/* * Initio A100 device driver for Linux. * * Copyright (c) 1994-1998 Initio Corporation * Copyright (c) 2003-2004 Christoph Hellwig * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Revision History: * 07/02/98 hl - v.91n Initial drivers. * 09/14/98 hl - v1.01 Support new Kernel. * 09/22/98 hl - v1.01a Support reset. * 09/24/98 hl - v1.01b Fixed reset. * 10/05/98 hl - v1.02 split the source code and release. * 12/19/98 bv - v1.02a Use spinlocks for 2.1.95 and up * 01/31/99 bv - v1.02b Use mdelay instead of waitForPause * 08/08/99 bv - v1.02c Use waitForPause again. * 06/25/02 Doug Ledford <dledford@redhat.com> - v1.02d * - Remove limit on number of controllers * - Port to DMA mapping API * - Clean up interrupt handler registration * - Fix memory leaks * - Fix allocation of scsi host structs and private data * 11/18/03 Christoph Hellwig <hch@lst.de> * - Port to new probing API * - Fix some more leaks in init failure cases * 9/28/04 Christoph Hellwig <hch@lst.de> * - merge the two source files * - remove internal queueing code * 14/06/07 Alan Cox <alan@lxorguk.ukuu.org.uk> * - Grand cleanup and Linuxisation */ #include <linux/module.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/spinlock.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/dma-mapping.h> #include <asm/io.h> #include <asm/irq.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include "a100u2w.h" static struct orc_scb *__orc_alloc_scb(struct orc_host * host); static void inia100_scb_handler(struct orc_host *host, struct orc_scb *scb); static struct orc_nvram nvram, *nvramp = &nvram; static u8 default_nvram[64] = { /*----------header -------------*/ 0x01, /* 0x00: Sub System Vendor ID 0 */ 0x11, /* 0x01: Sub System Vendor ID 1 */ 0x60, /* 0x02: Sub System ID 0 */ 0x10, /* 0x03: Sub System ID 1 */ 0x00, /* 0x04: SubClass */ 0x01, /* 0x05: Vendor ID 0 */ 0x11, /* 0x06: Vendor ID 1 */ 0x60, /* 0x07: Device ID 0 */ 0x10, /* 0x08: Device ID 1 */ 0x00, /* 0x09: Reserved */ 0x00, /* 0x0A: Reserved */ 0x01, /* 0x0B: Revision of Data Structure */ /* -- Host Adapter Structure --- */ 0x01, /* 0x0C: Number Of SCSI Channel */ 0x01, /* 0x0D: BIOS Configuration 1 */ 0x00, /* 0x0E: BIOS Configuration 2 */ 0x00, /* 0x0F: BIOS Configuration 3 */ /* --- SCSI Channel 0 Configuration --- */ 0x07, /* 0x10: H/A ID */ 0x83, /* 0x11: Channel Configuration */ 0x20, /* 0x12: MAX TAG per target */ 0x0A, /* 0x13: SCSI Reset Recovering time */ 0x00, /* 0x14: Channel Configuration4 */ 0x00, /* 0x15: Channel Configuration5 */ /* SCSI Channel 0 Target Configuration */ /* 0x16-0x25 */ 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, /* --- SCSI Channel 1 Configuration --- */ 0x07, /* 0x26: H/A ID */ 0x83, /* 0x27: Channel Configuration */ 0x20, /* 0x28: MAX TAG per target */ 0x0A, /* 0x29: SCSI Reset Recovering time */ 0x00, /* 0x2A: Channel Configuration4 */ 0x00, /* 0x2B: Channel Configuration5 */ /* SCSI Channel 1 Target Configuration */ /* 0x2C-0x3B */ 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0xC8, 0x00, /* 0x3C: Reserved */ 0x00, /* 0x3D: Reserved */ 0x00, /* 0x3E: Reserved */ 0x00 /* 0x3F: Checksum */ }; static u8 wait_chip_ready(struct orc_host * host) { int i; for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */ if (inb(host->base + ORC_HCTRL) & HOSTSTOP) /* Wait HOSTSTOP set */ return 1; mdelay(100); } return 0; } static u8 wait_firmware_ready(struct orc_host * host) { int i; for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */ if (inb(host->base + ORC_HSTUS) & RREADY) /* Wait READY set */ return 1; mdelay(100); /* wait 100ms before try again */ } return 0; } /***************************************************************************/ static u8 wait_scsi_reset_done(struct orc_host * host) { int i; for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */ if (!(inb(host->base + ORC_HCTRL) & SCSIRST)) /* Wait SCSIRST done */ return 1; mdelay(100); /* wait 100ms before try again */ } return 0; } /***************************************************************************/ static u8 wait_HDO_off(struct orc_host * host) { int i; for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */ if (!