/* * linux/drivers/s390/cio/qdio_main.c * * Linux for s390 qdio support, buffer handling, qdio API and module support. * * Copyright 2000,2008 IBM Corp. * Author(s): Utz Bacher * Jan Glauber * 2.6 cio integration by Cornelia Huck */ #include #include #include #include #include #include #include #include #include "cio.h" #include "css.h" #include "device.h" #include "qdio.h" #include "qdio_debug.h" #include "qdio_perf.h" MODULE_AUTHOR("Utz Bacher ,"\ "Jan Glauber "); MODULE_DESCRIPTION("QDIO base support"); MODULE_LICENSE("GPL"); static inline int do_siga_sync(struct subchannel_id schid, unsigned int out_mask, unsigned int in_mask) { register unsigned long __fc asm ("0") = 2; register struct subchannel_id __schid asm ("1") = schid; register unsigned long out asm ("2") = out_mask; register unsigned long in asm ("3") = in_mask; int cc; asm volatile( " siga 0\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc) : "d" (__fc), "d" (__schid), "d" (out), "d" (in) : "cc"); return cc; } static inline int do_siga_input(struct subchannel_id schid, unsigned int mask) { register unsigned long __fc asm ("0") = 1; register struct subchannel_id __schid asm ("1") = schid; register unsigned long __mask asm ("2") = mask; int cc; asm volatile( " siga 0\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc) : "d" (__fc), "d" (__schid), "d" (__mask) : "cc", "memory"); return cc; } /** * do_siga_output - perform SIGA-w/wt function * @schid: subchannel id or in case of QEBSM the subchannel token * @mask: which output queues to process * @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer * @fc: function code to perform * * Returns cc or QDIO_ERROR_SIGA_ACCESS_EXCEPTION. * Note: For IQDC unicast queues only the highest priority queue is processed. */ static inline int do_siga_output(unsigned long schid, unsigned long mask, u32 *bb, unsigned int fc) { register unsigned long __fc asm("0") = fc; register unsigned long __schid asm("1") = schid; register unsigned long __mask asm("2") = mask; int cc = QDIO_ERROR_SIGA_ACCESS_EXCEPTION; asm volatile( " siga 0\n" "0: ipm %0\n" " srl %0,28\n" "1:\n" EX_TABLE(0b, 1b) : "+d" (cc), "+d" (__fc), "+d" (__schid), "+d" (__mask) : : "cc", "memory"); *bb = ((unsigned int) __fc) >> 31; return cc; } static inline int qdio_check_ccq(struct qdio_q *q, unsigned int ccq) { char dbf_text[15]; /* all done or next buffer state different */ if (ccq == 0 || ccq == 32) return 0; /* not all buffers processed */ if (ccq == 96 || ccq == 97) return 1; /* notify devices immediately */ sprintf(dbf_text, "%d", ccq); QDIO_DBF_TEXT2(1, trace, dbf_text); return -EIO; } /** * qdio_do_eqbs - extract buffer states for QEBSM * @q: queue to manipulate * @state: state of the extracted buffers * @start: buffer number to start at * @count: count of buffers to examine * * Returns the number of successfull extracted equal buffer states. * Stops processing if a state is different from the last buffers state. */ static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state, int start, int count) { unsigned int ccq = 0; int tmp_count = count, tmp_start = start; int nr = q->nr; int rc; char dbf_text[15]; BUG_ON(!q->irq_ptr->sch_token); qdio_perf_stat_inc(&perf_stats.debug_eqbs_all); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count); rc = qdio_check_ccq(q, ccq); /* At least one buffer was processed, return and extract the remaining * buffers later. */ if ((ccq == 96) && (count != tmp_count)) { qdio_perf_stat_inc(&perf_stats.debug_eqbs_incomplete); return (count - tmp_count); } if (rc == 1) { QDIO_DBF_TEXT5(1, trace, "eqAGAIN"); goto again; } if (rc < 0) { QDIO_DBF_TEXT2(1, trace, "eqberr"); sprintf(dbf_text, "%2x,%2x,%d,%d", count, tmp_count, ccq, nr); QDIO_DBF_TEXT2(1, trace, dbf_text); q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE_CHECK_CONDITION, 0, -1, -1, q->irq_ptr->int_parm); return 0; } return count - tmp_count; } /** * qdio_do_sqbs - set buffer states for QEBSM * @q: queue to manipulate * @state: new state of the buffers * @start: first buffer number to change * @count: how many buffers to change * * Returns the number of successfully changed buffers. * Does retrying until the specified count of buffer states is set or an * error occurs. */ static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start, int count) { unsigned int ccq = 0; int tmp_count = count, tmp_start = start; int nr = q->nr; int rc; char dbf_text[15]; BUG_ON(!q->irq_ptr->sch_token); qdio_perf_stat_inc(&perf_stats.debug_sqbs_all); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count); rc = qdio_check_ccq(q, ccq); if (rc == 1) { QDIO_DBF_TEXT5(1, trace, "sqAGAIN"); qdio_perf_stat_inc(&perf_stats.debug_sqbs_incomplete); goto again; } if (rc < 0) { QDIO_DBF_TEXT3(1, trace, "sqberr"); sprintf(dbf_text, "%2x,%2x", count, tmp_count); QDIO_DBF_TEXT3(1, trace, dbf_text); sprintf(dbf_text, "%d,%d", ccq, nr); QDIO_DBF_TEXT3(1, trace, dbf_text); q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE_CHECK_CONDITION, 0, -1, -1, q->irq_ptr->int_parm); return 0; } WARN_ON(tmp_count); return count - tmp_count; } /* returns number of examined buffers and their common state in *state */ static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr, unsigned char *state, unsigned int count) { unsigned char __state = 0; int i; BUG_ON(bufnr > QDIO_MAX_BUFFERS_MASK); BUG_ON(count > QDIO_MAX_BUFFERS_PER_Q); if (is_qebsm(q)) return qdio_do_eqbs(q, state, bufnr, count); for (i = 0; i < count; i++) { if (!