on RTC_DRV_AT91SAM9 help More than one RTT module is available. You can choose which one will be used as an RTC. The default of zero is normally OK to use, though some systems use that for non-RTC purposes. config RTC_DRV_AT91SAM9_GPBR int range 0 3 if !ARCH_AT91SAM9263 range 0 15 if ARCH_AT91SAM9263 default 0 prompt "Backup Register Number" depends on RTC_DRV_AT91SAM9 help The RTC driver needs to use one of the General Purpose Backup Registers (GPBRs) as well as the RTT. You can choose which one will be used. The default of zero is normally OK to use, but on some systems other software needs to use that register. config RTC_DRV_BFIN tristate "Blackfin On-Chip RTC" depends on BLACKFIN && !BF561 help If you say yes here you will get support for the Blackfin On-Chip Real Time Clock. This driver can also be built as a module. If so, the module will be called rtc-bfin. config RTC_DRV_RS5C313 tristate "Ricoh RS5C313" depends on SH_LANDISK help If you say yes here you get support for the Ricoh RS5C313 RTC chips. config RTC_DRV_PPC tristate "PowerPC machine dependent RTC support" depends on PPC_MERGE help The PowerPC kernel has machine-specific functions for accessing the RTC. This exposes that functionality through the generic RTC class. endif # RTC_CLASS