(inb(host->base + ORC_HCTRL) & HDO)) /* Wait HDO off */ return 1; mdelay(100); /* wait 100ms before try again */ } return 0; } /***************************************************************************/ static u8 wait_hdi_set(struct orc_host * host, u8 * data) { int i; for (i = 0; i < 10; i++) { /* Wait 1 second for report timeout */ if ((*data = inb(host->base + ORC_HSTUS)) & HDI) return 1; /* Wait HDI set */ mdelay(100); /* wait 100ms before try again */ } return 0; } /***************************************************************************/ static unsigned short orc_read_fwrev(struct orc_host * host) { u16 version; u8 data; outb(ORC_CMD_VERSION, host->base + ORC_HDATA); outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */ return 0; version = inb(host->base + ORC_HDATA); outb(data, host->base + ORC_HSTUS); /* Clear HDI */ if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */ return 0; version |= inb(host->base + ORC_HDATA) << 8; outb(data, host->base + ORC_HSTUS); /* Clear HDI */ return version; } /***************************************************************************/ static u8 orc_nv_write(struct orc_host * host, unsigned char address, unsigned char value) { outb(ORC_CMD_SET_NVM, host->base + ORC_HDATA); /* Write command */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; outb(address, host->base + ORC_HDATA); /* Write address */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; outb(value, host->base + ORC_HDATA); /* Write value */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; return 1; } /***************************************************************************/ static u8 orc_nv_read(struct orc_host * host, u8 address, u8 *ptr) { unsigned char data; outb(ORC_CMD_GET_NVM, host->base + ORC_HDATA); /* Write command */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; outb(address, host->base + ORC_HDATA); /* Write address */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */ return 0; *ptr = inb(host->base + ORC_HDATA); outb(data, host->base + ORC_HSTUS); /* Clear HDI */ return 1; } /** * orc_exec_sb - Queue an SCB with the HA * @host: host adapter the SCB belongs to * @scb: SCB to queue for execution */ static void orc_exec_scb(struct orc_host * host, struct orc_scb * scb) { scb->status = ORCSCB_POST; outb(scb->scbidx, host->base + ORC_PQUEUE); } /** * se2_rd_all - read SCSI parameters from EEPROM * @host: Host whose EEPROM is being loaded * * Read SCSI H/A configuration parameters from serial EEPROM */ static int se2_rd_all(struct orc_host * host) { int i; u8 *np, chksum = 0; np = (u8 *) nvramp; for (i = 0; i < 64; i++, np++) { /* <01> */ if (orc_nv_read(host, (u8) i, np) == 0) return -1; } /*------ Is ckecksum ok ? ------*/ np = (u8 *) nvramp; for (i = 0; i < 63; i++) chksum += *np++; if (nvramp->CheckSum != (u8) chksum) return -1; return 1; } /** * se2_update_all - update the EEPROM * @host: Host whose EEPROM is being updated * * Update changed bytes in the EEPROM image. */ static void se2_update_all(struct orc_host * host) { /* setup default pattern */ int i; u8 *np, *np1, chksum = 0; /* Calculate checksum first */ np = (u8 *) default_nvram; for (i = 0; i < 63; i++) chksum += *np++; *np = chksum; np = (u8 *) default_nvram; np1 = (u8 *) nvramp; for (i = 0; i < 64; i++, np++, np1++) { if (*np != *np1) orc_nv_write(host, (u8) i, *np); } } /** * read_eeprom - load EEPROM * @host: Host EEPROM to read * * Read the EEPROM for a given host. If it is invalid or fails * the restore the defaults and use them. */ static void read_eeprom(struct orc_host * host) { if (se2_rd_all(host) != 1) { se2_update_all(host); /* setup default pattern */ se2_rd_all(host); /* load again */ } } /** * orc_load_firmware - initialise firmware * @host: Host to set up * * Load the firmware from the EEPROM into controller SRAM. This * is basically a 4K block copy and then a 4K block read to check * correctness. The rest is