__state) __state = q->slsb.val[bufnr]; else if (q->slsb.val[bufnr] != __state) break; bufnr = next_buf(bufnr); } *state = __state; return i; } inline int get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state) { return get_buf_states(q, bufnr, state, 1); } /* wrap-around safe setting of slsb states, returns number of changed buffers */ static inline int set_buf_states(struct qdio_q *q, int bufnr, unsigned char state, int count) { int i; BUG_ON(bufnr > QDIO_MAX_BUFFERS_MASK); BUG_ON(count > QDIO_MAX_BUFFERS_PER_Q); if (is_qebsm(q)) return qdio_do_sqbs(q, state, bufnr, count); for (i = 0; i < count; i++) { xchg(&q->slsb.val[bufnr], state); bufnr = next_buf(bufnr); } return count; } static inline int set_buf_state(struct qdio_q *q, int bufnr, unsigned char state) { return set_buf_states(q, bufnr, state, 1); } /* set slsb states to initial state */ void qdio_init_buf_states(struct qdio_irq *irq_ptr) { struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); for_each_output_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); } static int qdio_siga_sync(struct qdio_q *q, unsigned int output, unsigned int input) { int cc; if (!need_siga_sync(q)) return 0; qdio_perf_stat_inc(&perf_stats.siga_sync); cc = do_siga_sync(q->irq_ptr->schid, output, input); if (cc) { QDIO_DBF_TEXT4(0, trace, "sigasync"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); QDIO_DBF_HEX3(0, trace, &cc, sizeof(int *)); } return cc; } inline int qdio_siga_sync_q(struct qdio_q *q) { if (q->is_input_q) return qdio_siga_sync(q, 0, q->mask); else return qdio_siga_sync(q, q->mask, 0); } static inline int qdio_siga_sync_out(struct qdio_q *q) { return qdio_siga_sync(q, ~0U, 0); } static inline int qdio_siga_sync_all(struct qdio_q *q) { return qdio_siga_sync(q, ~0U, ~0U); } static inline int qdio_do_siga_output(struct qdio_q *q, unsigned int *busy_bit) { unsigned int fc = 0; unsigned long schid; if (q->u.out.use_enh_siga) { fc = 3; } if (!is_qebsm(q)) schid = *((u32 *)&q->irq_ptr->schid); else { schid = q->irq_ptr->sch_token; fc |= 0x80; } return do_siga_output(schid, q->mask, busy_bit, fc); } static int qdio_siga_output(struct qdio_q *q) { int cc; u32 busy_bit; u64 start_time = 0; char dbf_text[15]; QDIO_DBF_TEXT5(0, trace, "sigaout"); QDIO_DBF_HEX5(0, trace, &q, sizeof(void *)); qdio_perf_stat_inc(&perf_stats.siga_out); again: cc = qdio_do_siga_output(q, &busy_bit); if (queue_type(q) == QDIO_IQDIO_QFMT && cc == 2 && busy_bit) { sprintf(dbf_text, "bb%4x%2x", q->irq_ptr->schid.sch_no, q->nr); QDIO_DBF_TEXT3(0, trace, dbf_text); if (!start_time) start_time = get_usecs(); else if ((get_usecs() - start_time) < QDIO_BUSY_BIT_PATIENCE) goto again; } if (cc == 2 && busy_bit) cc |= QDIO_ERROR_SIGA_BUSY; if (cc) QDIO_DBF_HEX3(0, trace, &cc, sizeof(int *)); return cc; } static inline int qdio_siga_input(struct qdio_q *q) { int cc; QDIO_DBF_TEXT4(0, trace, "sigain"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); qdio_perf_stat_inc(&perf_stats.siga_in); cc = do_siga_input(q->irq_ptr->schid, q->mask); if (cc) QDIO_DBF_HEX3(0, trace, &cc, sizeof(int *)); return cc; } /* called from thinint inbound handler */ void qdio_sync_after_thinint(struct qdio_q *q) { if (pci_out_supported(q)) { if (need_siga_sync_thinint(q)) qdio_siga_sync_all(q); else if (need_siga_sync_out_thinint(q)) qdio_siga_sync_out(q); } else qdio_siga_sync_q(q); } inline void qdio_stop_polling(struct qdio_q *q) { spin_lock_bh(&q->u.in.lock); if (!q->u.in.polling) { spin_unlock_bh(&q->u.in.lock); return; } q->u.in.polling = 0; qdio_perf_stat_inc(&perf_stats.debug_stop_polling); /* show the card that we are not polling anymore */ set_buf_state(q, q->last_move_ftc, SLSB_P_INPUT_NOT_INIT); spin_unlock_bh(&q->u.in.lock); } static void announce_buffer_error(struct qdio_q *q) { char dbf_text[15]; if (q->is_input_q) QDIO_DBF_TEXT3(1, trace, "inperr"); else QDIO_DBF_TEXT3(0, trace, "outperr"); sprintf(dbf_text, "%x-%x-%x", q->first_to_check, q->sbal[q->first_to_check]->element[14].flags, q->sbal[q->first_to_check]->element[15].flags); QDIO_DBF_TEXT3(1, trace, dbf_text); QDIO_DBF_HEX2(1, trace, q->sbal[q->first_to_check], 256); q->qdio_error = QDIO_ERROR_SLSB_STATE; } static int get_inbound_buffer_frontier(struct qdio_q *q) { int count, stop; unsigned char state; /* * If we still poll don't update last_move_ftc, keep the * previously ACK buffer there. */ if (!q->u.in.polling) q->last_move_ftc = q->first_to_check; /* * Don't check 128 buffers, as otherwise qdio_inbound_q_moved * would return 0. */ count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK); stop = add_buf(q->first_to_check, count); /* * No siga sync here, as a PCI or we after a thin interrupt * will sync the queues. */ /* need to set count to 1 for non-qebsm */ if (!is_qebsm(q)) count = 1; check_next: if (q->first_to_check == stop) goto out; count = get_buf_states(q, q->first_to_check, &state, count); if (!count) goto out; switch (state) { case SLSB_P_INPUT_PRIMED: QDIO_DBF_TEXT5(0, trace, "inptprim"); /* * Only ACK the first buffer. The ACK will be removed in * qdio_stop_polling. */ if (q->u.in.polling) state = SLSB_P_INPUT_NOT_INIT; else { q->u.in.polling = 1; state = SLSB_P_INPUT_ACK; } set_buf_state(q, q->first_to_check, state); /* * Need to change all PRIMED buffers to NOT_INIT, otherwise * we're loosing initiative in the thinint code. */ if (count > 1) set_buf_states(q, next_buf(q->first_to_check), SLSB_P_INPUT_NOT_INIT, count - 1); /* * No siga-sync needed for non-qebsm here, as the inbound queue * will be synced on the next siga-r, resp. * tiqdio_is_inbound_q_done will do the siga-sync. */ q->first_to_check = add_buf(q->first_to_check, count); atomic_sub(count, &q->nr_buf_used); goto check_next; case SLSB_P_INPUT_ERROR: announce_buffer_error(q); /* process the buffer, the upper layer will take care of it */ q->first_to_check = add_buf(q->first_to_check, count); atomic_sub(count, &q->nr_buf_used); break; case SLSB_CU_INPUT_EMPTY: case SLSB_P_INPUT_NOT_INIT: case SLSB_P_INPUT_ACK: QDIO_DBF_TEXT5(0, trace, "inpnipro"); break; default: BUG(); } out: QDIO_DBF_HEX4(0, trace, &q->first_to_check, sizeof(int)); return q->first_to_check; } int qdio_inbound_q_moved(struct qdio_q *q) { int bufnr; bufnr = get_inbound_buffer_frontier(q); if ((bufnr != q->last_move_ftc) || q->qdio_error) { if (!need_siga_sync(q) && !pci_out_supported(q)) q->u.in.timestamp = get_usecs(); QDIO_DBF_TEXT4(0, trace, "inhasmvd"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); return 1; } else return 0; } static int qdio_inbound_q_done(struct qdio_q *q) { unsigned char state = 0; #ifdef CONFIG_QDIO_DEBUG char dbf_text[15]; #endif if (!atomic_read(&q->nr_buf_used)) return 1; /* * We need that one for synchronization with the adapter, as it * does a kind of PCI avoidance. */ qdio_siga_sync_q(q); get_buf_state(q, q->first_to_check, &state); if (state == SLSB_P_INPUT_PRIMED) /* we got something to do */ return 0; /* on VM, we don't poll, so the q is always done here */ if (need_siga_sync(q) || pci_out_supported(q)) return 1; /* * At this point we know, that inbound first_to_check * has (probably) not moved (see qdio_inbound_processing). */ if (get_usecs() > q->u.in.timestamp + QDIO_INPUT_THRESHOLD) { #ifdef CONFIG_QDIO_DEBUG QDIO_DBF_TEXT4(0, trace, "inqisdon"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); sprintf(dbf_text, "pf%02x", q->first_to_check); QDIO_DBF_TEXT4(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ return 1; } else { #ifdef CONFIG_QDIO_DEBUG QDIO_DBF_TEXT4(0, trace, "inqisntd"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); sprintf(dbf_text, "pf%02x", q->first_to_check); QDIO_DBF_TEXT4(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ return 0; } } void qdio_kick_inbound_handler(struct qdio_q *q) { int count, start, end; #ifdef CONFIG_QDIO_DEBUG char dbf_text[15]; #endif qdio_perf_stat_inc(&perf_stats.inbound_handler); start = q->first_to_kick; end = q->first_to_check; if (end >= start) count = end - start; else count = end + QDIO_MAX_BUFFERS_PER_Q - start; #ifdef CONFIG_QDIO_DEBUG sprintf(dbf_text, "s=%2xc=%2x", start, count); QDIO_DBF_TEXT4(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return; q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr, start, count, q->irq_ptr->int_parm); /* for the next time */ q->first_to_kick = q->first_to_check; q->qdio_error = 0; } static void __qdio_inbound_processing(struct qdio_q *q) { qdio_perf_stat_inc(&perf_stats.tasklet_inbound); again: if (!qdio_inbound_q_moved(q)) return; qdio_kick_inbound_handler(q); if (!qdio_inbound_q_done(q)) /* means poll time is not yet over */ goto again; qdio_stop_polling(q); /* * We need to check again to not lose initiative after * resetting the ACK state. */ if (!qdio_inbound_q_done(q)) goto again; } /* inbound tasklet */ void qdio_inbound_processing(unsigned long data) { struct qdio_q *q = (struct qdio_q *)data; __qdio_inbound_processing(q); } static int get_outbound_buffer_frontier(struct qdio_q *q) { int count, stop; unsigned char state; if (((queue_type(q) != QDIO_IQDIO_QFMT) && !pci_out_supported(q)) || (queue_type(q) == QDIO_IQDIO_QFMT && multicast_outbound(q))) qdio_siga_sync_q(q); /* * Don't check 128 buffers, as otherwise qdio_inbound_q_moved * would return 0. */ count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK); stop = add_buf(q->first_to_check, count); /* need to set count to 1 for non-qebsm */ if (!is_qebsm(q)) count = 1; check_next: if (q->first_to_check == stop) return q->first_to_check; count = get_buf_states(q, q->first_to_check, &state, count); if (!count) return q->first_to_check; switch (state) { case SLSB_P_OUTPUT_EMPTY: /* the adapter got it */ QDIO_DBF_TEXT5(0, trace, "outpempt"); atomic_sub(count, &q->nr_buf_used); q->first_to_check = add_buf(q->first_to_check, count); /* * We fetch all buffer states at once. get_buf_states may * return count < stop. For QEBSM we do not loop. */ if (is_qebsm(q)) break; goto check_next; case SLSB_P_OUTPUT_ERROR: announce_buffer_error(q); /* process