/* * sata_mv.c - Marvell SATA support * * Copyright 2005: EMC Corporation, all rights reserved. * Copyright 2005 Red Hat, Inc. All rights reserved. * * Please ALWAYS copy linux-ide@vger.kernel.org on emails. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "sata_mv" #define DRV_VERSION "0.6" enum { /* BAR's are enumerated in terms of pci_resource_start() terms */ MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */ MV_IO_BAR = 2, /* offset 0x18: IO space */ MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */ MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */ MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */ MV_PCI_REG_BASE = 0, MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */ MV_SATAHC0_REG_BASE = 0x20000, MV_FLASH_CTL = 0x1046c, MV_GPIO_PORT_CTL = 0x104f0, MV_RESET_CFG = 0x180d8, MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ, MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ, MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, MV_USE_Q_DEPTH = ATA_DEF_QUEUE, MV_MAX_Q_DEPTH = 32, MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1, /* CRQB needs alignment on a 1KB boundary. Size == 1KB * CRPB needs alignment on a 256B boundary. Size == 256B * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B */ MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH), MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH), MV_MAX_SG_CT = 176, MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT), MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ), MV_PORTS_PER_HC = 4, /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ MV_PORT_HC_SHIFT = 2, /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */ MV_PORT_MASK = 3, /* Host Flags */ MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI), MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE, CRQB_FLAG_READ = (1 << 0), CRQB_TAG_SHIFT = 1, CRQB_CMD_ADDR_SHIFT = 8, CRQB_CMD_CS = (0x2 << 11), CRQB_CMD_LAST = (1 << 15), CRPB_FLAG_STATUS_SHIFT = 8, EPRD_FLAG_END_OF_TBL = (1 << 31), /* PCI interface registers */ PCI_COMMAND_OFS = 0xc00, PCI_MAIN_CMD_STS_OFS = 0xd30, STOP_PCI_MASTER = (1 << 2), PCI_MASTER_EMPTY = (1 << 3), GLOB_SFT_RST = (1 << 4), MV_PCI_MODE = 0xd00, MV_PCI_EXP_ROM_BAR_CTL = 0xd2c, MV_PCI_DISC_TIMER = 0xd04, MV_PCI_MSI_TRIGGER = 0xc38, MV_PCI_SERR_MASK = 0xc28, MV_PCI_XBAR_TMOUT = 0x1d04, MV_PCI_ERR_LOW_ADDRESS = 0x1d40, MV_PCI_ERR_HIGH_ADDRESS = 0x1d44, MV_PCI_ERR_ATTRIBUTE = 0x1d48, MV_PCI_ERR_COMMAND = 0x1d50, PCI_IRQ_CAUSE_OFS = 0x1d58, PCI_IRQ_MASK_OFS = 0x1d5c, PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */ HC_MAIN_IRQ_CAUSE_OFS = 0x1d60, HC_MAIN_IRQ_MASK_OFS = 0x1d64, PORT0_ERR = (1 << 0), /* shift by port # */ PORT0_DONE = (1 << 1), /* shift by port # */ HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */ HC_SHIFT = 9, /* bits 9-17 = HC1's ports */ PCI_ERR = (1 << 18), TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */ TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */ PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */ GPIO_INT = (1 << 22), SELF_INT = (1 << 23), TWSI_INT = (1 << 24), HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */ HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT | HC_MAIN_RSVD), /* SATAHC registers */ HC_CFG_OFS = 0, HC_IRQ_CAUSE_OFS = 0x14, CRPB_DMA_DONE = (1 << 0), /* shift by port # */ HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ DEV_IRQ = (1 << 8), /* shift by port # */ /* Shadow block registers */ SHD_BLK_OFS = 0x100, SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */ /* SATA registers */ SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ SATA_ACTIVE_OFS = 0x350, PHY_MODE3 = 0x310, PHY_MODE4 = 0x314, PHY_MODE2 = 0x330, MV5_PHY_MODE = 0x74, MV5_LT_MODE = 0x30, MV5_PHY_CTL = 0x0C, SATA_INTERFACE_CTL = 0x050, MV_M2_PREAMP_MASK = 0x7e0, /* Port registers */ EDMA_CFG_OFS = 0, EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */ EDMA_CFG_NCQ = (1 << 5), EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */ EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */ EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */ EDMA_ERR_IRQ_CAUSE_OFS = 0x8, EDMA_ERR_IRQ_MASK_OFS = 0xc, EDMA_ERR_D_PAR = (1 << 0), EDMA_ERR_PRD_PAR = (1 << 1), EDMA_ERR_DEV = (1 << 2), EDMA_ERR_DEV_DCON = (1 << 3), EDMA_ERR_DEV_CON = (1 << 4), EDMA_ERR_SERR = (1 << 5), EDMA_ERR_SELF_DIS = (1 << 7), EDMA_ERR_BIST_ASYNC = (1 << 8), EDMA_ERR_CRBQ_PAR = (1 << 9), EDMA_ERR_CRPB_PAR = (1 << 10), EDMA_ERR_INTRL_PAR = (1 << 11), EDMA_ERR_IORDY = (1 << 12), EDMA_ERR_LNK_CTRL_RX = (0xf << 13), EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), EDMA_ERR_LNK_DATA_RX = (0xf << 17), EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), EDMA_ERR_LNK_DATA_TX = (0x1f << 26), EDMA_ERR_TRANS_PROTO = (1 << 31), EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR | EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR | EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 | EDMA_ERR_LNK_DATA_RX | EDMA_ERR_LNK_DATA_TX | EDMA_ERR_TRANS_PROTO), EDMA_REQ_Q_BASE_HI_OFS = 0x10, EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */ EDMA_REQ_Q_OUT_PTR_OFS = 0x18, EDMA_REQ_Q_PTR_SHIFT = 5, EDMA_RSP_Q_BASE_HI_OFS = 