convulted by the indirect interfaces * in the hardware */ static u8 orc_load_firmware(struct orc_host * host) { u32 data32; u16 bios_addr; u16 i; u8 *data32_ptr, data; /* Set up the EEPROM for access */ data = inb(host->base + ORC_GCFG); outb(data | EEPRG, host->base + ORC_GCFG); /* Enable EEPROM programming */ outb(0x00, host->base + ORC_EBIOSADR2); outw(0x0000, host->base + ORC_EBIOSADR0); if (inb(host->base + ORC_EBIOSDATA) != 0x55) { outb(data, host->base + ORC_GCFG); /* Disable EEPROM programming */ return 0; } outw(0x0001, host->base + ORC_EBIOSADR0); if (inb(host->base + ORC_EBIOSDATA) != 0xAA) { outb(data, host->base + ORC_GCFG); /* Disable EEPROM programming */ return 0; } outb(PRGMRST | DOWNLOAD, host->base + ORC_RISCCTL); /* Enable SRAM programming */ data32_ptr = (u8 *) & data32; data32 = cpu_to_le32(0); /* Initial FW address to 0 */ outw(0x0010, host->base + ORC_EBIOSADR0); *data32_ptr = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */ outw(0x0011, host->base + ORC_EBIOSADR0); *(data32_ptr + 1) = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */ outw(0x0012, host->base + ORC_EBIOSADR0); *(data32_ptr + 2) = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */ outw(*(data32_ptr + 2), host->base + ORC_EBIOSADR2); outl(le32_to_cpu(data32), host->base + ORC_FWBASEADR); /* Write FW address */ /* Copy the code from the BIOS to the SRAM */ udelay(500); /* Required on Sun Ultra 5 ... 350 -> failures */ bios_addr = (u16) le32_to_cpu(data32); /* FW code locate at BIOS address + ? */ for (i = 0, data32_ptr = (u8 *) & data32; /* Download the code */ i < 0x1000; /* Firmware code size = 4K */ i++, bios_addr++) { outw(bios_addr, host->base + ORC_EBIOSADR0); *data32_ptr++ = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */ if ((i % 4) == 3) { outl(le32_to_cpu(data32), host->base + ORC_RISCRAM); /* Write every 4 bytes */ data32_ptr = (u8 *) & data32; } } /* Go back and check they match */ outb(PRGMRST | DOWNLOAD, host->base + ORC_RISCCTL); /* Reset program count 0 */ bios_addr -= 0x1000; /* Reset the BIOS adddress */ for (i = 0, data32_ptr = (u8 *) & data32; /* Check the code */ i < 0x1000; /* Firmware code size = 4K */ i++, bios_addr++) { outw(bios_addr, host->base + ORC_EBIOSADR0); *data32_ptr++ = inb(host->base + ORC_EBIOSDATA); /* Read from BIOS */ if ((i % 4) == 3) { if (inl(host->base + ORC_RISCRAM) != le32_to_cpu(data32)) { outb(PRGMRST, host->base + ORC_RISCCTL); /* Reset program to 0 */ outb(data, host->base + ORC_GCFG); /*Disable EEPROM programming */ return 0; } data32_ptr = (u8 *) & data32; } } /* Success */ outb(PRGMRST, host->base + ORC_RISCCTL); /* Reset program to 0 */ outb(data, host->base + ORC_GCFG); /* Disable EEPROM programming */ return 1; } /***************************************************************************/ static void setup_SCBs(struct orc_host * host) { struct orc_scb *scb; int i; struct orc_extended_scb *escb; dma_addr_t escb_phys; /* Setup SCB base and SCB Size registers */ outb(ORC_MAXQUEUE, host->base + ORC_SCBSIZE); /* Total number of SCBs */ /* SCB base address 0 */ outl(host->scb_phys, host->base + ORC_SCBBASE0); /* SCB base address 1 */ outl(host->scb_phys, host->base + ORC_SCBBASE1); /* setup scatter list address with one buffer */ scb = host->scb_virt; escb = host->escb_virt; for (i = 0; i < ORC_MAXQUEUE; i++) { escb_phys = (host->escb_phys + (sizeof(struct orc_extended_scb) * i)); scb->sg_addr = cpu_to_le32((u32) escb_phys); scb->sense_addr = cpu_to_le32((u32) escb_phys); scb->escb = escb; scb->scbidx = i; scb++; escb++; } } /** * init_alloc_map - initialise allocation map * @host: host map to configure * * Initialise the allocation maps for this device. If the device * is not quiescent the caller must hold the allocation lock */ static void init_alloc_map(struct orc_host * host) { u8 i, j; for (i = 0; i < MAX_CHANNELS; i++) { for (j = 0; j < 8; j++) { host->allocation_map[i][j] = 0xffffffff; } } } /** * init_orchid - initialise the host adapter * @host:host adapter to initialise * * Initialise the controller