the buffer, the upper layer will take care of it */ q->first_to_check = add_buf(q->first_to_check, count); atomic_sub(count, &q->nr_buf_used); break; case SLSB_CU_OUTPUT_PRIMED: /* the adapter has not fetched the output yet */ QDIO_DBF_TEXT5(0, trace, "outpprim"); break; case SLSB_P_OUTPUT_NOT_INIT: case SLSB_P_OUTPUT_HALTED: break; default: BUG(); } return q->first_to_check; } /* all buffers processed? */ static inline int qdio_outbound_q_done(struct qdio_q *q) { return atomic_read(&q->nr_buf_used) == 0; } static inline int qdio_outbound_q_moved(struct qdio_q *q) { int bufnr; bufnr = get_outbound_buffer_frontier(q); if ((bufnr != q->last_move_ftc) || q->qdio_error) { q->last_move_ftc = bufnr; QDIO_DBF_TEXT4(0, trace, "oqhasmvd"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); return 1; } else return 0; } /* * VM could present us cc=2 and busy bit set on SIGA-write * during reconfiguration of their Guest LAN (only in iqdio mode, * otherwise qdio is asynchronous and cc=2 and busy bit there will take * the queues down immediately). * * Therefore qdio_siga_output will try for a short time constantly, * if such a condition occurs. If it doesn't change, it will * increase the busy_siga_counter and save the timestamp, and * schedule the queue for later processing. qdio_outbound_processing * will check out the counter. If non-zero, it will call qdio_kick_outbound_q * as often as the value of the counter. This will attempt further SIGA * instructions. For each successful SIGA, the counter is * decreased, for failing SIGAs the counter remains the same, after * all. After some time of no movement, qdio_kick_outbound_q will * finally fail and reflect corresponding error codes to call * the upper layer module and have it take the queues down. * * Note that this is a change from the original HiperSockets design * (saying cc=2 and busy bit means take the queues down), but in * these days Guest LAN didn't exist... excessive cc=2 with busy bit * conditions will still take the queues down, but the threshold is * higher due to the Guest LAN environment. * * Called from outbound tasklet and do_QDIO handler. */ static void qdio_kick_outbound_q(struct qdio_q *q) { int rc; #ifdef CONFIG_QDIO_DEBUG char dbf_text[15]; QDIO_DBF_TEXT5(0, trace, "kickoutq"); QDIO_DBF_HEX5(0, trace, &q, sizeof(void *)); #endif /* CONFIG_QDIO_DEBUG */ if (!need_siga_out(q)) return; rc = qdio_siga_output(q); switch (rc) { case 0: /* TODO: improve error handling for CC=0 case */ #ifdef CONFIG_QDIO_DEBUG if (q->u.out.timestamp) { QDIO_DBF_TEXT3(0, trace, "cc2reslv"); sprintf(dbf_text, "%4x%2x%2x", q->irq_ptr->schid.sch_no, q->nr, atomic_read(&q->u.out.busy_siga_counter)); QDIO_DBF_TEXT3(0, trace, dbf_text); } #endif /* CONFIG_QDIO_DEBUG */ /* went smooth this time, reset timestamp */ q->u.out.timestamp = 0; break; /* cc=2 and busy bit */ case (2 | QDIO_ERROR_SIGA_BUSY): atomic_inc(&q->u.out.busy_siga_counter); /* if the last siga was successful, save timestamp here */ if (!q->u.out.timestamp) q->u.out.timestamp = get_usecs(); /* if we're in time, don't touch qdio_error */ if (get_usecs() - q->u.out.timestamp < QDIO_BUSY_BIT_GIVE_UP) { tasklet_schedule(&q->tasklet); break; } QDIO_DBF_TEXT2(0, trace, "cc2REPRT"); #ifdef CONFIG_QDIO_DEBUG sprintf(dbf_text, "%4x%2x%2x", q->irq_ptr->schid.sch_no, q->nr, atomic_read(&q->u.out.busy_siga_counter)); QDIO_DBF_TEXT3(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ default: /* for plain cc=1, 2 or 3 */ q->qdio_error = rc; } } static void qdio_kick_outbound_handler(struct qdio_q *q) { int start, end, count; #ifdef CONFIG_QDIO_DEBUG char dbf_text[15]; #endif start = q->first_to_kick; end = q->last_move_ftc; if (end >= start) count = end - start; else count = end + QDIO_MAX_BUFFERS_PER_Q - start; #ifdef CONFIG_QDIO_DEBUG QDIO_DBF_TEXT4(0, trace, "kickouth"); QDIO_DBF_HEX4(0, trace, &q, sizeof(void *)); sprintf(dbf_text, "s=%2xc=%2x", start, count); QDIO_DBF_TEXT4(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return; q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr, start, count, q->irq_ptr->int_parm); /* for the next time: */ q->first_to_kick = q->last_move_ftc; q->qdio_error = 0; } static void __qdio_outbound_processing(struct qdio_q *q) { int siga_attempts; qdio_perf_stat_inc(&perf_stats.tasklet_outbound); /* see comment in qdio_kick_outbound_q */ siga_attempts = atomic_read(&q->u.out.busy_siga_counter); while (siga_attempts--) { atomic_dec(&q->u.out.busy_siga_counter); qdio_kick_outbound_q(q); } BUG_ON(atomic_read(&q->nr_buf_used) < 0); if (qdio_outbound_q_moved(q)) qdio_kick_outbound_handler(q); if (queue_type(q) == QDIO_ZFCP_QFMT) { if (!pci_out_supported(q) && !qdio_outbound_q_done(q)) tasklet_schedule(&q->tasklet); return; } /* bail out for HiperSockets unicast queues */ if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q)) return; if ((queue_type(q) == QDIO_IQDIO_QFMT) && (atomic_read(&q->nr_buf_used)) > QDIO_IQDIO_POLL_LVL) { tasklet_schedule(&q->tasklet); return; } if (q->u.out.pci_out_enabled) return; /* * Now we know that queue type is either qeth without pci enabled * or HiperSockets multicast. Make sure buffer