/* * QLogic Fibre Channel HBA Driver * Copyright (c) 2003-2008 QLogic Corporation * * See LICENSE.qla2xxx for copyright and licensing details. */ #include "qla_def.h" #include <linux/delay.h> #include <linux/vmalloc.h> #include <asm/uaccess.h> /* * NVRAM support routines */ /** * qla2x00_lock_nvram_access() - * @ha: HA context */ static void qla2x00_lock_nvram_access(struct qla_hw_data *ha) { uint16_t data; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { data = RD_REG_WORD(®->nvram); while (data & NVR_BUSY) { udelay(100); data = RD_REG_WORD(®->nvram); } /* Lock resource */ WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); RD_REG_WORD(®->u.isp2300.host_semaphore); udelay(5); data = RD_REG_WORD(®->u.isp2300.host_semaphore); while ((data & BIT_0) == 0) { /* Lock failed */ udelay(100); WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); RD_REG_WORD(®->u.isp2300.host_semaphore); udelay(5); data = RD_REG_WORD(®->u.isp2300.host_semaphore); } } } /** * qla2x00_unlock_nvram_access() - * @ha: HA context */ static void qla2x00_unlock_nvram_access(struct qla_hw_data *ha) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { WRT_REG_WORD(®->u.isp2300.host_semaphore, 0); RD_REG_WORD(®->u.isp2300.host_semaphore); } } /** * qla2x00_nv_write() - Prepare for NVRAM read/write operation. * @ha: HA context * @data: Serial interface selector */ static void qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_CLOCK | NVR_WRT_ENABLE); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); } /** * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from * NVRAM. * @ha: HA context * @nv_cmd: NVRAM command * * Bit definitions for NVRAM command: * * Bit 26 = start bit * Bit 25, 24 = opcode * Bit 23-16 = address * Bit 15-0 = write data * * Returns the word read from nvram @addr. */ static uint16_t qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd) { uint8_t cnt; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint16_t data = 0; uint16_t reg_data; /* Send command to NVRAM. */ nv_cmd <<= 5; for (cnt = 0; cnt < 11; cnt++) { if (nv_cmd & BIT_31) qla2x00_nv_write(ha, NVR_DATA_OUT); else qla2x00_nv_write(ha, 0); nv_cmd <<= 1; } /* Read data from NVRAM. */ for (cnt = 0; cnt < 16; cnt++) { WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); data <<= 1; reg_data = RD_REG_WORD(®->nvram); if (reg_data & NVR_DATA_IN) data |= BIT_0; WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); } /* Deselect chip. */ WRT_REG_WORD(®->nvram, NVR_DESELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); return data; } /** * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the * request routine to get the word from NVRAM. * @ha: HA context * @addr: Address in NVRAM to read * * Returns the word read from nvram @addr. */ static uint16_t qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr) { uint16_t data; uint32_t nv_cmd; nv_cmd = addr << 16; nv_cmd |= NV_READ_OP; data = qla2x00_nvram_request(ha, nv_cmd); return (data); } /** * qla2x00_nv_deselect() - Deselect NVRAM operations. * @ha: HA context */ static void qla2x00_nv_deselect(struct qla_hw_data *ha) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; WRT_REG_WORD(®->nvram, NVR_DESELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ NVRAM_DELAY(); } /** * qla2x00_write_nvram_word() - Write NVRAM data. * @ha: HA context * @addr: Address in NVRAM to write * @data: word to program */ static void qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data) { int count; uint16_t word; uint32_t nv_cmd, wait_cnt; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Write data */ nv_cmd = (addr << 16) | NV_WRITE_OP; nv_cmd |= data; nv_cmd <<= 5; for (count = 0; count < 27; count++) { if (nv_cmd & BIT_31) qla2x00_nv_write(ha, NVR_DATA_OUT); else qla2x00_nv_write(ha, 0); nv_cmd <<= 1; } qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ wait_cnt = NVR_WAIT_CNT; do { if (!--wait_cnt) { DEBUG9_10(qla_printk(KERN_WARNING, ha, "NVRAM didn't go ready...\n")); break; } NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); } while ((word & NVR_DATA_IN) == 0); qla2x00_nv_deselect(ha); /* Disable writes */ qla2x00_nv_write(ha, NVR_DATA_OUT); for (count = 0; count < 10; count++) qla2x00_nv_write(ha, 0); qla2x00_nv_deselect(ha); } static int qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr, uint16_t data, uint32_t tmo) { int ret, count; uint16_t word; uint32_t nv_cmd; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; ret = QLA_SUCCESS; qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Write data */ nv_cmd = (addr << 16) | NV_WRITE_OP; nv_cmd |= data; nv_cmd <<= 5; for (count = 0; count < 27; count++) { if (nv_cmd & BIT_31) qla2x00_nv_write(ha, NVR_DATA_OUT); else qla2x00_nv_write(ha, 0); nv_cmd <<= 1; } qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ do { NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); if (!--tmo) { ret = QLA_FUNCTION_FAILED; break; } } while ((word & NVR_DATA_IN) == 0); qla2x00_nv_deselect(ha); /* Disable writes */ qla2x00_nv_write(ha, NVR_DATA_OUT); for (count = 0; count < 10; count++) qla2x00_nv_write(ha, 0); qla2x00_nv_deselect(ha); return ret; } /** * qla2x00_clear_nvram_protection() - * @ha: HA context */ static int qla2x00_clear_nvram_protection(struct qla_hw_data *ha) { int ret, stat; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t word, wait_cnt; uint16_t wprot, wprot_old; /* Clear NVRAM write protection. */ ret = QLA_FUNCTION_FAILED; wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base, __constant_cpu_to_le16(0x1234), 100000); wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); if (stat != QLA_SUCCESS || wprot != 0x1234) { /* Write enable. */ qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Enable protection register. */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_write(ha, NVR_PR_ENABLE); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Clear protection register (ffff is cleared). */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready. */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ wait_cnt = NVR_WAIT_CNT; do { if (!--wait_cnt) { DEBUG9_10(qla_printk(KERN_WARNING, ha, "NVRAM didn't go ready...\n")); break; } NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); } while ((word & NVR_DATA_IN) == 0); if (wait_cnt) ret = QLA_SUCCESS; } else qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old); return ret; } static void qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t word, wait_cnt; if (stat != QLA_SUCCESS) return; /* Set NVRAM write protection. */ /* Write enable. */ qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_write(ha, 0); qla2x00_nv_write(ha, 0); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT); qla2x00_nv_deselect(ha); /* Enable protection register. */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_write(ha, NVR_PR_ENABLE); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Enable protection register. */ qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); for (word = 0; word < 8; word++) qla2x00_nv_write(ha, NVR_PR_ENABLE); qla2x00_nv_deselect(ha); /* Wait for NVRAM to become ready. */ WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ wait_cnt = NVR_WAIT_CNT; do { if (!--wait_cnt) { DEBUG9_10(qla_printk(KERN_WARNING, ha, "NVRAM didn't go ready...