/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * commsup.c * * Abstract: Contain all routines that are required for FSA host/adapter * communication. * */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/completion.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/interrupt.h> #include <scsi/scsi.h> #include <scsi/scsi_host.h> #include <scsi/scsi_device.h> #include <scsi/scsi_cmnd.h> #include <asm/semaphore.h> #include "aacraid.h" /** * fib_map_alloc - allocate the fib objects * @dev: Adapter to allocate for * * Allocate and map the shared PCI space for the FIB blocks used to * talk to the Adaptec firmware. */ static int fib_map_alloc(struct aac_dev *dev) { dprintk((KERN_INFO "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), &dev->hw_fib_pa))==NULL) return -ENOMEM; return 0; } /** * aac_fib_map_free - free the fib objects * @dev: Adapter to free * * Free the PCI mappings and the memory allocated for FIB blocks * on this adapter. */ void aac_fib_map_free(struct aac_dev *dev) { pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa); } /** * aac_fib_setup - setup the fibs * @dev: Adapter to set up * * Allocate the PCI space for the fibs, map it and then intialise the * fib area, the unmapped fib data and also the free list */ int aac_fib_setup(struct aac_dev * dev) { struct fib *fibptr; struct hw_fib *hw_fib; dma_addr_t hw_fib_pa; int i; while (((i = fib_map_alloc(dev)) == -ENOMEM) && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; } if (i<0) return -ENOMEM; hw_fib = dev->hw_fib_va; hw_fib_pa = dev->hw_fib_pa; memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); /* * Initialise the fibs */ for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) { fibptr->dev = dev; fibptr->hw_fib_va = hw_fib; fibptr->data = (void *) fibptr->hw_fib_va->data; fibptr->next = fibptr+1; /* Forward chain the fibs */ init_MUTEX_LOCKED(&fibptr->event_wait); spin_lock_init(&fibptr->event_lock); hw_fib->header.XferState = cpu_to_le32(0xffffffff); hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); fibptr->hw_fib_pa = hw_fib_pa; hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size); hw_fib_pa = hw_fib_pa + dev->max_fib_size; } /* * Add the fib chain to the free list */ dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; /* * Enable this to debug out of queue space */ dev->free_fib = &dev->fibs[0]; return 0; } /** * aac_fib_alloc - allocate a fib * @dev: Adapter to allocate the fib for * * Allocate a fib from the adapter fib pool. If the pool is empty we * return NULL. */ struct fib *aac_fib_alloc(struct aac_dev *dev) { struct fib * fibptr; unsigned long flags; spin_lock_irqsave(&dev->fib_lock, flags); fibptr = dev->free_fib; if(!fibptr){ spin_unlock_irqrestore(&dev->fib_lock, flags); return fibptr; } dev->free_fib = fibptr->next; spin_unlock_irqrestore(&dev->fib_lock, flags); /* * Set the proper node type code and node byte size */ fibptr->type = FSAFS_NTC_FIB_CONTEXT; fibptr->size = sizeof(struct fib); /* * Null out fields that depend on being zero at the start of * each I/O */ fibptr->hw_fib_va->header.XferState = 0; fibptr->callback = NULL; fibptr->callback_data = NULL; return fibptr; } /** * aac_fib_free - free a fib * @fibptr: fib to free up * * Frees up a fib and places it on the appropriate queue */ void aac_fib_free(struct fib *fibptr) { unsigned long flags; spin_lock_irqsave(&fibptr->dev->fib_lock, flags); if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) aac_config.fib_timeouts++; if (fibptr->hw_fib_va->header.XferState != 0) { printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", (void*)fibptr, le32_to_cpu(fibptr->hw_fib_va->header.XferState)); } fibptr->next = fibptr->dev->free_fib; fibptr->dev->free_fib = fibptr; spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); } /** * aac_fib_init - initialise a fib * @fibptr: The fib to initialize * * Set up the generic fib fields ready for use */ void aac_fib_init(struct fib *fibptr) { struct hw_fib *hw_fib = fibptr->hw_fib_va; hw_fib->header.StructType = FIB_MAGIC; hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); } /** * fib_deallocate - deallocate a fib * @fibptr: fib to deallocate * * Will deallocate and return to the free pool the FIB pointed to by the * caller. */ static void fib_dealloc(struct fib * fibptr) { struct hw_fib *hw_fib = fibptr->hw_fib_va; BUG_ON(hw_fib->header.StructType != FIB_MAGIC); hw_fib->header.XferState = 0; } /* * Commuication primitives define and support the