and if neccessary load the firmware. * * Returns -1 if the initialisation fails. */ static int init_orchid(struct orc_host * host) { u8 *ptr; u16 revision; u8 i; init_alloc_map(host); outb(0xFF, host->base + ORC_GIMSK); /* Disable all interrupts */ if (inb(host->base + ORC_HSTUS) & RREADY) { /* Orchid is ready */ revision = orc_read_fwrev(host); if (revision == 0xFFFF) { outb(DEVRST, host->base + ORC_HCTRL); /* Reset Host Adapter */ if (wait_chip_ready(host) == 0) return -1; orc_load_firmware(host); /* Download FW */ setup_SCBs(host); /* Setup SCB base and SCB Size registers */ outb(0x00, host->base + ORC_HCTRL); /* clear HOSTSTOP */ if (wait_firmware_ready(host) == 0) return -1; /* Wait for firmware ready */ } else { setup_SCBs(host); /* Setup SCB base and SCB Size registers */ } } else { /* Orchid is not Ready */ outb(DEVRST, host->base + ORC_HCTRL); /* Reset Host Adapter */ if (wait_chip_ready(host) == 0) return -1; orc_load_firmware(host); /* Download FW */ setup_SCBs(host); /* Setup SCB base and SCB Size registers */ outb(HDO, host->base + ORC_HCTRL); /* Do Hardware Reset & */ /* clear HOSTSTOP */ if (wait_firmware_ready(host) == 0) /* Wait for firmware ready */ return -1; } /* Load an EEProm copy into RAM */ /* Assumes single threaded at this point */ read_eeprom(host); if (nvramp->revision != 1) return -1; host->scsi_id = nvramp->scsi_id; host->BIOScfg = nvramp->BIOSConfig1; host->max_targets = MAX_TARGETS; ptr = (u8 *) & (nvramp->Target00Config); for (i = 0; i < 16; ptr++, i++) { host->target_flag[i] = *ptr; host->max_tags[i] = ORC_MAXTAGS; } if (nvramp->SCSI0Config & NCC_BUSRESET) host->flags |= HCF_SCSI_RESET; outb(0xFB, host->base + ORC_GIMSK); /* enable RP FIFO interrupt */ return 0; } /** * orc_reset_scsi_bus - perform bus reset * @host: host being reset * * Perform a full bus reset on the adapter. */ static int orc_reset_scsi_bus(struct orc_host * host) { /* I need Host Control Block Information */ unsigned long flags; spin_lock_irqsave(&host->allocation_lock, flags); init_alloc_map(host); /* reset scsi bus */ outb(SCSIRST, host->base + ORC_HCTRL); /* FIXME: We can spend up to a second with the lock held and interrupts off here */ if (wait_scsi_reset_done(host) == 0) { spin_unlock_irqrestore(&host->allocation_lock, flags); return FAILED; } else { spin_unlock_irqrestore(&host->allocation_lock, flags); return SUCCESS; } } /** * orc_device_reset - device reset handler * @host: host to reset * @cmd: command causing the reset * @target; target device * * Reset registers, reset a hanging bus and kill active and disconnected * commands for target w/o soft reset */ static int orc_device_reset(struct orc_host * host, struct scsi_cmnd *cmd, unsigned int target) { /* I need Host Control Block Information */ struct orc_scb *scb; struct orc_extended_scb *escb; struct orc_scb *host_scb; u8 i; unsigned long flags; spin_lock_irqsave(&(host->allocation_lock), flags); scb = (struct orc_scb *) NULL; escb = (struct orc_extended_scb *) NULL; /* setup scatter list address with one buffer */ host_scb = host->scb_virt; /* FIXME: is this safe if we then fail to issue the reset or race a completion ? */ init_alloc_map(host); /* Find the scb corresponding to the command */ for (i = 0; i < ORC_MAXQUEUE; i++) { escb = host_scb->escb; if (host_scb->status && escb->srb == cmd) break; host_scb++; } if (i == ORC_MAXQUEUE) { printk(KERN_ERR "Unable to Reset - No SCB Found\n"); spin_unlock_irqrestore(&(host->allocation_lock), flags); return FAILED; } /* Allocate a new SCB for the reset command to the firmware */ if ((scb = __orc_alloc_scb(host)) == NULL) { /* Can't happen.. */ spin_unlock_irqrestore(&(host->allocation_lock), flags); return FAILED; } /* Reset device is handled by the firmware, we fill in an SCB and fire it at the controller, it does the rest */ scb->opcode = ORC_BUSDEVRST; scb->target = target; scb->hastat = 0; scb->tastat = 0; scb->status = 0x0; scb->link = 0xFF; scb->reserved0 = 0; scb->reserved1 = 0; scb->xferlen = cpu_to_le32(0); scb->sg_len = cpu_to_le32(0); escb->srb = NULL; escb->srb = cmd; orc_exec_scb(host, scb); /* Start execute SCB */ spin_unlock_irqrestore(&host->allocation_lock, flags); return SUCCESS; } /** * __orc_alloc_scb - allocate an SCB * @host: host to allocate from * * Allocate an SCB and return a pointer to the SCB object. NULL * is returned if no SCB is free. The caller must already hold * the allocator lock at this point. */ static struct orc_scb *__orc_alloc_scb(struct orc_host * host) { u8 channel; unsigned long idx; u8 index; u8 i; channel = host->index; for (i = 0; i < 8; i++) { for (index = 0; index < 32; index++) { if ((host->allocation_map[channel][i] >> index) & 0x01) { host->allocation_map[channel][i] &= ~(1 << index); idx = index + 32 * i; /* * Translate the index to a structure instance */ return host->scb_virt + idx; } } } return NULL; } /** * orc_alloc_scb - allocate an SCB * @host: host to allocate from * * Allocate an SCB and return a pointer to the SCB object. NULL * is returned if no SCB is free. */ static struct orc_scb *orc_alloc_scb(struct orc_host * host) { struct orc_scb *scb; unsigned long flags; spin_lock_irqsave(&host->allocation_lock, flags); scb = __orc_alloc_scb(host); spin_unlock_irqrestore(&host->allocation_lock, flags); return scb; } /** * orc_release_scb - release an SCB * @host: host owning the SCB * @scb: SCB that is now free * * Called to return a completed SCB to the allocation pool. Before * calling the SCB must be out of use on both the host and the HA. */ static void orc_release_scb(struct orc_host *host, struct orc_scb *scb) { unsigned long flags; u8 index, i, channel; spin_lock_irqsave(&(host->allocation_lock), flags); channel = host->index; /* Channel */ index = scb->scbidx; i = index / 32; index %= 32; host->allocation_map[channel][i] |= (1 << index); spin_unlock_irqrestore(&(host->allocation_lock), flags); } /** * orchid_abort_scb - abort a command * * Abort a queued command that has been passed to the firmware layer * if possible. This is all handled by the firmware. We aks the firmware * and it either aborts the command or fails */ static int orchid_abort_scb(struct orc_host * host, struct orc_scb * scb) { unsigned char data, status; outb(ORC_CMD_ABORT_SCB, host->base + ORC_HDATA); /* Write command */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; outb(scb->scbidx, host->base + ORC_HDATA); /* Write address */ outb(HDO, host->base + ORC_HCTRL); if (wait_HDO_off(host) == 0) /* Wait HDO off */ return 0; if (wait_hdi_set(host, &data) == 0) /* Wait HDI set */ return 0; status = inb(host->base + ORC_HDATA); outb(data, host->base + ORC_HSTUS); /* Clear HDI */ if (status == 1) /* 0 - Successfully */ return 0; /* 1 - Fail */ return 1; } static int inia100_abort_cmd(struct orc_host * host, struct scsi_cmnd *cmd) { struct orc_extended_scb *escb; struct orc_scb *scb; u8 i; unsigned long flags; spin_lock_irqsave(&(host->allocation_lock), flags); scb = host->scb_virt; /* Walk the queue until we find the SCB that belongs to the command block. This isn't a performance critical path so a walk in the park here does no harm */ for (i = 0; i < ORC_MAXQUEUE; i++, scb++) { escb = scb->escb; if (scb->status && escb->srb == cmd) { if (scb->tag_msg == 0) { goto out; } else { /* Issue an ABORT to the firmware */ if (orchid_abort_scb(host, scb)) { escb->srb = NULL; spin_unlock_irqrestore(&host->allocation_lock, flags); return SUCCESS; } else goto out; } } } out: spin_unlock_irqrestore(&host->allocation_lock, flags); return FAILED; } /** * orc_interrupt - IRQ processing * @host: Host causing the interrupt * * This function is called from the IRQ handler and protected * by the host lock. While the controller reports that there are * scb's for processing we pull them off the controller, turn the * index into a host address pointer to the scb and call the scb * handler. * * Returns IRQ_HANDLED if any SCBs were processed, IRQ_NONE otherwise */ static irqreturn_t orc_interrupt(struct orc_host * host) { u8 scb_index; struct orc_scb *scb; /* Check if we have an SCB queued