\n")); break; } NVRAM_DELAY(); word = RD_REG_WORD(®->nvram); } while ((word & NVR_DATA_IN) == 0); } /*****************************************************************************/ /* Flash Manipulation Routines */ /*****************************************************************************/ #define OPTROM_BURST_SIZE 0x1000 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4) static inline uint32_t flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr) { return ha->flash_conf_off | faddr; } static inline uint32_t flash_data_addr(struct qla_hw_data *ha, uint32_t faddr) { return ha->flash_data_off | faddr; } static inline uint32_t nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr) { return ha->nvram_conf_off | naddr; } static inline uint32_t nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr) { return ha->nvram_data_off | naddr; } static uint32_t qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr) { int rval; uint32_t cnt, data; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG); /* Wait for READ cycle to complete. */ rval = QLA_SUCCESS; for (cnt = 3000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(10); else rval = QLA_FUNCTION_TIMEOUT; cond_resched(); } /* TODO: What happens if we time out? */ data = 0xDEADDEAD; if (rval == QLA_SUCCESS) data = RD_REG_DWORD(®->flash_data); return data; } uint32_t * qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, uint32_t dwords) { uint32_t i; struct qla_hw_data *ha = vha->hw; /* Dword reads to flash. */ for (i = 0; i < dwords; i++, faddr++) dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, flash_data_addr(ha, faddr))); return dwptr; } static int qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data) { int rval; uint32_t cnt; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; WRT_REG_DWORD(®->flash_data, data); RD_REG_DWORD(®->flash_data); /* PCI Posting. */ WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG); /* Wait for Write cycle to complete. */ rval = QLA_SUCCESS; for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(10); else rval = QLA_FUNCTION_TIMEOUT; cond_resched(); } return rval; } static void qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, uint8_t *flash_id) { uint32_t ids; ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab)); *man_id = LSB(ids); *flash_id = MSB(ids); /* Check if man_id and flash_id are valid. */ if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) { /* Read information using 0x9f opcode * Device ID, Mfg ID would be read in the format: * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID> * Example: ATMEL 0x00 01 45 1F * Extract MFG and Dev ID from last two bytes. */ ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f)); *man_id = LSB(ids); *flash_id = MSB(ids); } } static int qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start) { const char *loc, *locations[] = { "DEF", "PCI" }; uint32_t pcihdr, pcids; uint32_t *dcode; uint8_t *buf, *bcode, last_image; uint16_t cnt, chksum, *wptr; struct qla_flt_location *fltl; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; /* * FLT-location structure resides after the last PCI region. */ /* Begin with sane defaults. */ loc = locations[0]; *start = 0; if (IS_QLA24XX_TYPE(ha)) *start = FA_FLASH_LAYOUT_ADDR_24; else if (IS_QLA25XX(ha)) *start = FA_FLASH_LAYOUT_ADDR; else if (IS_QLA81XX(ha)) *start = FA_FLASH_LAYOUT_ADDR_81; /* Begin with first PCI expansion ROM header. */ buf = (uint8_t *)req->ring; dcode = (uint32_t *)req->ring; pcihdr = 0; last_image = 1; do { /* Verify PCI expansion ROM header. */ qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); bcode = buf + (pcihdr % 4); if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) goto end; /* Locate PCI data structure. */ pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); bcode = buf + (pcihdr % 4); /* Validate signature of PCI data structure. */ if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || bcode[0x2] != 'I' || bcode[0x3] != 'R') goto end; last_image = bcode[0x15] & BIT_7; /* Locate next PCI expansion ROM. */ pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; } while (!last_image); /* Now verify FLT-location structure. */ fltl = (struct qla_flt_location *)req->ring; qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, sizeof(struct qla_flt_location) >> 2); if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' || fltl->sig[2] != 'L' || fltl->sig[3] != 'T') goto end; wptr = (uint16_t *)req->ring; cnt = sizeof(struct qla_flt_location) >> 1; for (chksum = 0; cnt; cnt--) chksum += le16_to_cpu(*wptr++); if (chksum) { qla_printk(KERN_ERR, ha, "Inconsistent FLTL detected: checksum=0x%x.\n", chksum); qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location)); return QLA_FUNCTION_FAILED; } /* Good data. Use specified location. */ loc = locations[1]; *start = (le16_to_cpu(fltl->start_hi) << 16 | le16_to_cpu(fltl->start_lo)) >> 2; end: DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start)); return QLA_SUCCESS; } static void qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr) { const char *loc, *locations[] = { "DEF", "FLT" }; const uint32_t def_fw[] = { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 }; const uint32_t def_boot[] = { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 }; const uint32_t def_vpd_nvram[] = { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 }; const uint32_t def_vpd0[] = { 0, 0, FA_VPD0_ADDR_81 }; const uint32_t def_vpd1[] = { 0, 0, FA_VPD1_ADDR_81 }; const uint32_t def_nvram0[] = { 0, 0, FA_NVRAM0_ADDR_81 }; const uint32_t def_nvram1[] = { 0, 0, FA_NVRAM1_ADDR_81 }; const uint32_t def_fdt[] = { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR, FA_FLASH_DESCR_ADDR_81 }; const uint32_t def_npiv_conf0[] = { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR, FA_NPIV_CONF0_ADDR_81 }; const uint32_t def_npiv_conf1[] = { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR, FA_NPIV_CONF1_ADDR_81 }; uint32_t def; uint16_t *wptr; uint16_t cnt, chksum; uint32_t start; struct qla_flt_header *flt; struct qla_flt_region *region; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; ha->flt_region_flt = flt_addr; wptr = (uint16_t *)req->ring; flt = (struct qla_flt_header *)req->ring; region = (struct qla_flt_region *)&flt[1]; ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, flt_addr << 2, OPTROM_BURST_SIZE); if (*wptr == __constant_cpu_to_le16(0xffff)) goto no_flash_data; if (flt->version != __constant_cpu_to_le16(1)) { DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: " "version=0x%x length=0x%x checksum=0x%x.\n", le16_to_cpu(flt->version), le16_to_cpu(flt->length), le16_to_cpu(flt->checksum))); goto no_flash_data; } cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1; for (chksum = 0; cnt; cnt--) chksum += le16_to_cpu(*wptr++); if (chksum) { DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: " "version=0x%x length=0x%x checksum=0x%x.\n", le16_to_cpu(flt->version), le16_to_cpu(flt->length), chksum)); goto no_flash_data; } loc = locations[1]; cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region); for ( ; cnt; cnt--, region++) { /* Store addresses as DWORD offsets. */ start = le32_to_cpu(region->start) >> 2; DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x " "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start, le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size))); switch (le32_to_cpu(region->code) & 0xff) { case FLT_REG_FW: ha->flt_region_fw = start; break; case FLT_REG_BOOT_CODE: ha->flt_region_boot = start; break; case FLT_REG_VPD_0: ha->flt_region_vpd_nvram = start; if (ha->flags.port0) ha->flt_region_vpd = start; break; case FLT_REG_VPD_1: if (!ha->flags.port0) ha->flt_region_vpd = start; break; case FLT_REG_NVRAM_0: if (ha->flags.port0) ha->flt_region_nvram = start; break; case FLT_REG_NVRAM_1: if (!ha->flags.port0) ha->flt_region_nvram = start; break; case FLT_REG_FDT: ha->flt_region_fdt = start; break; case FLT_REG_NPIV_CONF_0: if (ha->flags.port0) ha->flt_region_npiv_conf = start; break; case FLT_REG_NPIV_CONF_1: if (!ha->flags.port0) ha->flt_region_npiv_conf = start; break; case