queuing method we use to * support host to adapter commuication. All queue accesses happen through * these routines and are the only routines which have a knowledge of the * how these queues are implemented. */ /** * aac_get_entry - get a queue entry * @dev: Adapter * @qid: Queue Number * @entry: Entry return * @index: Index return * @nonotify: notification control * * With a priority the routine returns a queue entry if the queue has free entries. If the queue * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is * returned. */ static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) { struct aac_queue * q; unsigned long idx; /* * All of the queues wrap when they reach the end, so we check * to see if they have reached the end and if they have we just * set the index back to zero. This is a wrap. You could or off * the high bits in all updates but this is a bit faster I think. */ q = &dev->queues->queue[qid]; idx = *index = le32_to_cpu(*(q->headers.producer)); /* Interrupt Moderation, only interrupt for first two entries */ if (idx != le32_to_cpu(*(q->headers.consumer))) { if (--idx == 0) { if (qid == AdapNormCmdQueue) idx = ADAP_NORM_CMD_ENTRIES; else idx = ADAP_NORM_RESP_ENTRIES; } if (idx != le32_to_cpu(*(q->headers.consumer))) *nonotify = 1; } if (qid == AdapNormCmdQueue) { if (*index >= ADAP_NORM_CMD_ENTRIES) *index = 0; /* Wrap to front of the Producer Queue. */ } else { if (*index >= ADAP_NORM_RESP_ENTRIES) *index = 0; /* Wrap to front of the Producer Queue. */ } if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ printk(KERN_WARNING "Queue %d full, %u outstanding.\n", qid, q->numpending); return 0; } else { *entry = q->base + *index; return 1; } } /** * aac_queue_get - get the next free QE * @dev: Adapter * @index: Returned index * @priority: Priority of fib * @fib: Fib to associate with the queue entry * @wait: Wait if queue full * @fibptr: Driver fib object to go with fib * @nonotify: Don't notify the adapter * * Gets the next free QE off the requested priorty adapter command * queue and associates the Fib with the QE. The QE represented by * index is ready to insert on the queue when this routine returns * success. */ int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) { struct aac_entry * entry = NULL; int map = 0; if (qid == AdapNormCmdQueue) { /* if no entries wait for some if caller wants to */ while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { printk(KERN_ERR "GetEntries failed\n"); } /* * Setup queue entry with a command, status and fib mapped */ entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); map = 1; } else { while(!aac_get_entry(dev, qid, &entry, index, nonotify)) { /* if no entries wait for some if caller wants to */ } /* * Setup queue entry with command, status and fib mapped */ entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); entry->addr = hw_fib->header.SenderFibAddress; /* Restore adapters pointer to the FIB */ hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ map = 0; } /* * If MapFib is true than we need to map the Fib and put pointers * in the queue entry. */ if (map) entry->addr = cpu_to_le32(fibptr->hw_fib_pa); return 0; } /* * Define the highest level of host to adapter communication routines. * These routines will support host to adapter FS commuication. These * routines have no knowledge of the commuication method used. This level * sends and receives FIBs. This level has no knowledge of how these FIBs * get passed back and forth. */ /** * aac_fib_send - send a fib to the adapter * @command: Command to send * @fibptr: The fib * @size: Size of fib data area * @priority: Priority of Fib * @wait: Async/sync select * @reply: True if a reply is wanted * @callback: Called with reply * @callback_data: Passed to callback * * Sends the requested FIB to the adapter and optionally will wait for a * response FIB. If the caller does not wish to wait for a response than * an event to wait on must be supplied. This event will be set when a * response FIB is received from the adapter. */ int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void *callback_data) { struct aac_dev * dev = fibptr->dev; struct hw_fib * hw_fib = fibptr->hw_fib_va; unsigned long flags = 0; unsigned long qflags; if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) return -EBUSY; /* * There are 5 cases with the wait and reponse requested flags. * The only invalid cases are if the caller requests to wait and * does not request a response