0x1c, EDMA_RSP_Q_IN_PTR_OFS = 0x20, EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */ EDMA_RSP_Q_PTR_SHIFT = 3, EDMA_CMD_OFS = 0x28, EDMA_EN = (1 << 0), EDMA_DS = (1 << 1), ATA_RST = (1 << 2), EDMA_IORDY_TMOUT = 0x34, EDMA_ARB_CFG = 0x38, /* Host private flags (hp_flags) */ MV_HP_FLAG_MSI = (1 << 0), MV_HP_ERRATA_50XXB0 = (1 << 1), MV_HP_ERRATA_50XXB2 = (1 << 2), MV_HP_ERRATA_60X1B2 = (1 << 3), MV_HP_ERRATA_60X1C0 = (1 << 4), MV_HP_ERRATA_XX42A0 = (1 << 5), MV_HP_50XX = (1 << 6), MV_HP_GEN_IIE = (1 << 7), /* Port private flags (pp_flags) */ MV_PP_FLAG_EDMA_EN = (1 << 0), MV_PP_FLAG_EDMA_DS_ACT = (1 << 1), }; #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX) #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0) #define IS_GEN_I(hpriv) IS_50XX(hpriv) #define IS_GEN_II(hpriv) IS_60XX(hpriv) #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) enum { /* Our DMA boundary is determined by an ePRD being unable to handle * anything larger than 64KB */ MV_DMA_BOUNDARY = 0xffffU, EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U, EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U, }; enum chip_type { chip_504x, chip_508x, chip_5080, chip_604x, chip_608x, chip_6042, chip_7042, }; /* Command ReQuest Block: 32B */ struct mv_crqb { u32 sg_addr; u32 sg_addr_hi; u16 ctrl_flags; u16 ata_cmd[11]; }; struct mv_crqb_iie { u32 addr; u32 addr_hi; u32 flags; u32 len; u32 ata_cmd[4]; }; /* Command ResPonse Block: 8B */ struct mv_crpb { u16 id; u16 flags; u32 tmstmp; }; /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ struct mv_sg { u32 addr; u32 flags_size; u32 addr_hi; u32 reserved; }; struct mv_port_priv { struct mv_crqb *crqb; dma_addr_t crqb_dma; struct mv_crpb *crpb; dma_addr_t crpb_dma; struct mv_sg *sg_tbl; dma_addr_t sg_tbl_dma; unsigned req_producer; /* cp of req_in_ptr */ unsigned rsp_consumer; /* cp of rsp_out_ptr */ u32 pp_flags; }; struct mv_port_signal { u32 amps; u32 pre; }; struct mv_host_priv; struct mv_hw_ops { void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port); void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); void (*read_preamp)(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio); }; struct mv_host_priv { u32 hp_flags; struct mv_port_signal signal[8]; const struct mv_hw_ops *ops; }; static void mv_irq_clear(struct ata_port *ap); static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in); static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); static void mv_phy_reset(struct ata_port *ap); static void __mv_phy_reset(struct ata_port *ap, int can_sleep); static void mv_host_stop(struct ata_host_set *host_set); static int mv_port_start(struct ata_port *ap); static void mv_port_stop(struct ata_port *ap); static void mv_qc_prep(struct ata_queued_cmd *qc); static void mv_qc_prep_iie(struct ata_queued_cmd *qc); static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); static irqreturn_t mv_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static void mv_eng_timeout(struct ata_port *ap); static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port); static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio); static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port); static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio); static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc); static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio); static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port_no); static void mv_stop_and_reset(struct ata_port *ap); static struct scsi_host_template mv_sht = { .module = THIS_MODULE, .name = DRV_NAME, .ioctl = ata_scsi_ioctl, .queuecommand = ata_scsi_queuecmd, .eh_strategy_handler = ata_scsi_error, .can_queue = MV_USE_Q_DEPTH, .this_id = ATA_SHT_THIS_ID, .sg_tablesize = MV_MAX_SG_CT / 2, .cmd_per_lun = ATA_SHT_CMD_PER_LUN, .emulated = ATA_SHT_EMULATED, .use_clustering = ATA_SHT_USE_CLUSTERING, .proc_name = DRV_NAME, .dma_boundary = MV_DMA_BOUNDARY, .slave_configure = ata_scsi_slave_config, .bios_param = ata_std_bios_param, }; static const struct ata_port_operations mv5_ops = { .port_disable = ata_port_disable, .tf_load = ata_tf_load, .tf_read = ata_tf_read, .check_status = ata_check_status, .exec_command = ata_exec_command, .dev_select = ata_std_dev_select, .phy_reset = mv_phy_reset, .qc_prep = mv_qc_prep, .qc_issue = mv_qc_issue, .eng_timeout = mv_eng_timeout, .irq_handler = mv_interrupt, .irq_clear = mv_irq_clear, .scr_read = mv5_scr_read, .scr_write = mv5_scr_write, .port_start = mv_port_start, .port_stop = mv_port_stop, .host_stop = mv_host_stop, }; static const struct ata_port_operations mv6_ops = { .port_disable = ata_port_disable, .tf_load = ata_tf_load, .tf_read = ata_tf_read, .check_status = ata_check_status, .exec_command = ata_exec_command, .dev_select = ata_std_dev_select, .phy_reset = mv_phy_reset, .qc_prep = mv_qc_prep, .qc_issue = mv_qc_issue, .eng_timeout = mv_eng_timeout, .irq_handler = mv_interrupt, .irq_clear = mv_irq_clear, .scr_read = mv_scr_read, .scr_write = mv_scr_write, .port_start = mv_port_start, .port_stop = mv_port_stop, .host_stop = mv_host_stop, }; static const struct ata_port_operations mv_iie_ops = { .port_disable = ata_port_disable, .tf_load = ata_tf_load, .tf_read = ata_tf_read, .check_status = ata_check_status, .exec_command = ata_exec_command, .dev_select = ata_std_dev_select, .phy_reset = mv_phy_reset, .qc_prep = mv_qc_prep_iie, .qc_issue = mv_qc_issue, .eng_timeout = mv_eng_timeout, .irq_handler = mv_interrupt, .irq_clear = mv_irq_clear, .scr_read = mv_scr_read, .scr_write = mv_scr_write, .port_start = mv_port_start, .port_stop = mv_port_stop, .host_stop = mv_host_stop, }; static const struct ata_port_info mv_port_info[] = { { /* chip_504x */ .sht = &mv_sht, .host_flags = MV_COMMON_FLAGS, .