switch from PRIMED to * EMPTY is noticed and outbound_handler is called after some time. */ if (qdio_outbound_q_done(q)) del_timer(&q->u.out.timer); else { if (!timer_pending(&q->u.out.timer)) { mod_timer(&q->u.out.timer, jiffies + 10 * HZ); qdio_perf_stat_inc(&perf_stats.debug_tl_out_timer); } } } /* outbound tasklet */ void qdio_outbound_processing(unsigned long data) { struct qdio_q *q = (struct qdio_q *)data; __qdio_outbound_processing(q); } void qdio_outbound_timer(unsigned long data) { struct qdio_q *q = (struct qdio_q *)data; tasklet_schedule(&q->tasklet); } /* called from thinint inbound tasklet */ void qdio_check_outbound_after_thinint(struct qdio_q *q) { struct qdio_q *out; int i; if (!pci_out_supported(q)) return; for_each_output_queue(q->irq_ptr, out, i) if (!qdio_outbound_q_done(out)) tasklet_schedule(&out->tasklet); } static inline void qdio_set_state(struct qdio_irq *irq_ptr, enum qdio_irq_states state) { #ifdef CONFIG_QDIO_DEBUG char dbf_text[15]; QDIO_DBF_TEXT5(0, trace, "newstate"); sprintf(dbf_text, "%4x%4x", irq_ptr->schid.sch_no, state); QDIO_DBF_TEXT5(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ irq_ptr->state = state; mb(); } static void qdio_irq_check_sense(struct subchannel_id schid, struct irb *irb) { char dbf_text[15]; if (irb->esw.esw0.erw.cons) { sprintf(dbf_text, "sens%4x", schid.sch_no); QDIO_DBF_TEXT2(1, trace, dbf_text); QDIO_DBF_HEX0(0, trace, irb, 64); QDIO_DBF_HEX0(0, trace, irb->ecw, 64); } } /* PCI interrupt handler */ static void qdio_int_handler_pci(struct qdio_irq *irq_ptr) { int i; struct qdio_q *q; qdio_perf_stat_inc(&perf_stats.pci_int); for_each_input_queue(irq_ptr, q, i) tasklet_schedule(&q->tasklet); if (!(irq_ptr->qib.ac & QIB_AC_OUTBOUND_PCI_SUPPORTED)) return; for_each_output_queue(irq_ptr, q, i) { if (qdio_outbound_q_done(q)) continue; if (!siga_syncs_out_pci(q)) qdio_siga_sync_q(q); tasklet_schedule(&q->tasklet); } } static void qdio_handle_activate_check(struct ccw_device *cdev, unsigned long intparm, int cstat, int dstat) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct qdio_q *q; char dbf_text[15]; QDIO_DBF_TEXT2(1, trace, "ick2"); sprintf(dbf_text, "%s", dev_name(&cdev->dev)); QDIO_DBF_TEXT2(1, trace, dbf_text); QDIO_DBF_HEX2(0, trace, &intparm, sizeof(int)); QDIO_DBF_HEX2(0, trace, &dstat, sizeof(int)); QDIO_DBF_HEX2(0, trace, &cstat, sizeof(int)); if (irq_ptr->nr_input_qs) { q = irq_ptr->input_qs[0]; } else if (irq_ptr->nr_output_qs) { q = irq_ptr->output_qs[0]; } else { dump_stack(); goto no_handler; } q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE_CHECK_CONDITION, 0, -1, -1, irq_ptr->int_parm); no_handler: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); } static void qdio_call_shutdown(struct work_struct *work) { struct ccw_device_private *priv; struct ccw_device *cdev; priv = container_of(work, struct ccw_device_private, kick_work); cdev = priv->cdev; qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); put_device(&cdev->dev); } static void qdio_int_error(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; switch (irq_ptr->state) { case QDIO_IRQ_STATE_INACTIVE: case QDIO_IRQ_STATE_CLEANUP: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); break; case QDIO_IRQ_STATE_ESTABLISHED: case QDIO_IRQ_STATE_ACTIVE: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); if (get_device(&cdev->dev)) { /* Can't call shutdown from interrupt context. */ PREPARE_WORK(&cdev->private->kick_work, qdio_call_shutdown); queue_work(ccw_device_work, &cdev->private->kick_work); } break; default: WARN_ON(1); } wake_up(&cdev->private->wait_q); } static int qdio_establish_check_errors(struct ccw_device *cdev, int cstat, int dstat) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (cstat || (dstat & ~(DEV_STAT_CHN_END | DEV_STAT_DEV_END))) { QDIO_DBF_TEXT2(1, setup, "eq:ckcon"); goto error; } if (!(dstat & DEV_STAT_DEV_END)) { QDIO_DBF_TEXT2(1, setup, "eq:no de"); goto error; } if (dstat & ~(DEV_STAT_CHN_END | DEV_STAT_DEV_END)) { QDIO_DBF_TEXT2(1, setup, "eq:badio"); goto error; } return 0; error: QDIO_DBF_HEX2(0, trace, &cstat, sizeof(int)); QDIO_DBF_HEX2(0, trace, &dstat, sizeof(int)); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); return 1; } static void qdio_establish_handle_irq(struct ccw_device *cdev, int cstat, int dstat) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; char dbf_text[15]; sprintf(dbf_text, "qehi%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); QDIO_DBF_TEXT0(0, trace, dbf_text); if (!qdio_establish_check_errors(cdev, cstat, dstat)) qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED); } /* qdio interrupt handler */ void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm, struct irb *irb) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; int cstat, dstat; char dbf_text[15]; qdio_perf_stat_inc(&perf_stats.qdio_int); if (!intparm || !irq_ptr) { sprintf(dbf_text, "qihd%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT2(1, setup, dbf_text); return; } if (IS_ERR(irb)) { switch (PTR_ERR(irb)) { case -EIO: sprintf(dbf_text, "ierr%4x", irq_ptr->schid.sch_no); QDIO_DBF_TEXT2(1, setup, dbf_text); return; case -ETIMEDOUT: sprintf(dbf_text, "qtoh%4x", irq_ptr->schid.sch_no); QDIO_DBF_TEXT2(1, setup, dbf_text); qdio_int_error(cdev); return; default: WARN_ON(1); return; } } qdio_irq_check_sense(irq_ptr->schid, irb); cstat = irb->scsw.cmd.cstat; dstat = irb->scsw.cmd.dstat; switch (irq_ptr->state) { case QDIO_IRQ_STATE_INACTIVE: qdio_establish_handle_irq(cdev, cstat, dstat); break; case QDIO_IRQ_STATE_CLEANUP: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); break; case QDIO_IRQ_STATE_ESTABLISHED: case QDIO_IRQ_STATE_ACTIVE: if (cstat & SCHN_STAT_PCI) { qdio_int_handler_pci(irq_ptr); /* no state change so no need to wake up wait_q */ return; } if ((cstat & ~SCHN_STAT_PCI) || dstat) { qdio_handle_activate_check(cdev, intparm, cstat, dstat); break; } default: WARN_ON(1); } wake_up(&cdev->private->wait_q); } /** * qdio_get_ssqd_desc - get qdio subchannel description * @cdev: ccw device to get description for * @data: where to store the ssqd * * Returns 0 or an error code. The results of the chsc are stored in the * specified structure. */ int qdio_get_ssqd_desc(struct ccw_device *cdev, struct qdio_ssqd_desc *data) { char dbf_text[15]; if (!cdev || !cdev->private) return -EINVAL; sprintf(dbf_text, "qssq%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); return qdio_setup_get_ssqd(NULL, &cdev->private->schid, data); } EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc); /** * qdio_cleanup - shutdown queues and free data structures * @cdev: associated ccw device * @how: use halt or clear to shutdown * * This function calls qdio_shutdown() for @cdev with method @how * and on success qdio_free() for @cdev. */ int qdio_cleanup(struct ccw_device *cdev, int how) { struct qdio_irq *irq_ptr; char dbf_text[15]; int rc; sprintf(dbf_text, "qcln%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; rc = qdio_shutdown(cdev, how); if (rc == 0) rc = qdio_free(cdev); return rc; } EXPORT_SYMBOL_GPL(qdio_cleanup); static void qdio_shutdown_queues(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) tasklet_disable(&q->tasklet); for_each_output_queue(irq_ptr, q, i) { tasklet_disable(&q->tasklet); del_timer(&q->u.out.timer); } } /** * qdio_shutdown - shut down a qdio subchannel * @cdev: associated ccw device * @how: use halt or clear to shutdown */ int qdio_shutdown(struct ccw_device *cdev, int how) { struct qdio_irq *irq_ptr; int rc; unsigned long flags; char dbf_text[15]; sprintf(dbf_text, "qshu%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; mutex_lock(&irq_ptr->setup_mutex); /* * Subchannel was already shot down. We cannot prevent being called * twice since cio may trigger a shutdown asynchronously. */ if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { mutex_unlock(&irq_ptr->setup_mutex); return 0; } tiqdio_remove_input_queues(irq_ptr); qdio_shutdown_queues(cdev); qdio_shutdown_debug_entries(irq_ptr, cdev); /* cleanup subchannel */ spin_lock_irqsave(get_ccwdev_lock(cdev), flags); if (how & QDIO_FLAG_CLEANUP_USING_CLEAR) rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP); else /* default behaviour is halt */ rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP); if (rc) { sprintf(dbf_text, "sher%4x", irq_ptr->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); sprintf(dbf_text, "rc=%d", rc); QDIO_DBF_TEXT0(0, setup, dbf_text); goto no_cleanup; } qdio_set_state(irq_ptr, QDIO_IRQ_STATE_CLEANUP); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); wait_event_interruptible_timeout(cdev->private->wait_q, irq_ptr->state == QDIO_IRQ_STATE_INACTIVE || irq_ptr->state == QDIO_IRQ_STATE_ERR, 10 * HZ); spin_lock_irqsave(get_ccwdev_lock(cdev), flags); no_cleanup: qdio_shutdown_thinint(irq_ptr); /* restore interrupt handler */ if ((void *)cdev->handler == (void *)qdio_int_handler) cdev->handler = irq_ptr->orig_handler; spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); mutex_unlock(&irq_ptr->setup_mutex); if (rc) return rc; return 0; } EXPORT_SYMBOL_GPL(qdio_shutdown); /** * qdio_free - free data structures for a qdio subchannel * @cdev: associated ccw device */ int qdio_free(struct ccw_device *cdev) { struct qdio_irq *irq_ptr; char dbf_text[15]; sprintf(dbf_text, "qfre%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; mutex_lock(&irq_ptr->setup_mutex); cdev->private->qdio_data = NULL; mutex_unlock(&irq_ptr->setup_mutex); qdio_release_memory(irq_ptr); return 0; } EXPORT_SYMBOL_GPL(qdio_free); /** * qdio_initialize - allocate and establish queues for a qdio subchannel * @init_data: initialization data * * This function first allocates queues via qdio_allocate() and on success * establishes them via qdio_establish(). */ int qdio_initialize(struct qdio_initialize *init_data) { int rc; char dbf_text[15]; sprintf(dbf_text, "qini%4x", init_data->cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); rc = qdio_allocate(init_data); if (rc) return rc; rc = qdio_establish(init_data); if (rc) qdio_free(init_data->cdev); return rc; } EXPORT_SYMBOL_GPL(qdio_initialize); /** * qdio_allocate - allocate qdio queues and associated data * @init_data: initialization data */ int qdio_allocate(struct qdio_initialize *init_data) { struct qdio_irq *irq_ptr; char