and if the caller does not want a * response and the Fib is not allocated from pool. If a response * is not requesed the Fib will just be deallocaed by the DPC * routine when the response comes back from the adapter. No * further processing will be done besides deleting the Fib. We * will have a debug mode where the adapter can notify the host * it had a problem and the host can log that fact. */ if (wait && !reply) { return -EINVAL; } else if (!wait && reply) { hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); FIB_COUNTER_INCREMENT(aac_config.AsyncSent); } else if (!wait && !reply) { hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); } else if (wait && reply) { hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); FIB_COUNTER_INCREMENT(aac_config.NormalSent); } /* * Map the fib into 32bits by using the fib number */ hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); /* * Set FIB state to indicate where it came from and if we want a * response from the adapter. Also load the command from the * caller. * * Map the hw fib pointer as a 32bit value */ hw_fib->header.Command = cpu_to_le16(command); hw_fib->header.XferState |= cpu_to_le32(SentFromHost); fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ /* * Set the size of the Fib we want to send to the adapter */ hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { return -EMSGSIZE; } /* * Get a queue entry connect the FIB to it and send an notify * the adapter a command is ready. */ hw_fib->header.XferState |= cpu_to_le32(NormalPriority); /* * Fill in the Callback and CallbackContext if we are not * going to wait. */ if (!wait) { fibptr->callback = callback; fibptr->callback_data = callback_data; } fibptr->done = 0; fibptr->flags = 0; FIB_COUNTER_INCREMENT(aac_config.FibsSent); dprintk((KERN_DEBUG "Fib contents:.\n")); dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); if (!dev->queues) return -EBUSY; if(wait) spin_lock_irqsave(&fibptr->event_lock, flags); aac_adapter_deliver(fibptr); /* * If the caller wanted us to wait for response wait now. */ if (wait) { spin_unlock_irqrestore(&fibptr->event_lock, flags); /* Only set for first known interruptable command */ if (wait < 0) { /* * *VERY* Dangerous to time out a command, the * assumption is made that we have no hope of * functioning because an interrupt routing or other * hardware failure has occurred. */ unsigned long count = 36000000L; /* 3 minutes */ while (down_trylock(&fibptr->event_wait)) { int blink; if (--count == 0) { struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; spin_lock_irqsave(q->lock, qflags); q->numpending--; spin_unlock_irqrestore(q->lock, qflags); if (wait == -1) { printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" "Usually a result of a PCI interrupt routing problem;\n" "update mother board BIOS or consider utilizing one of\n" "the SAFE mode kernel options (acpi, apic etc)\n"); } return -ETIMEDOUT; } if ((blink = aac_adapter_check_health(dev)) > 0) { if (wait == -1) { printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" "Usually a result of a serious unrecoverable hardware problem\n", blink); } return -EFAULT; } udelay(5); } } else (void)down_interruptible(&fibptr->event_wait); spin_lock_irqsave(&fibptr->event_lock, flags); if (fibptr->done == 0) { fibptr->done = 2; /* Tell interrupt we aborted */ spin_unlock_irqrestore(&fibptr->event_lock, flags); return -EINTR; } spin_unlock_irqrestore(&fibptr->event_lock, flags); BUG_ON(fibptr->done == 0); if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) return -ETIMEDOUT; return 0; } /* * If the user does not want a response than return success otherwise * return pending */ if (reply) return -EINPROGRESS; else return 0; } /** * aac_consumer_get - get the top of the queue * @dev: Adapter * @q: Queue * @entry: Return entry * * Will return a pointer to the entry on the top of the queue requested that * we are a consumer of, and return the address of the queue entry. It does * not change the state of the queue. */ int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) { u32 index; int status; if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { status = 0; } else { /* * The consumer index must be wrapped if we have reached * the end of the queue, else we just use the entry * pointed to by the header index */ if (le32_to_cpu(*q->headers.consumer) >= q->entries) index = 0; else index = le32_to_cpu(*q->headers.consumer); *entry = q->base + index; status = 