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv5_ops, }, { /* chip_508x */ .sht = &mv_sht, .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC), .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv5_ops, }, { /* chip_5080 */ .sht = &mv_sht, .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC), .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv5_ops, }, { /* chip_604x */ .sht = &mv_sht, .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS), .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv6_ops, }, { /* chip_608x */ .sht = &mv_sht, .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS | MV_FLAG_DUAL_HC), .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv6_ops, }, { /* chip_6042 */ .sht = &mv_sht, .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS), .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv_iie_ops, }, { /* chip_7042 */ .sht = &mv_sht, .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS | MV_FLAG_DUAL_HC), .pio_mask = 0x1f, /* pio0-4 */ .udma_mask = 0x7f, /* udma0-6 */ .port_ops = &mv_iie_ops, }, }; static const struct pci_device_id mv_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6042), 0, 0, chip_6042}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x}, {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x}, {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x}, {} /* terminate list */ }; static struct pci_driver mv_pci_driver = { .name = DRV_NAME, .id_table = mv_pci_tbl, .probe = mv_init_one, .remove = ata_pci_remove_one, }; static const struct mv_hw_ops mv5xxx_ops = { .phy_errata = mv5_phy_errata, .enable_leds = mv5_enable_leds, .read_preamp = mv5_read_preamp, .reset_hc = mv5_reset_hc, .reset_flash = mv5_reset_flash, .reset_bus = mv5_reset_bus, }; static const struct mv_hw_ops mv6xxx_ops = { .phy_errata = mv6_phy_errata, .enable_leds = mv6_enable_leds, .read_preamp = mv6_read_preamp, .reset_hc = mv6_reset_hc, .reset_flash = mv6_reset_flash, .reset_bus = mv_reset_pci_bus, }; /* * module options */ static int msi; /* Use PCI msi; either zero (off, default) or non-zero */ /* * Functions */ static inline void writelfl(unsigned long data, void __iomem *addr) { writel(data, addr); (void) readl(addr); /* flush to avoid PCI posted write */ } static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) { return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); } static inline unsigned int mv_hc_from_port(unsigned int port) { return port >> MV_PORT_HC_SHIFT; } static inline unsigned int mv_hardport_from_port(unsigned int port) { return port & MV_PORT_MASK; } static inline void __iomem *mv_hc_base_from_port(void __iomem *base, unsigned int port) { return mv_hc_base(base, mv_hc_from_port(port)); } static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) { return mv_hc_base_from_port(base, port) + MV_SATAHC_ARBTR_REG_SZ + (mv_hardport_from_port(port) * MV_PORT_REG_SZ); } static inline void __iomem *mv_ap_base(struct ata_port *ap) { return mv_port_base(ap->host_set->mmio_base, ap->port_no); } static inline int mv_get_hc_count(unsigned long host_flags) { return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1); } static void mv_irq_clear(struct ata_port *ap) { } /** * mv_start_dma - Enable eDMA engine * @base: port base address * @pp: port private data * * Verify the local cache of the eDMA state is accurate with a * WARN_ON. * * LOCKING: * Inherited from caller. */ static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp) { if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) { writelfl(EDMA_EN, base + EDMA_CMD_OFS); pp->pp_flags |= MV_PP_FLAG_EDMA_EN; } WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS))); } /** * mv_stop_dma - Disable eDMA engine * @ap: ATA channel to manipulate * * Verify the local cache of the eDMA state is accurate with a * WARN_ON. * * LOCKING: * Inherited from caller. */ static void mv_stop_dma(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); struct mv_port_priv *pp = ap->private_data; u32 reg; int i; if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) { /* Disable EDMA if active. The disable bit auto clears. */ writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS); pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; } else { WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)); } /* now properly wait for the eDMA to stop */ for (i = 1000; i > 0; i--) { reg = readl(port_mmio + EDMA_CMD_OFS); if (!