FLT_REG_GOLD_FW: ha->flt_region_gold_fw = start; break; } } goto done; no_flash_data: /* Use hardcoded defaults. */ loc = locations[0]; def = 0; if (IS_QLA24XX_TYPE(ha)) def = 0; else if (IS_QLA25XX(ha)) def = 1; else if (IS_QLA81XX(ha)) def = 2; ha->flt_region_fw = def_fw[def]; ha->flt_region_boot = def_boot[def]; ha->flt_region_vpd_nvram = def_vpd_nvram[def]; ha->flt_region_vpd = ha->flags.port0 ? def_vpd0[def]: def_vpd1[def]; ha->flt_region_nvram = ha->flags.port0 ? def_nvram0[def]: def_nvram1[def]; ha->flt_region_fdt = def_fdt[def]; ha->flt_region_npiv_conf = ha->flags.port0 ? def_npiv_conf0[def]: def_npiv_conf1[def]; done: DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x " "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x " "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram, ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf)); } static void qla2xxx_get_fdt_info(scsi_qla_host_t *vha) { #define FLASH_BLK_SIZE_4K 0x1000 #define FLASH_BLK_SIZE_32K 0x8000 #define FLASH_BLK_SIZE_64K 0x10000 const char *loc, *locations[] = { "MID", "FDT" }; uint16_t cnt, chksum; uint16_t *wptr; struct qla_fdt_layout *fdt; uint8_t man_id, flash_id; uint16_t mid, fid; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; wptr = (uint16_t *)req->ring; fdt = (struct qla_fdt_layout *)req->ring; ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, ha->flt_region_fdt << 2, OPTROM_BURST_SIZE); if (*wptr == __constant_cpu_to_le16(0xffff)) goto no_flash_data; if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' || fdt->sig[3] != 'D') goto no_flash_data; for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1; cnt++) chksum += le16_to_cpu(*wptr++); if (chksum) { DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: " "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0], le16_to_cpu(fdt->version))); DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt))); goto no_flash_data; } loc = locations[1]; mid = le16_to_cpu(fdt->man_id); fid = le16_to_cpu(fdt->id); ha->fdt_wrt_disable = fdt->wrt_disable_bits; ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd); ha->fdt_block_size = le32_to_cpu(fdt->block_size); if (fdt->unprotect_sec_cmd) { ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 | fdt->unprotect_sec_cmd); ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ? flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd): flash_conf_addr(ha, 0x0336); } goto done; no_flash_data: loc = locations[0]; qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id); mid = man_id; fid = flash_id; ha->fdt_wrt_disable = 0x9c; ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8); switch (man_id) { case 0xbf: /* STT flash. */ if (flash_id == 0x8e) ha->fdt_block_size = FLASH_BLK_SIZE_64K; else ha->fdt_block_size = FLASH_BLK_SIZE_32K; if (flash_id == 0x80) ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352); break; case 0x13: /* ST M25P80. */ ha->fdt_block_size = FLASH_BLK_SIZE_64K; break; case 0x1f: /* Atmel 26DF081A. */ ha->fdt_block_size = FLASH_BLK_SIZE_4K; ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320); ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339); ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336); break; default: /* Default to 64 kb sector size. */ ha->fdt_block_size = FLASH_BLK_SIZE_64K; break; } done: DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x " "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid, ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd, ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable, ha->fdt_block_size)); } int qla2xxx_get_flash_info(scsi_qla_host_t *vha) { int ret; uint32_t flt_addr; struct qla_hw_data *ha = vha->hw; if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha)) return QLA_SUCCESS; ret = qla2xxx_find_flt_start(vha, &flt_addr); if (ret != QLA_SUCCESS) return ret; qla2xxx_get_flt_info(vha, flt_addr); qla2xxx_get_fdt_info(vha); return QLA_SUCCESS; } void qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha) { #define NPIV_CONFIG_SIZE (16*1024) void *data; uint16_t *wptr; uint16_t cnt, chksum; int i; struct qla_npiv_header hdr; struct qla_npiv_entry *entry; struct qla_hw_data *ha = vha->hw; if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha)) return; ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr, ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header)); if (hdr.version == __constant_cpu_to_le16(0xffff)) return; if (hdr.version != __constant_cpu_to_le16(1)) { DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config " "detected: version=0x%x entries=0x%x checksum=0x%x.\n", le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), le16_to_cpu(hdr.checksum))); return; } data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL); if (!data) { DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to " "allocate memory.\n")); return; } ha->isp_ops->read_optrom(vha, (uint8_t *)data, ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE); cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) * sizeof(struct qla_npiv_entry)) >> 1; for (wptr = data, chksum = 0; cnt; cnt--) chksum += le16_to_cpu(*wptr++); if (chksum) { DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config " "detected: version=0x%x entries=0x%x checksum=0x%x.\n", le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), chksum)); goto done; } entry = data + sizeof(struct qla_npiv_header); cnt = le16_to_cpu(hdr.entries); for (i = 0; cnt; cnt--, entry++, i++) { uint16_t flags; struct fc_vport_identifiers vid; struct fc_vport *vport; memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry)); flags = le16_to_cpu(entry->flags); if (flags == 0xffff) continue; if ((flags & BIT_0) == 0) continue; memset(&vid, 0, sizeof(vid)); vid.roles = FC_PORT_ROLE_FCP_INITIATOR; vid.vport_type = FC_PORTTYPE_NPIV; vid.disable = false; vid.port_name = wwn_to_u64(entry->port_name); vid.node_name = wwn_to_u64(entry->node_name); DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx " "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt, (unsigned long long)vid.port_name, (unsigned long long)vid.node_name, le16_to_cpu(entry->vf_id), entry->q_qos, entry->f_qos)); if (i < QLA_PRECONFIG_VPORTS) { vport = fc_vport_create(vha->host, 0, &vid); if (!vport) qla_printk(KERN_INFO, ha, "NPIV-Config: Failed to create vport [%02x]: " "wwpn=%llx wwnn=%llx.\n", cnt, (unsigned long long)vid.port_name, (unsigned long long)vid.node_name); } } done: kfree(data); } static int qla24xx_unprotect_flash(scsi_qla_host_t *vha) { struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; if (ha->flags.fac_supported) return qla81xx_fac_do_write_enable(vha, 1); /* Enable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ if (!ha->fdt_wrt_disable) goto done; /* Disable flash write-protection, first clear SR protection bit */ qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); /* Then write zero again to clear remaining SR bits.