1; } return(status); } /** * aac_consumer_free - free consumer entry * @dev: Adapter * @q: Queue * @qid: Queue ident * * Frees up the current top of the queue we are a consumer of. If the * queue was full notify the producer that the queue is no longer full. */ void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) { int wasfull = 0; u32 notify; if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) wasfull = 1; if (le32_to_cpu(*q->headers.consumer) >= q->entries) *q->headers.consumer = cpu_to_le32(1); else *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); if (wasfull) { switch (qid) { case HostNormCmdQueue: notify = HostNormCmdNotFull; break; case HostNormRespQueue: notify = HostNormRespNotFull; break; default: BUG(); return; } aac_adapter_notify(dev, notify); } } /** * aac_fib_adapter_complete - complete adapter issued fib * @fibptr: fib to complete * @size: size of fib * * Will do all necessary work to complete a FIB that was sent from * the adapter. */ int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) { struct hw_fib * hw_fib = fibptr->hw_fib_va; struct aac_dev * dev = fibptr->dev; struct aac_queue * q; unsigned long nointr = 0; unsigned long qflags; if (hw_fib->header.XferState == 0) { if (dev->comm_interface == AAC_COMM_MESSAGE) kfree (hw_fib); return 0; } /* * If we plan to do anything check the structure type first. */ if ( hw_fib->header.StructType != FIB_MAGIC ) { if (dev->comm_interface == AAC_COMM_MESSAGE) kfree (hw_fib); return -EINVAL; } /* * This block handles the case where the adapter had sent us a * command and we have finished processing the command. We * call completeFib when we are done processing the command * and want to send a response back to the adapter. This will * send the completed cdb to the adapter. */ if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { if (dev->comm_interface == AAC_COMM_MESSAGE) { kfree (hw_fib); } else { u32 index; hw_fib->header.XferState |= cpu_to_le32(HostProcessed); if (size) { size += sizeof(struct aac_fibhdr); if (size > le16_to_cpu(hw_fib->header.SenderSize)) return -EMSGSIZE; hw_fib->header.Size = cpu_to_le16(size); } q = &dev->queues->queue[AdapNormRespQueue]; spin_lock_irqsave(q->lock, qflags); aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); *(q->headers.producer) = cpu_to_le32(index + 1); spin_unlock_irqrestore(q->lock, qflags); if (!(nointr & (int)aac_config.irq_mod)) aac_adapter_notify(dev, AdapNormRespQueue); } } else { printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); BUG(); } return 0; } /** * aac_fib_complete - fib completion handler * @fib: FIB to complete * * Will do all necessary work to complete a FIB. */ int aac_fib_complete(struct fib *fibptr) { struct hw_fib * hw_fib = fibptr->hw_fib_va; /* * Check for a fib which has already been completed */ if (hw_fib->header.XferState == 0) return 0; /* * If we plan to do anything check the structure type first. */ if (hw_fib->header.StructType != FIB_MAGIC) return -EINVAL; /* * This block completes a cdb which orginated on the host and we * just need to deallocate the cdb or reinit it. At this point the * command is complete that we had sent to the adapter and this * cdb could be reused. */ if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) { fib_dealloc(fibptr); } else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) { /* * This handles the case when the host has aborted the I/O * to the adapter because the adapter is not responding */ fib_dealloc(fibptr); } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { fib_dealloc(fibptr); } else { BUG(); } return 0; } /** * aac_printf - handle printf from firmware * @dev: Adapter * @val: Message info * * Print a message passed to us by the controller firmware on the * Adaptec board */ void aac_printf(struct aac_dev *dev, u32 val) { char *cp = dev->printfbuf; if (dev->printf_enabled) { int length = val & 0xffff; int level = (val >> 16) & 0xffff; /* * The size of the printfbuf is set in port.c * There is no variable or define for it */ if (length > 255) length = 255; if (cp[length] != 0) cp[length] = 0; if (level == LOG_AAC_HIGH_ERROR) printk(KERN_WARNING "%s:%s", dev->name, cp); else printk(KERN_INFO "%s:%s", dev->name, cp); } memset(cp, 0, 256); } /** * aac_handle_aif - Handle a message from the firmware * @dev: Which adapter this fib is from * @fibptr: Pointer to fibptr from adapter * * This routine handles a driver notify fib from the adapter and * dispatches it to the appropriate