(EDMA_EN & reg)) { break; } udelay(100); } if (EDMA_EN & reg) { printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id); /* FIXME: Consider doing a reset here to recover */ } } #ifdef ATA_DEBUG static void mv_dump_mem(void __iomem *start, unsigned bytes) { int b, w; for (b = 0; b < bytes; ) { DPRINTK("%p: ", start + b); for (w = 0; b < bytes && w < 4; w++) { printk("%08x ",readl(start + b)); b += sizeof(u32); } printk("\n"); } } #endif static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) { #ifdef ATA_DEBUG int b, w; u32 dw; for (b = 0; b < bytes; ) { DPRINTK("%02x: ", b); for (w = 0; b < bytes && w < 4; w++) { (void) pci_read_config_dword(pdev,b,&dw); printk("%08x ",dw); b += sizeof(u32); } printk("\n"); } #endif } static void mv_dump_all_regs(void __iomem *mmio_base, int port, struct pci_dev *pdev) { #ifdef ATA_DEBUG void __iomem *hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT); void __iomem *port_base; int start_port, num_ports, p, start_hc, num_hcs, hc; if (0 > port) { start_hc = start_port = 0; num_ports = 8; /* shld be benign for 4 port devs */ num_hcs = 2; } else { start_hc = port >> MV_PORT_HC_SHIFT; start_port = port; num_ports = num_hcs = 1; } DPRINTK("All registers for port(s) %u-%u:\n", start_port, num_ports > 1 ? num_ports - 1 : start_port); if (NULL != pdev) { DPRINTK("PCI config space regs:\n"); mv_dump_pci_cfg(pdev, 0x68); } DPRINTK("PCI regs:\n"); mv_dump_mem(mmio_base+0xc00, 0x3c); mv_dump_mem(mmio_base+0xd00, 0x34); mv_dump_mem(mmio_base+0xf00, 0x4); mv_dump_mem(mmio_base+0x1d00, 0x6c); for (hc = start_hc; hc < start_hc + num_hcs; hc++) { hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT); DPRINTK("HC regs (HC %i):\n", hc); mv_dump_mem(hc_base, 0x1c); } for (p = start_port; p < start_port + num_ports; p++) { port_base = mv_port_base(mmio_base, p); DPRINTK("EDMA regs (port %i):\n",p); mv_dump_mem(port_base, 0x54); DPRINTK("SATA regs (port %i):\n",p); mv_dump_mem(port_base+0x300, 0x60); } #endif } static unsigned int mv_scr_offset(unsigned int sc_reg_in) { unsigned int ofs; switch (sc_reg_in) { case SCR_STATUS: case SCR_CONTROL: case SCR_ERROR: ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32)); break; case SCR_ACTIVE: ofs = SATA_ACTIVE_OFS; /* active is not with the others */ break; default: ofs = 0xffffffffU; break; } return ofs; } static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in) { unsigned int ofs = mv_scr_offset(sc_reg_in); if (0xffffffffU != ofs) { return readl(mv_ap_base(ap) + ofs); } else { return (u32) ofs; } } static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) { unsigned int ofs = mv_scr_offset(sc_reg_in); if (0xffffffffU != ofs) { writelfl(val, mv_ap_base(ap) + ofs); } } /** * mv_host_stop - Host specific cleanup/stop routine. * @host_set: host data structure * * Disable ints, cleanup host memory, call general purpose * host_stop. * * LOCKING: * Inherited from caller. */ static void mv_host_stop(struct ata_host_set *host_set) { struct mv_host_priv *hpriv = host_set->private_data; struct pci_dev *pdev = to_pci_dev(host_set->dev); if (hpriv->hp_flags & MV_HP_FLAG_MSI) { pci_disable_msi(pdev); } else { pci_intx(pdev, 0); } kfree(hpriv); ata_host_stop(host_set); } static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev) { dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma); } static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio) { u32 cfg = readl(port_mmio + EDMA_CFG_OFS); /* set up non-NCQ EDMA configuration */ cfg &= ~0x1f; /* clear queue depth */ cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */ cfg &= ~(1 << 9); /* disable equeue */ if (IS_GEN_I(hpriv)) cfg |= (1 << 8); /* enab config burst size mask */ else if (IS_GEN_II(hpriv)) cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; else if (IS_GEN_IIE(hpriv)) { cfg |= (1 << 23); /* dis RX PM port mask */ cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */ cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */ cfg |= (1 << 18); /* enab early completion */ cfg |= (1 << 17); /* enab host q cache */ cfg |= (1 << 22); /* enab cutthrough */ } writelfl(cfg, port_mmio + EDMA_CFG_OFS); } /** * mv_port_start - Port specific init/start routine. * @ap: ATA channel to manipulate * * Allocate and point to DMA memory, init port private memory, * zero indices. * * LOCKING: * Inherited from caller. */ static int mv_port_start(struct ata_port *ap) { struct device *dev = ap->host_set->dev; struct mv_host_priv *hpriv = ap->host_set->private_data; struct mv_port_priv *pp; void __iomem *port_mmio = mv_ap_base(ap); void *mem; dma_addr_t mem_dma; int rc = -ENOMEM; pp = kmalloc(sizeof(*pp), GFP_KERNEL); if (!pp) goto err_out; memset(pp, 0, sizeof(*pp)); mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma, GFP_KERNEL); if (!mem) goto err_out_pp; memset(mem, 0, MV_PORT_PRIV_DMA_SZ); rc = ata_pad_alloc(ap, dev); if (rc) goto err_out_priv; /* First item in chunk of DMA memory: * 32-slot command request table (CRQB), 32 bytes each in size */ pp->crqb = mem; pp->crqb_dma = mem_dma; mem += MV_CRQB_Q_SZ; mem_dma += MV_CRQB_Q_SZ; /* Second item: * 32-slot command response table (CRPB), 8 bytes each in size */ pp->crpb = mem; pp->crpb_dma = mem_dma; mem += MV_CRPB_Q_SZ; mem_dma += MV_CRPB_Q_SZ; /* Third item: * Table of scatter-gather descriptors (ePRD), 16 bytes each */ pp->sg_tbl = mem; pp->sg_tbl_dma = mem_dma; mv_edma_cfg(hpriv, port_mmio); writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS); writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK, port_mmio + EDMA_REQ_Q_IN_PTR_OFS); if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) writelfl(pp->crqb_dma & 0xffffffff, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); else writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS); writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS); if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0) writelfl(pp->crpb_dma & 0xffffffff, port_mmio + EDMA_RSP_Q_IN_PTR_OFS); else writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS); writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); pp->req_producer = pp->rsp_consumer = 0; /* Don't turn on EDMA here...do it before DMA commands only. Else * we'll be unable to send non-data, PIO, etc due to restricted access * to shadow regs. */ ap->private_data = pp; return 0; err_out_priv: mv_priv_free(pp, dev); err_out_pp: kfree(pp); err_out: return rc; } /** * mv_port_stop - Port specific cleanup/stop routine. * @ap: ATA channel to manipulate * * Stop DMA, cleanup port memory. * * LOCKING: * This routine uses the host_set lock to protect the DMA stop. */ static void mv_port_stop(struct ata_port *ap) { struct device *dev = ap->host_set->dev; struct mv_port_priv *pp = ap->private_data; unsigned long flags; spin_lock_irqsave(&ap->host_set->lock, flags); mv_stop_dma(ap); spin_unlock_irqrestore(&ap->host_set->lock, flags); ap->private_data = NULL; ata_pad_free(ap, dev); mv_priv_free(pp, dev); kfree(pp); } /** * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries * @qc: queued command whose SG list to source from * * Populate the SG list and mark the last entry. * * LOCKING: * Inherited from caller. */ static void mv_fill_sg(struct ata_queued_cmd *qc) { struct mv_port_priv *pp = qc->ap->private_data; unsigned int i = 0; struct scatterlist *sg; ata_for_each_sg(sg, qc) { dma_addr_t addr; u32 sg_len, len, offset; addr = sg_dma_address(sg); sg_len = sg_dma_len(sg); while (sg_len) { offset = addr & MV_DMA_BOUNDARY; len = sg_len; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff); pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16); pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff); sg_len -= len; addr += len; if (!sg_len && ata_sg_is_last(sg, qc)) pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); i++; } } } static inline unsigned mv_inc_q_index(unsigned *index) { *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK; return *index; } static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last) { *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | (last ? CRQB_CMD_LAST : 0); } /** * mv_qc_prep - Host specific command preparation. * @qc: queued command to prepare * * This routine simply redirects to the general purpose routine * if command is not DMA. Else, it handles prep of the CRQB * (command request block), does some sanity checking, and calls * the SG load routine. * * LOCKING: * Inherited from caller. */ static void mv_qc_prep(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct mv_port_priv *pp = ap->private_data; u16 *cw; struct ata_taskfile *tf; u16 flags = 0; if (ATA_PROT_DMA != qc->tf.protocol) return; /* the req producer index should be the same as we remember it */ WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) != pp->req_producer); /* Fill in command request block */ if (!(qc->tf.flags & ATA_TFLAG_WRITE)) flags |= CRQB_FLAG_READ; WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); flags |= qc->tag << CRQB_TAG_SHIFT; pp->crqb[pp->req_producer].sg_addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); pp->crqb[pp->req_producer].sg_addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16); pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags); cw = &pp->crqb[pp->req_producer].ata_cmd[0]; tf = &qc->tf; /* Sadly, the CRQB cannot accomodate all registers--there are * only 11 bytes...so we must pick and choose required * registers based on the command. So, we drop feature and * hob_feature for [RW] DMA commands, but they are needed for * NCQ. NCQ will drop hob_nsect. */ switch (tf->command) { case ATA_CMD_READ: case ATA_CMD_READ_EXT: case ATA_CMD_WRITE: case ATA_CMD_WRITE_EXT: case ATA_CMD_WRITE_FUA_EXT: mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); break; #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */ case ATA_CMD_FPDMA_READ: case ATA_CMD_FPDMA_WRITE: mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); break; #endif /* FIXME: remove this line when NCQ added */ default: /* The only other commands EDMA supports in non-queued and * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none * of which are defined/used by Linux. If we get here, this * driver needs work. * * FIXME: modify libata to give qc_prep a return value and * return error here. */ BUG_ON(tf->command); break; } mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */ if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; mv_fill_sg(qc); } /** * mv_qc_prep_iie - Host specific command preparation. * @qc: queued command to prepare * * This routine simply redirects to the general purpose routine * if command is not DMA. Else, it handles prep of the CRQB * (command request block), does some sanity checking, and calls * the SG load routine. * * LOCKING: * Inherited from caller. */ static void mv_qc_prep_iie(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct mv_port_priv *pp = ap->private_data; struct mv_crqb_iie *crqb; struct ata_taskfile *tf; u32 flags = 0; if (ATA_PROT_DMA != qc->tf.protocol) return; /* the req producer index should be the same as we remember it */ WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) != pp->req_producer); /* Fill in Gen IIE command request block */ if (!