*/ qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); done: return QLA_SUCCESS; } static int qla24xx_protect_flash(scsi_qla_host_t *vha) { uint32_t cnt; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; if (ha->flags.fac_supported) return qla81xx_fac_do_write_enable(vha, 0); if (!ha->fdt_wrt_disable) goto skip_wrt_protect; /* Enable flash write-protection and wait for completion. */ qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), ha->fdt_wrt_disable); for (cnt = 300; cnt && qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0; cnt--) { udelay(10); } skip_wrt_protect: /* Disable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ return QLA_SUCCESS; } static int qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata) { struct qla_hw_data *ha = vha->hw; uint32_t start, finish; if (ha->flags.fac_supported) { start = fdata >> 2; finish = start + (ha->fdt_block_size >> 2) - 1; return qla81xx_fac_erase_sector(vha, flash_data_addr(ha, start), flash_data_addr(ha, finish)); } return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd, (fdata & 0xff00) | ((fdata << 16) & 0xff0000) | ((fdata >> 16) & 0xff)); } static int qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, uint32_t dwords) { int ret; uint32_t liter; uint32_t sec_mask, rest_addr; uint32_t fdata; dma_addr_t optrom_dma; void *optrom = NULL; struct qla_hw_data *ha = vha->hw; /* Prepare burst-capable write on supported ISPs. */ if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) { optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, &optrom_dma, GFP_KERNEL); if (!optrom) { qla_printk(KERN_DEBUG, ha, "Unable to allocate memory for optrom burst write " "(%x KB).\n", OPTROM_BURST_SIZE / 1024); } } rest_addr = (ha->fdt_block_size >> 2) - 1; sec_mask = ~rest_addr; ret = qla24xx_unprotect_flash(vha); if (ret != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to unprotect flash for update.\n"); goto done; } for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) { fdata = (faddr & sec_mask) << 2; /* Are we at the beginning of a sector? */ if ((faddr & rest_addr) == 0) { /* Do sector unprotect. */ if (ha->fdt_unprotect_sec_cmd) qla24xx_write_flash_dword(ha, ha->fdt_unprotect_sec_cmd, (fdata & 0xff00) | ((fdata << 16) & 0xff0000) | ((fdata >> 16) & 0xff)); ret = qla24xx_erase_sector(vha, fdata); if (ret != QLA_SUCCESS) { DEBUG9(qla_printk(KERN_WARNING, ha, "Unable to erase sector: address=%x.\n", faddr)); break; } } /* Go with burst-write. */ if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) { /* Copy data to DMA'ble buffer. */ memcpy(optrom, dwptr, OPTROM_BURST_SIZE); ret = qla2x00_load_ram(vha, optrom_dma, flash_data_addr(ha, faddr), OPTROM_BURST_DWORDS); if (ret != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to burst-write optrom segment " "(%x/%x/%llx).\n", ret, flash_data_addr(ha, faddr), (unsigned long long)optrom_dma); qla_printk(KERN_WARNING, ha, "Reverting to slow-write.\n"); dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, optrom_dma); optrom = NULL; } else { liter += OPTROM_BURST_DWORDS - 1; faddr += OPTROM_BURST_DWORDS - 1; dwptr += OPTROM_BURST_DWORDS - 1; continue; } } ret = qla24xx_write_flash_dword(ha, flash_data_addr(ha, faddr), cpu_to_le32(*dwptr)); if (ret != QLA_SUCCESS) { DEBUG9(printk("%s(%ld) Unable to program flash " "address=%x data=%x.\n", __func__, vha->host_no, faddr, *dwptr)); break; } /* Do sector protect. */ if (ha->fdt_unprotect_sec_cmd && ((faddr & rest_addr) == rest_addr)) qla24xx_write_flash_dword(ha, ha->fdt_protect_sec_cmd, (fdata & 0xff00) | ((fdata << 16) & 0xff0000) | ((fdata >> 16) & 0xff)); } ret = qla24xx_protect_flash(vha); if (ret != QLA_SUCCESS) qla_printk(KERN_WARNING, ha, "Unable to protect flash after update.\n"); done: if (optrom) dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, optrom_dma); return ret; } uint8_t * qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { uint32_t i; uint16_t *wptr; struct qla_hw_data *ha = vha->hw; /* Word reads to NVRAM via registers. */ wptr = (uint16_t *)buf; qla2x00_lock_nvram_access(ha); for (i = 0; i < bytes >> 1; i++, naddr++) wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha, naddr)); qla2x00_unlock_nvram_access(ha); return buf; } uint8_t * qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { uint32_t i; uint32_t *dwptr; struct qla_hw_data *ha = vha->hw; /* Dword reads to flash. */ dwptr = (uint32_t *)buf; for (i = 0; i < bytes >> 2; i++, naddr++) dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, nvram_data_addr(ha, naddr))); return buf; } int qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { int ret, stat; uint32_t i; uint16_t *wptr; unsigned long flags; struct qla_hw_data *ha = vha->hw; ret = QLA_SUCCESS; spin_lock_irqsave(&ha->hardware_lock, flags); qla2x00_lock_nvram_access(ha); /* Disable NVRAM write-protection. */ stat = qla2x00_clear_nvram_protection(ha); wptr = (uint16_t *)buf; for (i = 0; i < bytes >> 1; i++, naddr++) { qla2x00_write_nvram_word(ha, naddr, cpu_to_le16(*wptr)); wptr++; } /* Enable NVRAM write-protection. */ qla2x00_set_nvram_protection(ha, stat); qla2x00_unlock_nvram_access(ha); spin_unlock_irqrestore(&ha->hardware_lock, flags); return ret; } int qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { int ret; uint32_t i; uint32_t *dwptr; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; ret = QLA_SUCCESS; /* Enable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ /* Disable NVRAM write-protection. */ qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); /* Dword writes to flash. */ dwptr = (uint32_t *)buf; for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) { ret = qla24xx_write_flash_dword(ha, nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr)); if (ret != QLA_SUCCESS) { DEBUG9(qla_printk(KERN_WARNING, ha, "Unable to program nvram address=%x data=%x.\n", naddr, *dwptr)); break; } } /* Enable NVRAM write-protection. */ qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c); /* Disable flash write. */ WRT_REG_DWORD(®->ctrl_status, RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */ return ret; } uint8_t * qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { uint32_t i; uint32_t *dwptr; struct qla_hw_data *ha = vha->hw; /* Dword reads to flash. */ dwptr = (uint32_t *)buf; for (i = 0; i < bytes >> 2; i++, naddr++) dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr))); return buf; } int qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, uint32_t bytes) { struct qla_hw_data *ha = vha->hw; #define RMW_BUFFER_SIZE (64 * 1024) uint8_t *dbuf; dbuf = vmalloc(RMW_BUFFER_SIZE); if (!dbuf) return QLA_MEMORY_ALLOC_FAILED; ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, RMW_BUFFER_SIZE); memcpy(dbuf + (naddr << 2), buf, bytes); ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, RMW_BUFFER_SIZE); vfree(dbuf); return QLA_SUCCESS; } static inline void qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) { if (IS_QLA2322(ha)) { /* Flip all colors. */ if (ha->beacon_color_state == QLA_LED_ALL_ON) { /* Turn off. */ ha->beacon_color_state = 0; *pflags = GPIO_LED_ALL_OFF; } else { /* Turn on. */ ha->beacon_color_state = QLA_LED_ALL_ON; *pflags = GPIO_LED_RGA_ON; } } else { /* Flip green led only. */ if (ha->beacon_color_state == QLA_LED_GRN_ON) { /* Turn off. */ ha->beacon_color_state = 0; *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF; } else { /* Turn on. */ ha->beacon_color_state = QLA_LED_GRN_ON; *pflags = GPIO_LED_GREEN_ON_AMBER_OFF; } } } #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r)) void qla2x00_beacon_blink(struct scsi_qla_host *vha) { uint16_t gpio_enable; uint16_t gpio_data; uint16_t led_color = 0; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; spin_lock_irqsave(&ha->hardware_lock, flags); /* Save the Original GPIOE. */ if (ha->pio_address) { gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); } else { gpio_enable = RD_REG_WORD(®->gpioe); gpio_data = RD_REG_WORD(®->gpiod); } /* Set the modified gpio_enable values */ gpio_enable |= GPIO_LED_MASK; if (ha->pio_address) { WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); } else { WRT_REG_WORD(®->gpioe, gpio_enable); RD_REG_WORD(®->gpioe); } qla2x00_flip_colors(ha, &led_color); /* Clear out any previously set LED color. */ gpio_data &= ~GPIO_LED_MASK; /* Set the new input LED color to GPIOD. */ gpio_data |= led_color; /* Set the modified gpio_data values */ if (ha->pio_address) { WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); } else { WRT_REG_WORD(®->gpiod, gpio_data); RD_REG_WORD(®->gpiod); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } int qla2x00_beacon_on(struct scsi_qla_host *vha) { uint16_t gpio_enable; uint16_t gpio_data; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; ha->fw_options[1] |= FO1_DISABLE_GPIO6_7; if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon on).