routine for handling. */ #define AIF_SNIFF_TIMEOUT (30*HZ) static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) { struct hw_fib * hw_fib = fibptr->hw_fib_va; struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; u32 container; struct scsi_device *device; enum { NOTHING, DELETE, ADD, CHANGE } device_config_needed; /* Sniff for container changes */ if (!dev || !dev->fsa_dev) return; container = (u32)-1; /* * We have set this up to try and minimize the number of * re-configures that take place. As a result of this when * certain AIF's come in we will set a flag waiting for another * type of AIF before setting the re-config flag. */ switch (le32_to_cpu(aifcmd->command)) { case AifCmdDriverNotify: switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { /* * Morph or Expand complete */ case AifDenMorphComplete: case AifDenVolumeExtendComplete: container = le32_to_cpu(((u32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; /* * Find the scsi_device associated with the SCSI * address. Make sure we have the right array, and if * so set the flag to initiate a new re-config once we * see an AifEnConfigChange AIF come through. */ if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { device = scsi_device_lookup(dev->scsi_host_ptr, CONTAINER_TO_CHANNEL(container), CONTAINER_TO_ID(container), CONTAINER_TO_LUN(container)); if (device) { dev->fsa_dev[container].config_needed = CHANGE; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; scsi_device_put(device); } } } /* * If we are waiting on something and this happens to be * that thing then set the re-configure flag. */ if (container != (u32)-1) { if (container >= dev->maximum_num_containers) break; if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(u32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } else for (container = 0; container < dev->maximum_num_containers; ++container) { if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(u32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } break; case AifCmdEventNotify: switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { /* * Add an Array. */ case AifEnAddContainer: container = le32_to_cpu(((u32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; dev->fsa_dev[container].config_needed = ADD; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; break; /* * Delete an Array. */ case AifEnDeleteContainer: container = le32_to_cpu(((u32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; dev->fsa_dev[container].config_needed = DELETE; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; break; /* * Container change detected. If we currently are not * waiting on something else, setup to wait on a Config Change. */ case AifEnContainerChange: container = le32_to_cpu(((u32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; if (dev->fsa_dev[container].config_waiting_on && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) break; dev->fsa_dev[container].config_needed = CHANGE; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; break; case AifEnConfigChange: break; } /* * If we are waiting on something and this happens to be * that thing then set the re-configure flag. */ if (container != (u32)-1) { if (container >= dev->maximum_num_containers) break; if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(u32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } else for (container = 0; container < dev->maximum_num_containers; ++container) { if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(u32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } break; case AifCmdJobProgress: /* * These are job progress AIF's. When a Clear is being * done on a container it is initially created then hidden from * the OS. When the clear completes we don't get a config * change so we monitor the job status complete on a clear then * wait for a container change. */ if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { for (container = 0; container < dev->maximum_num_containers; ++container) { /* * Stomp on all config sequencing for all * containers? */ dev->fsa_dev[container].config_waiting_on = AifEnContainerChange; dev->fsa_dev[container].config_needed = ADD; dev->fsa_dev[container].config_waiting_stamp = jiffies; } } if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) && (((u32 *)aifcmd->data)[6] == 0) && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { for (container = 0; container < dev->maximum_num_containers; ++container) { /* * Stomp on all config