(qc->tf.flags & ATA_TFLAG_WRITE)) flags |= CRQB_FLAG_READ; WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); flags |= qc->tag << CRQB_TAG_SHIFT; crqb = (struct mv_crqb_iie *) &pp->crqb[pp->req_producer]; crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff); crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16); crqb->flags = cpu_to_le32(flags); tf = &qc->tf; crqb->ata_cmd[0] = cpu_to_le32( (tf->command << 16) | (tf->feature << 24) ); crqb->ata_cmd[1] = cpu_to_le32( (tf->lbal << 0) | (tf->lbam << 8) | (tf->lbah << 16) | (tf->device << 24) ); crqb->ata_cmd[2] = cpu_to_le32( (tf->hob_lbal << 0) | (tf->hob_lbam << 8) | (tf->hob_lbah << 16) | (tf->hob_feature << 24) ); crqb->ata_cmd[3] = cpu_to_le32( (tf->nsect << 0) | (tf->hob_nsect << 8) ); if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; mv_fill_sg(qc); } /** * mv_qc_issue - Initiate a command to the host * @qc: queued command to start * * This routine simply redirects to the general purpose routine * if command is not DMA. Else, it sanity checks our local * caches of the request producer/consumer indices then enables * DMA and bumps the request producer index. * * LOCKING: * Inherited from caller. */ static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) { void __iomem *port_mmio = mv_ap_base(qc->ap); struct mv_port_priv *pp = qc->ap->private_data; u32 in_ptr; if (ATA_PROT_DMA != qc->tf.protocol) { /* We're about to send a non-EDMA capable command to the * port. Turn off EDMA so there won't be problems accessing * shadow block, etc registers. */ mv_stop_dma(qc->ap); return ata_qc_issue_prot(qc); } in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS); /* the req producer index should be the same as we remember it */ WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) != pp->req_producer); /* until we do queuing, the queue should be empty at this point */ WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK)); mv_inc_q_index(&pp->req_producer); /* now incr producer index */ mv_start_dma(port_mmio, pp); /* and write the request in pointer to kick the EDMA to life */ in_ptr &= EDMA_REQ_Q_BASE_LO_MASK; in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT; writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS); return 0; } /** * mv_get_crpb_status - get status from most recently completed cmd * @ap: ATA channel to manipulate * * This routine is for use when the port is in DMA mode, when it * will be using the CRPB (command response block) method of * returning command completion information. We check indices * are good, grab status, and bump the response consumer index to * prove that we're up to date. * * LOCKING: * Inherited from caller. */ static u8 mv_get_crpb_status(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); struct mv_port_priv *pp = ap->private_data; u32 out_ptr; u8 ata_status; out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); /* the response consumer index should be the same as we remember it */ WARN_ON(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) != pp->rsp_consumer); ata_status = pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT; /* increment our consumer index... */ pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer); /* and, until we do NCQ, there should only be 1 CRPB waiting */ WARN_ON(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) != pp->rsp_consumer); /* write out our inc'd consumer index so EDMA knows we're caught up */ out_ptr &= EDMA_RSP_Q_BASE_LO_MASK; out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT; writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS); /* Return ATA status register for completed CRPB */ return ata_status; } /** * mv_err_intr - Handle error interrupts on the port * @ap: ATA channel to manipulate * * In most cases, just clear the interrupt and move on. However, * some cases require an eDMA reset, which is done right before * the COMRESET in mv_phy_reset(). The SERR case requires a * clear of pending errors in the SATA SERROR register. Finally, * if the port disabled DMA, update our cached copy to match. * * LOCKING: * Inherited from caller. */ static void mv_err_intr(struct ata_port *ap) { void __iomem *port_mmio = mv_ap_base(ap); u32 edma_err_cause, serr = 0; edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); if (EDMA_ERR_SERR & edma_err_cause) { serr = scr_read(ap, SCR_ERROR); scr_write_flush(ap, SCR_ERROR, serr); } if (EDMA_ERR_SELF_DIS & edma_err_cause) { struct mv_port_priv *pp = ap->private_data; pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; } DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x " "SERR: 0x%08x\n", ap->id, edma_err_cause, serr); /* Clear EDMA now that SERR cleanup done */ writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); /* check for fatal here and recover if needed */ if (EDMA_ERR_FATAL & edma_err_cause) { mv_stop_and_reset(ap); } } /** * mv_host_intr - Handle all interrupts on the given host controller * @host_set: host specific structure * @relevant: port error bits relevant to this host controller * @hc: which host controller we're to look at * * Read then write clear the HC interrupt status then walk each * port connected to the HC and see if it needs servicing. Port * success ints are reported in the HC interrupt status reg, the * port error ints are reported in the higher level main * interrupt status register and thus are passed in via the * 'relevant' argument. * * LOCKING: * Inherited from caller. */ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, unsigned int hc) { void __iomem *mmio = host_set->mmio_base; void __iomem *hc_mmio = mv_hc_base(mmio, hc); struct ata_queued_cmd *qc; u32 hc_irq_cause; int shift, port, port0, hard_port, handled; unsigned int err_mask; if (hc == 0) { port0 = 0; } else { port0 = MV_PORTS_PER_HC; } /* we'll need the HC success int register in most cases */ hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); if (hc_irq_cause) { writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS); } VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", hc,relevant,hc_irq_cause); for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { u8 ata_status = 0; struct ata_port *ap = host_set->ports[port]; struct mv_port_priv *pp = ap->private_data; hard_port = port & MV_PORT_MASK; /* range 0-3 */ handled = 0; /* ensure ata_status is set if handled++ */ /* Note that DEV_IRQ might happen spuriously during EDMA, * and should be ignored in such cases. We could mask it, * but it's pretty rare and may not be worth the overhead. */ if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { /* EDMA: check for response queue interrupt */ if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) { ata_status = mv_get_crpb_status(ap); handled = 1; } } else { /* PIO: check for device (drive) interrupt */ if ((DEV_IRQ << hard_port) & hc_irq_cause) { ata_status = readb((void __iomem *) ap->ioaddr.status_addr); handled = 1; } } if (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR)) continue; err_mask = ac_err_mask(ata_status); shift = port << 1; /* (port * 2) */ if (port >= MV_PORTS_PER_HC) { shift++; /* skip bit 8 in the HC Main IRQ reg */ } if ((PORT0_ERR << shift) & relevant) { mv_err_intr(ap); err_mask |= AC_ERR_OTHER; handled = 1; } if (handled) { qc = ata_qc_from_tag(ap, ap->active_tag); if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) { VPRINTK("port %u IRQ found for qc, " "ata_status 0x%x\n", port,ata_status); /* mark qc status appropriately */ if (!(qc->tf.ctl & ATA_NIEN)) { qc->err_mask |= err_mask; ata_qc_complete(qc); } } } } VPRINTK("EXIT\n"); } /** * mv_interrupt - * @irq: unused * @dev_instance: private data; in this case the host structure * @regs: unused * * Read the read only register to determine if any host * controllers have pending interrupts. If so, call lower level * routine to handle. Also check for PCI errors which are only * reported here. * * LOCKING: * This routine holds the host_set lock while processing pending * interrupts. */ static irqreturn_t mv_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct ata_host_set *host_set = dev_instance; unsigned int hc, handled = 0, n_hcs; void __iomem *mmio = host_set->mmio_base; u32 irq_stat; irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); /* check the cases where we either have nothing pending or have read * a bogus register value which can indicate HW removal or PCI fault */ if (!irq_stat || (0xffffffffU == irq_stat)) { return IRQ_NONE; } n_hcs = mv_get_hc_count(host_set->ports[0]->flags); spin_lock(&host_set->lock); for (hc = 0; hc < n_hcs; hc++) { u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); if (relevant) { mv_host_intr(host_set, relevant, hc); handled++; } } if (PCI_ERR & irq_stat) { printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n", readl(mmio + PCI_IRQ_CAUSE_OFS)); DPRINTK("All regs @ PCI error\n"); mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev)); writelfl(0, mmio + PCI_IRQ_CAUSE_OFS); handled++; } spin_unlock(&host_set->lock); return IRQ_RETVAL(handled); } static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) { void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; return hc_mmio + ofs; } static unsigned int mv5_scr_offset(unsigned int sc_reg_in) { unsigned int ofs; switch (sc_reg_in) { case SCR_STATUS: case SCR_ERROR: case SCR_CONTROL: ofs = sc_reg_in * sizeof(u32); break; default: ofs = 0xffffffffU; break; } return ofs; } static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in) { void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no); unsigned int ofs = mv5_scr_offset(sc_reg_in); if (ofs != 0xffffffffU) return readl(mmio + ofs); else return (u32) ofs; } static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val) { void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no); unsigned