for servicing */ if (inb(host->base + ORC_RQUEUECNT) == 0) return IRQ_NONE; do { /* Get the SCB index of the SCB to service */ scb_index = inb(host->base + ORC_RQUEUE); /* Translate it back to a host pointer */ scb = (struct orc_scb *) ((unsigned long) host->scb_virt + (unsigned long) (sizeof(struct orc_scb) * scb_index)); scb->status = 0x0; /* Process the SCB */ inia100_scb_handler(host, scb); } while (inb(host->base + ORC_RQUEUECNT)); return IRQ_HANDLED; } /* End of I1060Interrupt() */ /** * inia100_build_scb - build SCB * @host: host owing the control block * @scb: control block to use * @cmd: Mid layer command * * Build a host adapter control block from the SCSI mid layer command */ static int inia100_build_scb(struct orc_host * host, struct orc_scb * scb, struct scsi_cmnd * cmd) { /* Create corresponding SCB */ struct scatterlist *sg; struct orc_sgent *sgent; /* Pointer to SG list */ int i, count_sg; struct orc_extended_scb *escb; /* Links between the escb, scb and Linux scsi midlayer cmd */ escb = scb->escb; escb->srb = cmd; sgent = NULL; /* Set up the SCB to do a SCSI command block */ scb->opcode = ORC_EXECSCSI; scb->flags = SCF_NO_DCHK; /* Clear done bit */ scb->target = cmd->device->id; scb->lun = cmd->device->lun; scb->reserved0 = 0; scb->reserved1 = 0; scb->sg_len = cpu_to_le32(0); scb->xferlen = cpu_to_le32((u32) scsi_bufflen(cmd)); sgent = (struct orc_sgent *) & escb->sglist[0]; count_sg = scsi_dma_map(cmd); if (count_sg < 0) return count_sg; BUG_ON(count_sg > TOTAL_SG_ENTRY); /* Build the scatter gather lists */ if (count_sg) { scb->sg_len = cpu_to_le32((u32) (count_sg * 8)); scsi_for_each_sg(cmd, sg, count_sg, i) { sgent->base = cpu_to_le32((u32) sg_dma_address(sg)); sgent->length = cpu_to_le32((u32) sg_dma_len(sg)); sgent++; } } else { scb->sg_len = cpu_to_le32(0); sgent->base = cpu_to_le32(0); sgent->length = cpu_to_le32(0); } scb->sg_addr = (u32) scb->sense_addr; /* sense_addr is already little endian */ scb->hastat = 0; scb->tastat = 0; scb->link = 0xFF; scb->sense_len = SENSE_SIZE; scb->cdb_len = cmd->cmd_len; if (scb->cdb_len >= IMAX_CDB) { printk("max cdb length= %x\b", cmd->cmd_len); scb->cdb_len = IMAX_CDB; } scb->ident = cmd->device->lun | DISC_ALLOW; if (cmd->device->tagged_supported) { /* Tag Support */ scb->tag_msg = SIMPLE_QUEUE_TAG; /* Do simple tag only */ } else { scb->tag_msg = 0; /* No tag support */ } memcpy(scb->cdb, cmd->cmnd, scb->cdb_len); return 0; } /** * inia100_queue - queue command with host * @cmd: Command block * @done: Completion function * * Called by the mid layer to queue a command. Process the command * block, build the host specific scb structures and if there is room * queue the command down to the controller */ static int inia100_queue(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *)) { struct orc_scb *scb; struct orc_host *host; /* Point to Host adapter control block */ host = (struct orc_host *) cmd->device->host->hostdata; cmd->scsi_done = done; /* Get free SCSI control block */ if ((scb = orc_alloc_scb(host)) == NULL) return SCSI_MLQUEUE_HOST_BUSY; if (inia100_build_scb(host, scb, cmd)) { orc_release_scb(host, scb); return SCSI_MLQUEUE_HOST_BUSY; } orc_exec_scb(host, scb); /* Start execute SCB */ return 0; } /***************************************************************************** Function name : inia100_abort Description : Abort a queued command. (commands that are on the bus can't be aborted easily) Input : host - Pointer to host adapter structure Output : None. Return : pSRB - Pointer to SCSI request block. *****************************************************************************/ static int inia100_abort(struct scsi_cmnd * cmd) { struct orc_host *host; host = (struct orc_host *) cmd->device->host->hostdata; return inia100_abort_cmd(host, cmd); } /***************************************************************************** Function name : inia100_reset Description : Reset registers, reset a hanging bus and kill active and disconnected commands for target w/o soft reset Input : host - Pointer to host adapter structure Output : None. Return : pSRB - Pointer to SCSI request block. *****************************************************************************/ static int inia100_bus_reset(struct scsi_cmnd * cmd) { /* I need Host Control Block Information */ struct orc_host *host; host = (struct orc_host *) cmd->device->host->hostdata; return orc_reset_scsi_bus(host); } /***************************************************************************** Function name : inia100_device_reset Description : Reset the device Input : host - Pointer to host adapter structure Output : None. Return : pSRB - Pointer to SCSI request block. *****************************************************************************/ static int inia100_device_reset(struct scsi_cmnd * cmd) { /* I need Host Control Block Information */ struct orc_host *host; host = (struct orc_host *) cmd->device->host->hostdata; return orc_device_reset(host, cmd, scmd_id(cmd)); } /** * inia100_scb_handler - interrupt callback * @host: Host causing the interrupt * @scb: SCB the controller returned as needing processing * * Perform completion processing on a control block. Do the conversions * from host to SCSI midlayer error coding, save any sense data and * the complete with the midlayer and recycle the scb. */ static void inia100_scb_handler(struct orc_host *host, struct orc_scb *scb) { struct scsi_cmnd *cmd; /* Pointer to SCSI request block */ struct orc_extended_scb *escb; escb = scb->escb; if ((cmd = (struct scsi_cmnd *) escb->srb) == NULL) { printk(KERN_ERR "inia100_scb_handler: SRB pointer is empty\n"); orc_release_scb(host, scb); /* Release SCB for current channel */ return; } escb->srb = NULL; switch (scb->hastat) { case 0x0: case 0xa: /* Linked command complete without error and linked normally */ case 0xb: /* Linked command complete without error interrupt generated */ scb->hastat = 0; break; case 0x11: /* Selection time out-The initiator selection or target reselection was not complete within the SCSI Time out period */ scb->hastat = DID_TIME_OUT; break; case 0x14: /* Target bus phase sequence failure-An invalid bus phase or bus phase sequence was requested by the target. The host adapter will generate a SCSI Reset Condition, notifying the host with a SCRD interrupt */ scb->hastat = DID_RESET; break; case 0x1a: /* SCB Aborted. 07/21/98 */ scb->hastat = DID_ABORT; break; case 0x12: /* Data overrun/underrun-The target attempted to transfer more data than was allocated by the Data Length field or the sum of the Scatter / Gather Data Length fields. */ case 0x13: /* Unexpected bus free-The target dropped the SCSI BSY at an unexpected time. */ case 0x16: /* Invalid CCB Operation Code-The first byte of the CCB was invalid. */ default: printk(KERN_DEBUG "inia100: %x %x\n", scb->hastat, scb->tastat); scb->hastat = DID_ERROR; /* Couldn't find any better */ break; } if (scb->tastat == 2) { /* Check condition */ memcpy((unsigned char *) &cmd->sense_buffer[0], (unsigned char *) &escb->sglist[0], SENSE_SIZE); } cmd->result = scb->tastat | (scb->hastat << 16); scsi_dma_unmap(cmd); cmd->scsi_done(cmd); /* Notify system DONE */ orc_release_scb(host, scb); /* Release SCB for current channel */ } /** * inia100_intr - interrupt handler * @irqno: Interrupt value * @devid: Host adapter * * Entry point for IRQ handling. All the real work is performed * by orc_interrupt. */ static irqreturn_t inia100_intr(int irqno, void *devid) { struct Scsi_Host *shost = (struct Scsi_Host *)devid; struct orc_host *host = (struct orc_host *)shost->hostdata; unsigned long flags; irqreturn_t res; spin_lock_irqsave(shost->host_lock, flags); res = orc_interrupt(host); spin_unlock_irqrestore(shost->host_lock, flags); return res; } static struct scsi_host_template inia100_template = { .proc_name = "inia100", .name = inia100_REVID, .queuecommand = inia100_queue, .eh_abort_handler = inia100_abort, .eh_bus_reset_handler = inia100_bus_reset, .eh_device_reset_handler = inia100_device_reset, .can_queue = 1, .this_id = 1, .sg_tablesize = SG_ALL, .cmd_per_lun = 1, .use_clustering = ENABLE_CLUSTERING, }; static int __devinit inia100_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct Scsi_Host *shost; struct orc_host *host; unsigned long port, bios; int error = -ENODEV; u32 sz; unsigned long biosaddr; char *bios_phys; if (pci_enable_device(pdev)) goto out; if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { printk(KERN_WARNING "Unable to set 32bit DMA " "on inia100 adapter, ignoring.