sequencing for all * containers? */ dev->fsa_dev[container].config_waiting_on = AifEnContainerChange; dev->fsa_dev[container].config_needed = DELETE; dev->fsa_dev[container].config_waiting_stamp = jiffies; } } break; } device_config_needed = NOTHING; for (container = 0; container < dev->maximum_num_containers; ++container) { if ((dev->fsa_dev[container].config_waiting_on == 0) && (dev->fsa_dev[container].config_needed != NOTHING) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { device_config_needed = dev->fsa_dev[container].config_needed; dev->fsa_dev[container].config_needed = NOTHING; break; } } if (device_config_needed == NOTHING) return; /* * If we decided that a re-configuration needs to be done, * schedule it here on the way out the door, please close the door * behind you. */ /* * Find the scsi_device associated with the SCSI address, * and mark it as changed, invalidating the cache. This deals * with changes to existing device IDs. */ if (!dev || !dev->scsi_host_ptr) return; /* * force reload of disk info via aac_probe_container */ if ((device_config_needed == CHANGE) && (dev->fsa_dev[container].valid == 1)) dev->fsa_dev[container].valid = 2; if ((device_config_needed == CHANGE) || (device_config_needed == ADD)) aac_probe_container(dev, container); device = scsi_device_lookup(dev->scsi_host_ptr, CONTAINER_TO_CHANNEL(container), CONTAINER_TO_ID(container), CONTAINER_TO_LUN(container)); if (device) { switch (device_config_needed) { case DELETE: case CHANGE: scsi_rescan_device(&device->sdev_gendev); default: break; } scsi_device_put(device); } if (device_config_needed == ADD) { scsi_add_device(dev->scsi_host_ptr, CONTAINER_TO_CHANNEL(container), CONTAINER_TO_ID(container), CONTAINER_TO_LUN(container)); } } static int _aac_reset_adapter(struct aac_dev *aac) { int index, quirks; int retval; struct Scsi_Host *host; struct scsi_device *dev; struct scsi_cmnd *command; struct scsi_cmnd *command_list; /* * Assumptions: * - host is locked. * - in_reset is asserted, so no new i/o is getting to the * card. * - The card is dead. */ host = aac->scsi_host_ptr; scsi_block_requests(host); aac_adapter_disable_int(aac); spin_unlock_irq(host->host_lock); kthread_stop(aac->thread); /* * If a positive health, means in a known DEAD PANIC * state and the adapter could be reset to `try again'. */ retval = aac_adapter_restart(aac, aac_adapter_check_health(aac)); if (retval) goto out; /* * Loop through the fibs, close the synchronous FIBS */ for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { struct fib *fib = &aac->fibs[index]; if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { unsigned long flagv; spin_lock_irqsave(&fib->event_lock, flagv); up(&fib->event_wait); spin_unlock_irqrestore(&fib->event_lock, flagv); schedule(); retval = 0; } } /* Give some extra time for ioctls to complete. */ if (retval == 0) ssleep(2); index = aac->cardtype; /* * Re-initialize the adapter, first free resources, then carefully * apply the initialization sequence to come back again. Only risk * is a change in Firmware dropping cache, it is assumed the caller * will ensure that i/o is queisced and the card is flushed in that * case. */ aac_fib_map_free(aac); aac->hw_fib_va = NULL; aac->hw_fib_pa = 0; pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); aac->comm_addr = NULL; aac->comm_phys = 0; kfree(aac->queues); aac->queues = NULL; free_irq(aac->pdev->irq, aac); kfree(aac->fsa_dev); aac->fsa_dev = NULL; if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) { if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) goto out; } else { if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) || ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL)))) goto out; } if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) goto out; if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) goto out; aac->thread = kthread_run(aac_command_thread, aac, aac->name); if (IS_ERR(aac->thread)) { retval = PTR_ERR(aac->thread); goto out; } (void)aac_get_adapter_info(aac); quirks = aac_get_driver_ident(index)->quirks; if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { host->sg_tablesize = 34; host->max_sectors = (host->sg_tablesize * 8) + 112; } if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { host->sg_tablesize = 17; host->max_sectors = (host->sg_tablesize * 8) + 112; } aac_get_config_status(aac, 1); aac_get_containers(aac); /* * This is where the assumption that the Adapter is quiesced * is important. */ command_list = NULL; __shost_for_each_device(dev, host) { unsigned long flags; spin_lock_irqsave(&dev->list_lock, flags); list_for_each_entry(command, &dev->cmd_list, list) if (command->SCp.phase == AAC_OWNER_FIRMWARE) { command->SCp.buffer = (struct scatterlist *)command_list; command_list = command; } spin_unlock_irqrestore(&dev->list_lock, flags); } while ((command = command_list)) { command_list = (struct scsi_cmnd *)command->SCp.buffer; command->SCp.buffer = NULL; command->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; command->SCp.phase = AAC_OWNER_ERROR_HANDLER; command->scsi_done(command); } retval = 0; out: aac->in_reset = 0; scsi_unblock_requests(host); spin_lock_irq(host->host_lock); return retval; } int aac_check_health(struct aac_dev * aac) { int BlinkLED; unsigned long time_now, flagv = 0; struct list_head * entry; struct Scsi_Host * host; /* Extending the scope of fib_lock slightly to protect aac->in_reset */ if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) return 0; if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { spin_unlock_irqrestore(&aac->fib_lock, flagv); return 0; /* OK */ } aac->in_reset = 1; /* Fake up an AIF: * aac_aifcmd.command = AifCmdEventNotify = 1 * aac_aifcmd.seqnum = 0xFFFFFFFF * aac_aifcmd.data[0] = AifEnExpEvent = 23 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 * aac.aifcmd.data[2] = AifHighPriority = 3 * aac.aifcmd.data[3] = BlinkLED */ time_now = jiffies/HZ; entry = aac->fib_list.next; /* * For each Context that is on the * fibctxList, make a copy of the * fib, and then set the event to wake up the * thread that is waiting for it. */ while (entry != &aac->fib_list) { /* * Extract the fibctx */ struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); struct hw_fib * hw_fib; struct fib * fib; /* * Check if the queue is getting * backlogged */ if (fibctx->count > 20) { /* * It's *not* jiffies folks, * but jiffies / HZ, so do not * panic ... */ u32 time_last = fibctx->jiffies; /* * Has it been > 2 minutes * since the last read off * the queue? */ if ((time_now - time_last) > aif_timeout) { entry = entry->next; aac_close_fib_context(aac, fibctx); continue; } } /* * Warning: no sleep allowed while * holding spinlock */ hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); if (fib && hw_fib) { struct aac_aifcmd * aif; fib->hw_fib_va = hw_fib; fib->dev = aac; aac_fib_init(fib); fib->type = FSAFS_NTC_FIB_CONTEXT; fib->size = sizeof (struct fib); fib->data = hw_fib->data; aif = (struct aac_aifcmd *)hw_fib->data; aif->command = cpu_to_le32(AifCmdEventNotify); aif->seqnum = cpu_to_le32(0xFFFFFFFF); aif->data[0] = cpu_to_le32(AifEnExpEvent); aif->data[1] = cpu_to_le32(AifExeFirmwarePanic); aif->data[2] = cpu_to_le32(AifHighPriority); aif->data[3] = cpu_to_le32(BlinkLED); /* * Put the FIB onto the * fibctx's fibs */ list_add_tail(&fib->fiblink, &fibctx->fib_list); fibctx->count++; /* * Set the event to wake up the * thread that will waiting. */ up(&fibctx->wait_sem); } else { printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); kfree(fib); kfree(hw_fib); } entry = entry->next; } spin_unlock_irqrestore(&aac->fib_lock, flagv); if (BlinkLED < 0) { printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); goto out; } printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); host = aac->scsi_host_ptr; spin_lock_irqsave(host->host_lock, flagv); BlinkLED = _aac_reset_adapter(aac); spin_unlock_irqrestore(host->host_lock, flagv); return BlinkLED; out: aac->in_reset = 0; return BlinkLED; } /** * aac_command_thread - command processing thread * @dev: Adapter to monitor * * Waits on the commandready event in it's queue. When the event gets set * it will pull FIBs off it's queue. It will continue to pull FIBs off * until the queue is empty. When the queue is empty it will wait for * more FIBs. */ int aac_command_thread(void *data) { struct aac_dev *dev = data; struct hw_fib *hw_fib, *hw_newfib; struct fib *fib, *newfib; struct aac_fib_context *fibctx; unsigned long flags; DECLARE_WAITQUEUE(wait, current); /* * We can only have one thread per adapter for AIF's. */ if (dev->aif_thread) return -EINVAL; /* * Let the DPC know it has a place to send the AIF's to. */ dev->aif_thread = 1; add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); set_current_state(TASK_INTERRUPTIBLE); dprintk ((KERN_INFO "aac_command_thread start\n")); while(1) { spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { struct list_head *entry; struct