\n"); return QLA_FUNCTION_FAILED; } /* Turn off LEDs. */ spin_lock_irqsave(&ha->hardware_lock, flags); if (ha->pio_address) { gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); } else { gpio_enable = RD_REG_WORD(®->gpioe); gpio_data = RD_REG_WORD(®->gpiod); } gpio_enable |= GPIO_LED_MASK; /* Set the modified gpio_enable values. */ if (ha->pio_address) { WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); } else { WRT_REG_WORD(®->gpioe, gpio_enable); RD_REG_WORD(®->gpioe); } /* Clear out previously set LED colour. */ gpio_data &= ~GPIO_LED_MASK; if (ha->pio_address) { WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); } else { WRT_REG_WORD(®->gpiod, gpio_data); RD_REG_WORD(®->gpiod); } spin_unlock_irqrestore(&ha->hardware_lock, flags); /* * Let the per HBA timer kick off the blinking process based on * the following flags. No need to do anything else now. */ ha->beacon_blink_led = 1; ha->beacon_color_state = 0; return QLA_SUCCESS; } int qla2x00_beacon_off(struct scsi_qla_host *vha) { int rval = QLA_SUCCESS; struct qla_hw_data *ha = vha->hw; ha->beacon_blink_led = 0; /* Set the on flag so when it gets flipped it will be off. */ if (IS_QLA2322(ha)) ha->beacon_color_state = QLA_LED_ALL_ON; else ha->beacon_color_state = QLA_LED_GRN_ON; ha->isp_ops->beacon_blink(vha); /* This turns green LED off */ ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7; rval = qla2x00_set_fw_options(vha, ha->fw_options); if (rval != QLA_SUCCESS) qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon off).\n"); return rval; } static inline void qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) { /* Flip all colors. */ if (ha->beacon_color_state == QLA_LED_ALL_ON) { /* Turn off. */ ha->beacon_color_state = 0; *pflags = 0; } else { /* Turn on. */ ha->beacon_color_state = QLA_LED_ALL_ON; *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON; } } void qla24xx_beacon_blink(struct scsi_qla_host *vha) { uint16_t led_color = 0; uint32_t gpio_data; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; /* Save the Original GPIOD. */ spin_lock_irqsave(&ha->hardware_lock, flags); gpio_data = RD_REG_DWORD(®->gpiod); /* Enable the gpio_data reg for update. */ gpio_data |= GPDX_LED_UPDATE_MASK; WRT_REG_DWORD(®->gpiod, gpio_data); gpio_data = RD_REG_DWORD(®->gpiod); /* Set the color bits. */ qla24xx_flip_colors(ha, &led_color); /* Clear out any previously set LED color. */ gpio_data &= ~GPDX_LED_COLOR_MASK; /* Set the new input LED color to GPIOD. */ gpio_data |= led_color; /* Set the modified gpio_data values. */ WRT_REG_DWORD(®->gpiod, gpio_data); gpio_data = RD_REG_DWORD(®->gpiod); spin_unlock_irqrestore(&ha->hardware_lock, flags); } int qla24xx_beacon_on(struct scsi_qla_host *vha) { uint32_t gpio_data; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; if (ha->beacon_blink_led == 0) { /* Enable firmware for update */ ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL; if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) return QLA_FUNCTION_FAILED; if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon on).\n"); return QLA_FUNCTION_FAILED; } spin_lock_irqsave(&ha->hardware_lock, flags); gpio_data = RD_REG_DWORD(®->gpiod); /* Enable the gpio_data reg for update. */ gpio_data |= GPDX_LED_UPDATE_MASK; WRT_REG_DWORD(®->gpiod, gpio_data); RD_REG_DWORD(®->gpiod); spin_unlock_irqrestore(&ha->hardware_lock, flags); } /* So all colors blink together. */ ha->beacon_color_state = 0; /* Let the per HBA timer kick off the blinking process. */ ha->beacon_blink_led = 1; return QLA_SUCCESS; } int qla24xx_beacon_off(struct scsi_qla_host *vha) { uint32_t gpio_data; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; ha->beacon_blink_led = 0; ha->beacon_color_state = QLA_LED_ALL_ON; ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */ /* Give control back to firmware. */ spin_lock_irqsave(&ha->hardware_lock, flags); gpio_data = RD_REG_DWORD(®->gpiod); /* Disable the gpio_data reg for update. */ gpio_data &= ~GPDX_LED_UPDATE_MASK; WRT_REG_DWORD(®->gpiod, gpio_data); RD_REG_DWORD(®->gpiod); spin_unlock_irqrestore(&ha->hardware_lock, flags); ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL; if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update fw options (beacon off).\n"); return QLA_FUNCTION_FAILED; } if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to get fw options (beacon off).\n"); return QLA_FUNCTION_FAILED; } return QLA_SUCCESS; } /* * Flash support routines */ /** * qla2x00_flash_enable() - Setup flash for reading and writing. * @ha: HA context */ static void qla2x00_flash_enable(struct qla_hw_data *ha) { uint16_t data; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; data = RD_REG_WORD(®->ctrl_status); data |= CSR_FLASH_ENABLE; WRT_REG_WORD(®->ctrl_status, data); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } /** * qla2x00_flash_disable() - Disable flash and allow RISC to run. * @ha: HA context */ static void qla2x00_flash_disable(struct qla_hw_data *ha) { uint16_t data; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; data = RD_REG_WORD(®->ctrl_status); data &= ~(CSR_FLASH_ENABLE); WRT_REG_WORD(®->ctrl_status, data); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } /** * qla2x00_read_flash_byte() - Reads a byte from flash * @ha: HA context * @addr: Address in flash to read * * A word is read from the chip, but, only the lower byte is valid. * * Returns the byte read from flash @addr. */ static uint8_t qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr) { uint16_t data; uint16_t bank_select; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; bank_select = RD_REG_WORD(®->ctrl_status); if (IS_QLA2322(ha) || IS_QLA6322(ha)) { /* Specify 64K address range: */ /* clear out Module Select and Flash Address bits [19:16]. */ bank_select &= ~0xf8; bank_select |= addr >> 12 & 0xf0; bank_select |= CSR_FLASH_64K_BANK; WRT_REG_WORD(®->ctrl_status, bank_select); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ WRT_REG_WORD(®->flash_address, (uint16_t)addr); data = RD_REG_WORD(®->flash_data); return (uint8_t)data; } /* Setup bit 16 of flash address. */ if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { bank_select |= CSR_FLASH_64K_BANK; WRT_REG_WORD(®->ctrl_status, bank_select); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } else if (((addr & BIT_16) == 0) && (bank_select & CSR_FLASH_64K_BANK)) { bank_select &= ~(CSR_FLASH_64K_BANK); WRT_REG_WORD(®->ctrl_status, bank_select); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } /* Always perform IO mapped accesses to the FLASH registers. */ if (ha->pio_address) { uint16_t data2; WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); do { data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); barrier(); cpu_relax(); data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); } while (data != data2); } else { WRT_REG_WORD(®->flash_address, (uint16_t)addr); data = qla2x00_debounce_register(®->flash_data); } return (uint8_t)data; } /** * qla2x00_write_flash_byte() - Write a byte to flash * @ha: HA context * @addr: Address in flash to write * @data: Data to write */ static void qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data) { uint16_t bank_select; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; bank_select = RD_REG_WORD(®->ctrl_status); if (IS_QLA2322(ha) || IS_QLA6322(ha)) { /* Specify 