\n"); goto out_disable_device; } pci_set_master(pdev); port = pci_resource_start(pdev, 0); if (!request_region(port, 256, "inia100")) { printk(KERN_WARNING "inia100: io port 0x%lx, is busy.\n", port); goto out_disable_device; } /* <02> read from base address + 0x50 offset to get the bios value. */ bios = inw(port + 0x50); shost = scsi_host_alloc(&inia100_template, sizeof(struct orc_host)); if (!shost) goto out_release_region; host = (struct orc_host *)shost->hostdata; host->pdev = pdev; host->base = port; host->BIOScfg = bios; spin_lock_init(&host->allocation_lock); /* Get total memory needed for SCB */ sz = ORC_MAXQUEUE * sizeof(struct orc_scb); host->scb_virt = pci_alloc_consistent(pdev, sz, &host->scb_phys); if (!host->scb_virt) { printk("inia100: SCB memory allocation error\n"); goto out_host_put; } memset(host->scb_virt, 0, sz); /* Get total memory needed for ESCB */ sz = ORC_MAXQUEUE * sizeof(struct orc_extended_scb); host->escb_virt = pci_alloc_consistent(pdev, sz, &host->escb_phys); if (!host->escb_virt) { printk("inia100: ESCB memory allocation error\n"); goto out_free_scb_array; } memset(host->escb_virt, 0, sz); biosaddr = host->BIOScfg; biosaddr = (biosaddr << 4); bios_phys = phys_to_virt(biosaddr); if (init_orchid(host)) { /* Initialize orchid chip */ printk("inia100: initial orchid fail!!\n"); goto out_free_escb_array; } shost->io_port = host->base; shost->n_io_port = 0xff; shost->can_queue = ORC_MAXQUEUE; shost->unique_id = shost->io_port; shost->max_id = host->max_targets; shost->max_lun = 16; shost->irq = pdev->irq; shost->this_id = host->scsi_id; /* Assign HCS index */ shost->sg_tablesize = TOTAL_SG_ENTRY; /* Initial orc chip */ error = request_irq(pdev->irq, inia100_intr, IRQF_SHARED, "inia100", shost); if (error < 0) { printk(KERN_WARNING "inia100: unable to get irq %d\n", pdev->irq); goto out_free_escb_array; } pci_set_drvdata(pdev, shost); error = scsi_add_host(shost, &pdev->dev); if (error) goto out_free_irq; scsi_scan_host(shost); return 0; out_free_irq: free_irq(shost->irq, shost); out_free_escb_array: pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_extended_scb), host->escb_virt, host->escb_phys); out_free_scb_array: pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_scb), host->scb_virt, host->scb_phys); out_host_put: scsi_host_put(shost); out_release_region: release_region(port, 256); out_disable_device: pci_disable_device(pdev); out: return error; } static void __devexit inia100_remove_one(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct orc_host *host = (struct orc_host *)shost->hostdata; scsi_remove_host(shost); free_irq(shost->irq, shost); pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_extended_scb), host->escb_virt, host->escb_phys); pci_free_consistent(pdev, ORC_MAXQUEUE * sizeof(struct orc_scb), host->scb_virt, host->scb_phys); release_region(shost->io_port, 256); scsi_host_put(shost); } static struct pci_device_id inia100_pci_tbl[] = { {PCI_VENDOR_ID_INIT, 0x1060, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, inia100_pci_tbl); static struct pci_driver inia100_pci_driver = { .name = "inia100", .id_table = inia100_pci_tbl, .probe = inia100_probe_one, .remove = __devexit_p(inia100_remove_one), }; static int __init inia100_init(void) { return pci_register_driver(&inia100_pci_driver); } static void __exit inia100_exit(void) { pci_unregister_driver(&inia100_pci_driver); } MODULE_DESCRIPTION("Initio A100U2W SCSI driver"); MODULE_AUTHOR("Initio Corporation"); MODULE_LICENSE("Dual BSD/GPL"); module_init(inia100_init); module_exit(inia100_exit);