aac_aifcmd * aifcmd; set_current_state(TASK_RUNNING); entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; list_del(entry); spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); fib = list_entry(entry, struct fib, fiblink); /* * We will process the FIB here or pass it to a * worker thread that is TBD. We Really can't * do anything at this point since we don't have * anything defined for this thread to do. */ hw_fib = fib->hw_fib_va; memset(fib, 0, sizeof(struct fib)); fib->type = FSAFS_NTC_FIB_CONTEXT; fib->size = sizeof( struct fib ); fib->hw_fib_va = hw_fib; fib->data = hw_fib->data; fib->dev = dev; /* * We only handle AifRequest fibs from the adapter. */ aifcmd = (struct aac_aifcmd *) hw_fib->data; if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { /* Handle Driver Notify Events */ aac_handle_aif(dev, fib); *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); aac_fib_adapter_complete(fib, (u16)sizeof(u32)); } else { struct list_head *entry; /* The u32 here is important and intended. We are using 32bit wrapping time to fit the adapter field */ u32 time_now, time_last; unsigned long flagv; unsigned num; struct hw_fib ** hw_fib_pool, ** hw_fib_p; struct fib ** fib_pool, ** fib_p; /* Sniff events */ if ((aifcmd->command == cpu_to_le32(AifCmdEventNotify)) || (aifcmd->command == cpu_to_le32(AifCmdJobProgress))) { aac_handle_aif(dev, fib); } time_now = jiffies/HZ; /* * Warning: no sleep allowed while * holding spinlock. We take the estimate * and pre-allocate a set of fibs outside the * lock. */ num = le32_to_cpu(dev->init->AdapterFibsSize) / sizeof(struct hw_fib); /* some extra */ spin_lock_irqsave(&dev->fib_lock, flagv); entry = dev->fib_list.next; while (entry != &dev->fib_list) { entry = entry->next; ++num; } spin_unlock_irqrestore(&dev->fib_lock, flagv); hw_fib_pool = NULL; fib_pool = NULL; if (num && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { hw_fib_p = hw_fib_pool; fib_p = fib_pool; while (hw_fib_p < &hw_fib_pool[num]) { if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { --hw_fib_p; break; } if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { kfree(*(--hw_fib_p)); break; } } if ((num = hw_fib_p - hw_fib_pool) == 0) { kfree(fib_pool); fib_pool = NULL; kfree(hw_fib_pool); hw_fib_pool = NULL; } } else { kfree(hw_fib_pool); hw_fib_pool = NULL; } spin_lock_irqsave(&dev->fib_lock, flagv); entry = dev->fib_list.next; /* * For each Context that is on the * fibctxList, make a copy of the * fib, and then set the event to wake up the * thread that is waiting for it. */ hw_fib_p = hw_fib_pool; fib_p = fib_pool; while (entry != &dev->fib_list) { /* * Extract the fibctx */ fibctx = list_entry(entry, struct aac_fib_context, next); /* * Check if the queue is getting * backlogged */ if (fibctx->count > 20) { /* * It's *not* jiffies folks, * but jiffies / HZ so do not * panic ... */ time_last = fibctx->jiffies; /* * Has it been > 2 minutes * since the last read off * the queue? */ if ((time_now - time_last) > aif_timeout) { entry = entry->next; aac_close_fib_context(dev, fibctx); continue; } } /* * Warning: no sleep allowed while * holding spinlock */ if (hw_fib_p < &hw_fib_pool[num]) { hw_newfib = *hw_fib_p; *(hw_fib_p++) = NULL; newfib = *fib_p; *(fib_p++) = NULL; /* * Make the copy of the FIB */ memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); memcpy(newfib, fib, sizeof(struct fib)); newfib->hw_fib_va = hw_newfib; /* * Put the FIB onto the * fibctx's fibs */ list_add_tail(&newfib->fiblink, &fibctx->fib_list); fibctx->count++; /* * Set the event to wake up the * thread that is waiting. */ up(&fibctx->wait_sem); } else { printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); } entry = entry->next; } /* * Set the status of this FIB */ *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); aac_fib_adapter_complete(fib, sizeof(u32)); spin_unlock_irqrestore(&dev->fib_lock, flagv); /* Free up the remaining resources */ hw_fib_p = hw_fib_pool; fib_p = fib_pool; while (hw_fib_p < &hw_fib_pool[num]) { kfree(*hw_fib_p); kfree(*fib_p); ++fib_p; ++hw_fib_p; } kfree(hw_fib_pool); kfree(fib_pool); } kfree(fib); spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); } /* * There are no more AIF's */ spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); schedule(); if (kthread_should_stop()) break; set_current_state(TASK_INTERRUPTIBLE); } if (dev->queues) remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); dev->aif_thread = 0; return 0; }