64K address range: */ /* clear out Module Select and Flash Address bits [19:16]. */ bank_select &= ~0xf8; bank_select |= addr >> 12 & 0xf0; bank_select |= CSR_FLASH_64K_BANK; WRT_REG_WORD(®->ctrl_status, bank_select); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ WRT_REG_WORD(®->flash_address, (uint16_t)addr); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ WRT_REG_WORD(®->flash_data, (uint16_t)data); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ return; } /* Setup bit 16 of flash address. */ if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { bank_select |= CSR_FLASH_64K_BANK; WRT_REG_WORD(®->ctrl_status, bank_select); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } else if (((addr & BIT_16) == 0) && (bank_select & CSR_FLASH_64K_BANK)) { bank_select &= ~(CSR_FLASH_64K_BANK); WRT_REG_WORD(®->ctrl_status, bank_select); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } /* Always perform IO mapped accesses to the FLASH registers. */ if (ha->pio_address) { WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data); } else { WRT_REG_WORD(®->flash_address, (uint16_t)addr); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ WRT_REG_WORD(®->flash_data, (uint16_t)data); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ } } /** * qla2x00_poll_flash() - Polls flash for completion. * @ha: HA context * @addr: Address in flash to poll * @poll_data: Data to be polled * @man_id: Flash manufacturer ID * @flash_id: Flash ID * * This function polls the device until bit 7 of what is read matches data * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed * out (a fatal error). The flash book recommeds reading bit 7 again after * reading bit 5 as a 1. * * Returns 0 on success, else non-zero. */ static int qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data, uint8_t man_id, uint8_t flash_id) { int status; uint8_t flash_data; uint32_t cnt; status = 1; /* Wait for 30 seconds for command to finish. */ poll_data &= BIT_7; for (cnt = 3000000; cnt; cnt--) { flash_data = qla2x00_read_flash_byte(ha, addr); if ((flash_data & BIT_7) == poll_data) { status = 0; break; } if (man_id != 0x40 && man_id != 0xda) { if ((flash_data & BIT_5) && cnt > 2) cnt = 2; } udelay(10); barrier(); cond_resched(); } return status; } /** * qla2x00_program_flash_address() - Programs a flash address * @ha: HA context * @addr: Address in flash to program * @data: Data to be written in flash * @man_id: Flash manufacturer ID * @flash_id: Flash ID * * Returns 0 on success, else non-zero. */ static int qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr, uint8_t data, uint8_t man_id, uint8_t flash_id) { /* Write Program Command Sequence. */ if (IS_OEM_001(ha)) { qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); qla2x00_write_flash_byte(ha, 0x555, 0x55); qla2x00_write_flash_byte(ha, 0xaaa, 0xa0); qla2x00_write_flash_byte(ha, addr, data); } else { if (man_id == 0xda && flash_id == 0xc1) { qla2x00_write_flash_byte(ha, addr, data); if (addr & 0x7e) return 0; } else { qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0xa0); qla2x00_write_flash_byte(ha, addr, data); } } udelay(150); /* Wait for write to complete. */ return qla2x00_poll_flash(ha, addr, data, man_id, flash_id); } /** * qla2x00_erase_flash() - Erase the flash. * @ha: HA context * @man_id: Flash manufacturer ID * @flash_id: Flash ID * * Returns 0 on success, else non-zero. */ static int qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id) { /* Individual Sector Erase Command Sequence */ if (IS_OEM_001(ha)) { qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); qla2x00_write_flash_byte(ha, 0x555, 0x55); qla2x00_write_flash_byte(ha, 0xaaa, 0x80); qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); qla2x00_write_flash_byte(ha, 0x555, 0x55); qla2x00_write_flash_byte(ha, 0xaaa, 0x10); } else { qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0x80); qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0x10); } udelay(150); /* Wait for erase to complete. */ return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id); } /** * qla2x00_erase_flash_sector() - Erase a flash sector. * @ha: HA context * @addr: Flash sector to erase * @sec_mask: Sector address mask * @man_id: Flash manufacturer ID * @flash_id: Flash ID * * Returns 0 on success, else non-zero. */ static int qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr, uint32_t sec_mask, uint8_t man_id, uint8_t flash_id) { /* Individual Sector Erase Command Sequence */ qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0x80); qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); if (man_id == 0x1f && flash_id == 0x13) qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10); else qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30); udelay(150); /* Wait for erase to complete. */ return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id); } /** * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip. * @man_id: Flash manufacturer ID * @flash_id: Flash ID */ static void qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, uint8_t *flash_id) { qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0x90); *man_id = qla2x00_read_flash_byte(ha, 0x0000); *flash_id = qla2x00_read_flash_byte(ha, 0x0001); qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0xf0); } static void qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf, uint32_t saddr, uint32_t length) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t midpoint, ilength; uint8_t data; midpoint = length / 2; WRT_REG_WORD(®->nvram, 0); RD_REG_WORD(®->nvram); for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) { if (ilength == midpoint) { WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); } data = qla2x00_read_flash_byte(ha, saddr); if (saddr % 100) udelay(10); *tmp_buf = data; cond_resched(); } } static inline void qla2x00_suspend_hba(struct scsi_qla_host *vha) { int cnt; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; /* Suspend HBA. */ scsi_block_requests(vha->host); ha->isp_ops->disable_intrs(ha); set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); /* Pause RISC. */ spin_lock_irqsave(&ha->hardware_lock, flags); WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); RD_REG_WORD(®->hccr); if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) break; udelay(100); } } else { udelay(10); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } static inline void qla2x00_resume_hba(struct scsi_qla_host *vha) { struct qla_hw_data *ha = vha->hw; /* Resume HBA. */ clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags); qla2xxx_wake_dpc(vha); qla2x00_wait_for_chip_reset(vha); scsi_unblock_requests(vha->host); } uint8_t * qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, uint32_t offset, uint32_t length) { uint32_t addr, midpoint; uint8_t *data; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; /* Suspend HBA. */ qla2x00_suspend_hba(vha); /* Go with read. */ midpoint = ha->optrom_size / 2; qla2x00_flash_enable(ha); WRT_REG_WORD(®->nvram, 0); RD_REG_WORD(®->nvram); /* PCI Posting. */ for (addr = offset, data = buf; addr < length; addr++, data++) { if (addr == midpoint) { WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); /* PCI Posting. */ } *data = qla2x00_read_flash_byte(ha, addr); } qla2x00_flash_disable(ha); /* Resume HBA. */ qla2x00_resume_hba(vha); return buf; } int qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, uint32_t offset, uint32_t length) { int rval; uint8_t man_id, flash_id, sec_number, data; uint16_t wd; uint32_t addr, liter, sec_mask, rest_addr; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; /* Suspend HBA. */ qla2x00_suspend_hba(vha); rval = QLA_SUCCESS; sec_number = 0; /* Reset ISP chip. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); /* Go with write. */ qla2x00_flash_enable(ha); do { /* Loop once to provide quick error exit */ /* Structure of flash memory based on manufacturer */ if (IS_OEM_001(ha)) { /* OEM variant with special flash part. */ man_id = flash_id = 0; rest_addr = 0xffff; sec_mask = 0x10000; goto update_flash; } qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id); switch (man_id) { case 0x20: /* ST flash. */ if (flash_id == 0xd2 || flash_id == 0xe3) { /* * ST m29w008at part - 64kb sector size with * 32kb,8kb,8kb,16kb sectors at memory address * 0xf0000. */ rest_addr = 0xffff; sec_mask = 0x10000; break; } /* * ST m29w010b part - 16kb sector size * Default to 16kb sectors */ rest_addr = 0x3fff; sec_mask = 0x1c000; break; case 0x40: /* Mostel flash. */ /* Mostel v29c51001 part - 512 byte sector size. */ rest_addr = 0x1ff; sec_mask = 0x1fe00; break; case 0xbf: /* SST flash. */ /* SST39sf10 part - 4kb sector size. */ rest_addr = 0xfff; sec_mask = 0x1f000; break; case 0xda: /* Winbond flash. */ /* Winbond W29EE011 part - 256 byte sector size. */ rest_addr = 0x7f; sec_mask = 0x1ff80; break; case 0xc2: /* Macronix flash. */ /* 64k sector size. */ if (flash_id == 0x38 || flash_id == 0x4f) { rest_addr = 0xffff; sec_mask = 0x10000; break; } /* Fall through... */ case 0x1f: /* Atmel flash. */ /* 512k sector size. */ if (flash_id == 0x13) { rest_addr = 0x7fffffff; sec_mask = 0x80000000; break; } /* Fall through... */ case 0x01: /* AMD flash. */ if (flash_id == 0x38 || flash_id == 0x40 || flash_id == 0x4f) { /* Am29LV081 part - 64kb sector size. */ /* Am29LV002BT part - 64kb sector size. */ rest_addr = 0xffff; sec_mask = 0x10000; break; } else if (flash_id == 0x3e) { /* * Am29LV008b part - 64kb sector size with * 32kb,8kb,8kb,16kb sector at memory address * h0xf0000. */ rest_addr = 0xffff; sec_mask = 0x10000; break; } else if (flash_id == 0x20 || flash_id == 0x6e) { /* * Am29LV010 part or AM29f010 - 16kb sector * size. */ rest_addr = 0x3fff; sec_mask = 0x1c000; break; } else if (flash_id == 0x6d) { /* Am29LV001 part - 8kb sector size. */ rest_addr = 0x1fff; sec_mask = 0x1e000; break; } default: /* Default to 16 kb sector size. */ rest_addr = 0x3fff; sec_mask = 0x1c000; break; } update_flash: if (IS_QLA2322(ha) || IS_QLA6322(ha)) { if (qla2x00_erase_flash(ha, man_id, flash_id)) { rval = QLA_FUNCTION_FAILED; break; } } for (addr = offset, liter = 0; liter < length; liter++, addr++) { data = buf[liter]; /* Are we at the beginning of a sector? */ if ((addr & rest_addr) == 0) { if (IS_QLA2322(ha) || IS_QLA6322(ha)) { if (addr >= 0x10000UL) { if (((addr >> 12) & 0xf0) && ((man_id == 0x01 && flash_id == 0x3e) || (man_id == 0x20 && flash_id == 0xd2))) { sec_number++; if (sec_number == 1) { rest_addr = 0x7fff; sec_mask = 0x18000; } else if ( sec_number == 2 || sec_number == 3) { rest_addr = 0x1fff; sec_mask = 0x1e000; } else if ( sec_number == 4) { rest_addr = 0x3fff; sec_mask = 0x1c000; } } } } else if (addr == ha->optrom_size / 2) { WRT_REG_WORD(®->nvram, NVR_SELECT); RD_REG_WORD(®->nvram); } if (flash_id == 0xda && man_id == 0xc1) { qla2x00_write_flash_byte(ha, 0x5555, 0xaa); qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); qla2x00_write_flash_byte(ha, 0x5555, 0xa0); } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) { /* Then erase it */ if (qla2x00_erase_flash_sector(ha, addr, sec_mask, man_id, flash_id)) { rval = QLA_FUNCTION_FAILED; break; } if (man_id == 0x01 && flash_id == 0x6d) sec_number++; } } if (man_id == 0x01 && flash_id == 0x6d) { if (sec_number == 1 && addr == (rest_addr - 1)) { rest_addr = 0x0fff; sec_mask = 0x1f000; } else if (sec_number == 3 && (addr & 0x7ffe)) { rest_addr = 0x3fff; sec_mask = 0x1c000; } } if (qla2x00_program_flash_address(ha, addr, data, man_id, flash_id)) { rval = QLA_FUNCTION_FAILED; break; } cond_resched(); } } while (0); qla2x00_flash_disable(ha); /* Resume HBA. */ qla2x00_resume_hba(vha); return rval; } uint8_t * qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, uint32_t offset, uint32_t length) { struct qla_hw_data *ha = vha->hw; /* Suspend HBA. */ scsi_block_requests(vha->host); set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); /* Go with read. */ qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2); /* Resume HBA. */ clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); scsi_unblock_requests(vha->host); return buf; } int qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, uint32_t offset, uint32_t length) { int rval; struct qla_hw_data *ha = vha->hw; /* Suspend HBA. */ scsi_block_requests(vha->host); set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); /* Go with write. */ rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2); clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); scsi_unblock_requests(vha->host); return rval; } uint8_t * qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, uint32_t offset, uint32_t length) { int rval; dma_addr_t optrom_dma; void *optrom; uint8_t *pbuf; uint32_t faddr, left, burst; struct qla_hw_data *ha = vha->hw; if (offset & 0xfff) goto slow_read; if (length < OPTROM_BURST_SIZE) goto slow_read; optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, &optrom_dma, GFP_KERNEL); if (!optrom) { qla_printk(KERN_DEBUG, ha, "Unable to allocate memory for optrom burst read " "(%x KB).\n", OPTROM_BURST_SIZE / 1024); goto slow_read; } pbuf = buf; faddr = offset >> 2; left = length >> 2; burst = OPTROM_BURST_DWORDS; while (left != 0) { if (burst > left) burst = left; rval = qla2x00_dump_ram(vha, optrom_dma, flash_data_addr(ha, faddr), burst); if (rval) { qla_printk(KERN_WARNING, ha, "Unable to burst-read optrom segment " "(%x/%x/%llx).\n", rval, flash_data_addr(ha, faddr), (unsigned long long)optrom_dma); qla_printk(KERN_WARNING, ha, "Reverting to slow-read.\n"); dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, optrom_dma); goto slow_read; } memcpy(pbuf, optrom, burst * 4); left -= burst; faddr += burst; pbuf += burst * 4; } dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, optrom_dma); return buf; slow_read: return qla24xx_read_optrom_data(vha, buf, offset, length); } /** * qla2x00_get_fcode_version() - Determine an FCODE image's version. * @ha: HA context * @pcids: Pointer to the FCODE PCI data structure * * The process of retrieving the FCODE version information is at best * described as interesting. * * Within the first 100h bytes of the image an ASCII string is present * which contains several pieces of information including the FCODE * version. Unfortunately it seems the only reliable way to retrieve * the version is by scanning for another sentinel within the string, * the FCODE build date: * * ... 