dbf_text[15]; sprintf(dbf_text, "qalc%4x", init_data->cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); if ((init_data->no_input_qs && !init_data->input_handler) || (init_data->no_output_qs && !init_data->output_handler)) return -EINVAL; if ((init_data->no_input_qs > QDIO_MAX_QUEUES_PER_IRQ) || (init_data->no_output_qs > QDIO_MAX_QUEUES_PER_IRQ)) return -EINVAL; if ((!init_data->input_sbal_addr_array) || (!init_data->output_sbal_addr_array)) return -EINVAL; qdio_allocate_do_dbf(init_data); /* irq_ptr must be in GFP_DMA since it contains ccw1.cda */ irq_ptr = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!irq_ptr) goto out_err; QDIO_DBF_TEXT0(0, setup, "irq_ptr:"); QDIO_DBF_HEX0(0, setup, &irq_ptr, sizeof(void *)); mutex_init(&irq_ptr->setup_mutex); /* * Allocate a page for the chsc calls in qdio_establish. * Must be pre-allocated since a zfcp recovery will call * qdio_establish. In case of low memory and swap on a zfcp disk * we may not be able to allocate memory otherwise. */ irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL); if (!irq_ptr->chsc_page) goto out_rel; /* qdr is used in ccw1.cda which is u32 */ irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!irq_ptr->qdr) goto out_rel; WARN_ON((unsigned long)irq_ptr->qdr & 0xfff); QDIO_DBF_TEXT0(0, setup, "qdr:"); QDIO_DBF_HEX0(0, setup, &irq_ptr->qdr, sizeof(void *)); if (qdio_allocate_qs(irq_ptr, init_data->no_input_qs, init_data->no_output_qs)) goto out_rel; init_data->cdev->private->qdio_data = irq_ptr; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); return 0; out_rel: qdio_release_memory(irq_ptr); out_err: return -ENOMEM; } EXPORT_SYMBOL_GPL(qdio_allocate); /** * qdio_establish - establish queues on a qdio subchannel * @init_data: initialization data */ int qdio_establish(struct qdio_initialize *init_data) { char dbf_text[20]; struct qdio_irq *irq_ptr; struct ccw_device *cdev = init_data->cdev; unsigned long saveflags; int rc; sprintf(dbf_text, "qest%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; if (cdev->private->state != DEV_STATE_ONLINE) return -EINVAL; mutex_lock(&irq_ptr->setup_mutex); qdio_setup_irq(init_data); rc = qdio_establish_thinint(irq_ptr); if (rc) { mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return rc; } /* establish q */ irq_ptr->ccw.cmd_code = irq_ptr->equeue.cmd; irq_ptr->ccw.flags = CCW_FLAG_SLI; irq_ptr->ccw.count = irq_ptr->equeue.count; irq_ptr->ccw.cda = (u32)((addr_t)irq_ptr->qdr); spin_lock_irqsave(get_ccwdev_lock(cdev), saveflags); ccw_device_set_options_mask(cdev, 0); rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0); if (rc) { sprintf(dbf_text, "eq:io%4x", irq_ptr->schid.sch_no); QDIO_DBF_TEXT2(1, setup, dbf_text); sprintf(dbf_text, "eq:rc%4x", rc); QDIO_DBF_TEXT2(1, setup, dbf_text); } spin_unlock_irqrestore(get_ccwdev_lock(cdev), saveflags); if (rc) { mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return rc; } wait_event_interruptible_timeout(cdev->private->wait_q, irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED || irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ); if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) { mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return -EIO; } qdio_setup_ssqd_info(irq_ptr); sprintf(dbf_text, "qDmmwc%2x", irq_ptr->ssqd_desc.mmwc); QDIO_DBF_TEXT2(0, setup, dbf_text); sprintf(dbf_text, "qib ac%2x", irq_ptr->qib.ac); QDIO_DBF_TEXT2(0, setup, dbf_text); /* qebsm is now setup if available, initialize buffer states */ qdio_init_buf_states(irq_ptr); mutex_unlock(&irq_ptr->setup_mutex); qdio_print_subchannel_info(irq_ptr, cdev); qdio_setup_debug_entries(irq_ptr, cdev); return 0; } EXPORT_SYMBOL_GPL(qdio_establish); /** * qdio_activate - activate queues on a qdio subchannel * @cdev: associated cdev */ int qdio_activate(struct ccw_device *cdev) { struct qdio_irq *irq_ptr; int rc; unsigned long saveflags; char dbf_text[20]; sprintf(dbf_text, "qact%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT0(0, setup, dbf_text); irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; if (cdev->private->state != DEV_STATE_ONLINE) return -EINVAL; mutex_lock(&irq_ptr->setup_mutex); if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { rc = -EBUSY; goto out; } irq_ptr->ccw.cmd_code = irq_ptr->aqueue.cmd; irq_ptr->ccw.flags = CCW_FLAG_SLI; irq_ptr->ccw.count = irq_ptr->aqueue.count; irq_ptr->ccw.cda = 0; spin_lock_irqsave(get_ccwdev_lock(cdev), saveflags); ccw_device_set_options(cdev, CCWDEV_REPORT_ALL); rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ACTIVATE, 0, DOIO_DENY_PREFETCH); if (rc) { sprintf(dbf_text, "aq:io%4x", irq_ptr->schid.sch_no); QDIO_DBF_TEXT2(1, setup, dbf_text); sprintf(dbf_text, "aq:rc%4x", rc); QDIO_DBF_TEXT2(1, setup, dbf_text); } spin_unlock_irqrestore(get_ccwdev_lock(cdev), saveflags); if (rc) goto out; if (is_thinint_irq(irq_ptr)) tiqdio_add_input_queues(irq_ptr); /* wait for subchannel to become active */ msleep(5); switch (irq_ptr->state) { case QDIO_IRQ_STATE_STOPPED: case QDIO_IRQ_STATE_ERR: mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return -EIO; default: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE); rc = 0; } out: mutex_unlock(&irq_ptr->setup_mutex); return rc; } EXPORT_SYMBOL_GPL(qdio_activate); static inline int buf_in_between(int bufnr, int start, int count) { int end = add_buf(start, count); if (end > start) { if (bufnr >= start && bufnr < end) return 1; else return 0; } /* wrap-around case */ if ((bufnr >= start && bufnr <= QDIO_MAX_BUFFERS_PER_Q) || (bufnr < end)) return 1; else return 0; } /** * handle_inbound - reset processed input buffers * @q: queue containing the buffers * @callflags: flags * @bufnr: first buffer to process * @count: how many buffers are emptied */ static void handle_inbound(struct qdio_q *q, unsigned int callflags, int bufnr, int count) { unsigned long flags; int used, rc; /* * do_QDIO could run in parallel with the queue tasklet so the * upper-layer programm could empty the ACK'ed buffer here. * If that happens we must clear the polling flag, otherwise * qdio_stop_polling() could set the buffer to NOT_INIT after * it was set to EMPTY which would kill us. */ spin_lock_irqsave(&q->u.in.lock, flags); if (q->u.in.polling) if (buf_in_between(q->last_move_ftc, bufnr, count)) q->u.in.polling = 0; count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count); spin_unlock_irqrestore(&q->u.in.lock, flags); used = atomic_add_return(count, &q->nr_buf_used) - count; BUG_ON(used + count > QDIO_MAX_BUFFERS_PER_Q); /* no need to signal as long as the adapter had free buffers */ if (used) return; if (need_siga_in(q)) { rc = qdio_siga_input(q); if (rc) q->qdio_error = rc; } } /** * handle_outbound - process filled outbound buffers * @q: queue containing the buffers * @callflags: flags * @bufnr: first buffer to process * @count: how many buffers are filled */ static void handle_outbound(struct qdio_q *q, unsigned int callflags, int bufnr, int count) { unsigned char state; int used; qdio_perf_stat_inc(&perf_stats.outbound_handler); count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count); used = atomic_add_return(count, &q->nr_buf_used); BUG_ON(used > QDIO_MAX_BUFFERS_PER_Q); if (callflags & QDIO_FLAG_PCI_OUT) q->u.out.pci_out_enabled = 1; else q->u.out.pci_out_enabled = 0; if (queue_type(q) == QDIO_IQDIO_QFMT) { if (multicast_outbound(q)) qdio_kick_outbound_q(q); else if ((q->irq_ptr->ssqd_desc.mmwc > 1) && (count > 1) && (count <= q->irq_ptr->ssqd_desc.mmwc)) { /* exploit enhanced SIGA */ q->u.out.use_enh_siga = 1; qdio_kick_outbound_q(q); } else { /* * One siga-w per buffer required for unicast * HiperSockets. */ q->u.out.use_enh_siga = 0; while (count--) qdio_kick_outbound_q(q); } goto out; } if (need_siga_sync(q)) { qdio_siga_sync_q(q); goto out; } /* try to fast requeue buffers */ get_buf_state(q, prev_buf(bufnr), &state); if (state != SLSB_CU_OUTPUT_PRIMED) qdio_kick_outbound_q(q); else { QDIO_DBF_TEXT5(0, trace, "fast-req"); qdio_perf_stat_inc(&perf_stats.fast_requeue); } out: /* Fixme: could wait forever if called from process context */ tasklet_schedule(&q->tasklet); } /** * do_QDIO - process input or output buffers * @cdev: associated ccw_device for the qdio subchannel * @callflags: input or output and special flags from the program * @q_nr: queue number * @bufnr: buffer number * @count: how many buffers to process */ int do_QDIO(struct ccw_device *cdev, unsigned int callflags, int q_nr, int bufnr, int count) { struct qdio_irq *irq_ptr; #ifdef CONFIG_QDIO_DEBUG char dbf_text[20]; sprintf(dbf_text, "doQD%4x", cdev->private->schid.sch_no); QDIO_DBF_TEXT3(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ if ((bufnr > QDIO_MAX_BUFFERS_PER_Q) || (count > QDIO_MAX_BUFFERS_PER_Q) || (q_nr > QDIO_MAX_QUEUES_PER_IRQ)) return -EINVAL; if (!count) return 0; irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; #ifdef CONFIG_QDIO_DEBUG if (callflags & QDIO_FLAG_SYNC_INPUT) QDIO_DBF_HEX3(0, trace, &irq_ptr->input_qs[q_nr], sizeof(void *)); else QDIO_DBF_HEX3(0, trace, &irq_ptr->output_qs[q_nr], sizeof(void *)); sprintf(dbf_text, "flag%04x", callflags); QDIO_DBF_TEXT3(0, trace, dbf_text); sprintf(dbf_text, "qi%02xct%02x", bufnr, count); QDIO_DBF_TEXT3(0, trace, dbf_text); #endif /* CONFIG_QDIO_DEBUG */ if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE) return -EBUSY; if (callflags & QDIO_FLAG_SYNC_INPUT) handle_inbound(irq_ptr->input_qs[q_nr], callflags, bufnr, count); else if (callflags & QDIO_FLAG_SYNC_OUTPUT) handle_outbound(irq_ptr->output_qs[q_nr], callflags, bufnr, count); else { QDIO_DBF_TEXT3(1, trace, "doQD:inv"); return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(do_QDIO); static int __init init_QDIO(void) { int rc; rc = qdio_setup_init(); if (rc) return rc; rc = tiqdio_allocate_memory(); if (rc) goto out_cache; rc = qdio_debug_init(); if (rc) goto out_ti; rc = qdio_setup_perf_stats(); if (rc) goto out_debug; rc = tiqdio_register_thinints(); if (rc) goto out_perf; return 0; out_perf: qdio_remove_perf_stats(); out_debug: qdio_debug_exit(); out_ti: tiqdio_free_memory(); out_cache: qdio_setup_exit(); return rc; } static void __exit exit_QDIO(void) { tiqdio_unregister_thinints(); tiqdio_free_memory(); qdio_remove_perf_stats(); qdio_debug_exit(); qdio_setup_exit(); } module_init(init_QDIO); module_exit(exit_QDIO);