2.00.02 10/17/02 ... * * Returns QLA_SUCCESS on successful retrieval of version. */ static void qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids) { int ret = QLA_FUNCTION_FAILED; uint32_t istart, iend, iter, vend; uint8_t do_next, rbyte, *vbyte; memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); /* Skip the PCI data structure. */ istart = pcids + ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) | qla2x00_read_flash_byte(ha, pcids + 0x0A)); iend = istart + 0x100; do { /* Scan for the sentinel date string...eeewww. */ do_next = 0; iter = istart; while ((iter < iend) && !do_next) { iter++; if (qla2x00_read_flash_byte(ha, iter) == '/') { if (qla2x00_read_flash_byte(ha, iter + 2) == '/') do_next++; else if (qla2x00_read_flash_byte(ha, iter + 3) == '/') do_next++; } } if (!do_next) break; /* Backtrack to previous ' ' (space). */ do_next = 0; while ((iter > istart) && !do_next) { iter--; if (qla2x00_read_flash_byte(ha, iter) == ' ') do_next++; } if (!do_next) break; /* * Mark end of version tag, and find previous ' ' (space) or * string length (recent FCODE images -- major hack ahead!!!). */ vend = iter - 1; do_next = 0; while ((iter > istart) && !do_next) { iter--; rbyte = qla2x00_read_flash_byte(ha, iter); if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10) do_next++; } if (!do_next) break; /* Mark beginning of version tag, and copy data. */ iter++; if ((vend - iter) && ((vend - iter) < sizeof(ha->fcode_revision))) { vbyte = ha->fcode_revision; while (iter <= vend) { *vbyte++ = qla2x00_read_flash_byte(ha, iter); iter++; } ret = QLA_SUCCESS; } } while (0); if (ret != QLA_SUCCESS) memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); } int qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf) { int ret = QLA_SUCCESS; uint8_t code_type, last_image; uint32_t pcihdr, pcids; uint8_t *dbyte; uint16_t *dcode; struct qla_hw_data *ha = vha->hw; if (!ha->pio_address || !mbuf) return QLA_FUNCTION_FAILED; memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); qla2x00_flash_enable(ha); /* Begin with first PCI expansion ROM header. */ pcihdr = 0; last_image = 1; do { /* Verify PCI expansion ROM header. */ if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 || qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) { /* No signature */ DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM " "signature.\n")); ret = QLA_FUNCTION_FAILED; break; } /* Locate PCI data structure. */ pcids = pcihdr + ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) | qla2x00_read_flash_byte(ha, pcihdr + 0x18)); /* Validate signature of PCI data structure. */ if (qla2x00_read_flash_byte(ha, pcids) != 'P' || qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' || qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' || qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') { /* Incorrect header. */ DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not " "found pcir_adr=%x.\n", pcids)); ret = QLA_FUNCTION_FAILED; break; } /* Read version */ code_type = qla2x00_read_flash_byte(ha, pcids + 0x14); switch (code_type) { case ROM_CODE_TYPE_BIOS: /* Intel x86, PC-AT compatible. */ ha->bios_revision[0] = qla2x00_read_flash_byte(ha, pcids + 0x12); ha->bios_revision[1] = qla2x00_read_flash_byte(ha, pcids + 0x13); DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n", ha->bios_revision[1], ha->bios_revision[0])); break; case ROM_CODE_TYPE_FCODE: /* Open Firmware standard for PCI (FCode). */ /* Eeeewww... */ qla2x00_get_fcode_version(ha, pcids); break; case ROM_CODE_TYPE_EFI: /* Extensible Firmware Interface (EFI). */ ha->efi_revision[0] = qla2x00_read_flash_byte(ha, pcids + 0x12); ha->efi_revision[1] = qla2x00_read_flash_byte(ha, pcids + 0x13); DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n", ha->efi_revision[1], ha->efi_revision[0])); break; default: DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code " "type %x at pcids %x.\n", code_type, pcids)); break; } last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7; /* Locate next PCI expansion ROM. */ pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) | qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512; } while (!last_image); if (IS_QLA2322(ha)) { /* Read firmware image information. */ memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); dbyte = mbuf; memset(dbyte, 0, 8); dcode = (uint16_t *)dbyte; qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10, 8); DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from " "flash:\n")); DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8)); if ((dcode[0] == 0xffff && dcode[1] == 0xffff && dcode[2] == 0xffff && dcode[3] == 0xffff) || (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && dcode[3] == 0)) { DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw " "revision at %x.\n", ha->flt_region_fw * 4)); } else { /* values are in big endian */ ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1]; ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3]; ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5]; } } qla2x00_flash_disable(ha); return ret; } int qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf) { int ret = QLA_SUCCESS; uint32_t pcihdr, pcids; uint32_t *dcode; uint8_t *bcode; uint8_t code_type, last_image; int i; struct qla_hw_data *ha = vha->hw; if (!mbuf) return QLA_FUNCTION_FAILED; memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); dcode = mbuf; /* Begin with first PCI expansion ROM header. */ pcihdr = ha->flt_region_boot << 2; last_image = 1; do { /* Verify PCI expansion ROM header. */ qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); bcode = mbuf + (pcihdr % 4); if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) { /* No signature */ DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM " "signature.\n")); ret = QLA_FUNCTION_FAILED; break; } /* Locate PCI data structure. */ pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); bcode = mbuf + (pcihdr % 4); /* Validate signature of PCI data structure. */ if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || bcode[0x2] != 'I' || bcode[0x3] != 'R') { /* Incorrect header. */ DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not " "found pcir_adr=%x.\n", pcids)); ret = QLA_FUNCTION_FAILED; break; } /* Read version */ code_type = bcode[0x14]; switch (code_type) { case ROM_CODE_TYPE_BIOS: /* Intel x86, PC-AT compatible. */ ha->bios_revision[0] = bcode[0x12]; ha->bios_revision[1] = bcode[0x13]; DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n", ha->bios_revision[1], ha->bios_revision[0])); break; case ROM_CODE_TYPE_FCODE: /* Open Firmware standard for PCI (FCode). */ ha->fcode_revision[0] = bcode[0x12]; ha->fcode_revision[1] = bcode[0x13]; DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n", ha->fcode_revision[1], ha->fcode_revision[0])); break; case ROM_CODE_TYPE_EFI: /* Extensible Firmware Interface (EFI). */ ha->efi_revision[0] = bcode[0x12]; ha->efi_revision[1] = bcode[0x13]; DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n", ha->efi_revision[1], ha->efi_revision[0])); break; default: DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code " "type %x at pcids %x.\n", code_type, pcids)); break; } last_image = bcode[0x15] & BIT_7; /* Locate next PCI expansion ROM. */ pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; } while (!last_image); /* Read firmware image information. */ memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); dcode = mbuf; qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4); for (i = 0; i < 4; i++) dcode[i] = be32_to_cpu(dcode[i]); if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && dcode[3] == 0)) { DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw " "revision at %x.\n", ha->flt_region_fw * 4)); } else { ha->fw_revision[0] = dcode[0]; ha->fw_revision[1] = dcode[1]; ha->fw_revision[2] = dcode[2]; ha->fw_revision[3] = dcode[3]; } return ret; } static int qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end) { if (pos >= end || *pos != 0x82) return 0; pos += 3 + pos[1]; if (pos >= end || *pos != 0x90) return 0; pos += 3 + pos[1]; if (pos >= end || *pos != 0x78) return 0; return 1; } int qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size) { struct qla_hw_data *ha = vha->hw; uint8_t *pos = ha->vpd; uint8_t *end = pos + ha->vpd_size; int len = 0; if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end)) return 0; while (pos < end && *pos != 0x78) { len = (*pos == 0x82) ? pos[1] : pos[2]; if (!strncmp(pos, key, strlen(key))) break; if (*pos != 0x90 && *pos != 0x91) pos += len; pos += 3; } if (pos < end - len && *pos != 0x78) return snprintf(str, size, "%.*s", len, pos + 3); return 0; }