int ofs = mv5_scr_offset(sc_reg_in); if (ofs != 0xffffffffU) writelfl(val, mmio + ofs); } static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio) { u8 rev_id; int early_5080; pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); early_5080 = (pdev->device == 0x5080) && (rev_id == 0); if (!early_5080) { u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); tmp |= (1 << 0); writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); } mv_reset_pci_bus(pdev, mmio); } static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) { writel(0x0fcfffff, mmio + MV_FLASH_CTL); } static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio) { void __iomem *phy_mmio = mv5_phy_base(mmio, idx); u32 tmp; tmp = readl(phy_mmio + MV5_PHY_MODE); hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */ hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */ } static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) { u32 tmp; writel(0, mmio + MV_GPIO_PORT_CTL); /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); tmp |= ~(1 << 0); writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); } static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *phy_mmio = mv5_phy_base(mmio, port); const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); u32 tmp; int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); if (fix_apm_sq) { tmp = readl(phy_mmio + MV5_LT_MODE); tmp |= (1 << 19); writel(tmp, phy_mmio + MV5_LT_MODE); tmp = readl(phy_mmio + MV5_PHY_CTL); tmp &= ~0x3; tmp |= 0x1; writel(tmp, phy_mmio + MV5_PHY_CTL); } tmp = readl(phy_mmio + MV5_PHY_MODE); tmp &= ~mask; tmp |= hpriv->signal[port].pre; tmp |= hpriv->signal[port].amps; writel(tmp, phy_mmio + MV5_PHY_MODE); } #undef ZERO #define ZERO(reg) writel(0, port_mmio + (reg)) static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *port_mmio = mv_port_base(mmio, port); writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS); mv_channel_reset(hpriv, mmio, port); ZERO(0x028); /* command */ writel(0x11f, port_mmio + EDMA_CFG_OFS); ZERO(0x004); /* timer */ ZERO(0x008); /* irq err cause */ ZERO(0x00c); /* irq err mask */ ZERO(0x010); /* rq bah */ ZERO(0x014); /* rq inp */ ZERO(0x018); /* rq outp */ ZERO(0x01c); /* respq bah */ ZERO(0x024); /* respq outp */ ZERO(0x020); /* respq inp */ ZERO(0x02c); /* test control */ writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); } #undef ZERO #define ZERO(reg) writel(0, hc_mmio + (reg)) static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int hc) { void __iomem *hc_mmio = mv_hc_base(mmio, hc); u32 tmp; ZERO(0x00c); ZERO(0x010); ZERO(0x014); ZERO(0x018); tmp = readl(hc_mmio + 0x20); tmp &= 0x1c1c1c1c; tmp |= 0x03030303; writel(tmp, hc_mmio + 0x20); } #undef ZERO static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc) { unsigned int hc, port; for (hc = 0; hc < n_hc; hc++) { for (port = 0; port < MV_PORTS_PER_HC; port++) mv5_reset_hc_port(hpriv, mmio, (hc * MV_PORTS_PER_HC) + port); mv5_reset_one_hc(hpriv, mmio, hc); } return 0; } #undef ZERO #define ZERO(reg) writel(0, mmio + (reg)) static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio) { u32 tmp; tmp = readl(mmio + MV_PCI_MODE); tmp &= 0xff00ffff; writel(tmp, mmio + MV_PCI_MODE); ZERO(MV_PCI_DISC_TIMER); ZERO(MV_PCI_MSI_TRIGGER); writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); ZERO(HC_MAIN_IRQ_MASK_OFS); ZERO(MV_PCI_SERR_MASK); ZERO(PCI_IRQ_CAUSE_OFS); ZERO(PCI_IRQ_MASK_OFS); ZERO(MV_PCI_ERR_LOW_ADDRESS); ZERO(MV_PCI_ERR_HIGH_ADDRESS); ZERO(MV_PCI_ERR_ATTRIBUTE); ZERO(MV_PCI_ERR_COMMAND); } #undef ZERO static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) { u32 tmp; mv5_reset_flash(hpriv, mmio); tmp = readl(mmio + MV_GPIO_PORT_CTL); tmp &= 0x3; tmp |= (1 << 5) | (1 << 6); writel(tmp, mmio + MV_GPIO_PORT_CTL); } /** * mv6_reset_hc - Perform the 6xxx global soft reset * @mmio: base address of the HBA * * This routine only applies to 6xxx parts. * * LOCKING: * Inherited from caller. */ static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int n_hc) { void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS; int i, rc = 0; u32 t; /* Following procedure defined in PCI "main command and status * register" table. */ t = readl(reg); writel(t | STOP_PCI_MASTER, reg); for (i = 0; i < 1000; i++) { udelay(1); t = readl(reg); if (PCI_MASTER_EMPTY & t) { break; } } if (!(PCI_MASTER_EMPTY & t)) { printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); rc = 1; goto done; } /* set reset */ i = 5; do { writel(t | GLOB_SFT_RST, reg); t = readl(reg); udelay(1); } while (!(GLOB_SFT_RST & t) && (i-- > 0)); if (!(GLOB_SFT_RST & t)) { printk(KERN_ERR DRV_NAME ": can't set global reset\n"); rc = 1; goto done; } /* clear reset and *reenable the PCI master* (not mentioned in spec) */ i = 5; do { writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); t = readl(reg); udelay(1); } while ((GLOB_SFT_RST & t) && (i-- > 0)); if (GLOB_SFT_RST & t) { printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); rc = 1; } done: return rc; } static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, void __iomem *mmio) { void __iomem *port_mmio; u32 tmp; tmp = readl(mmio + MV_RESET_CFG); if ((tmp & (1 << 0)) == 0) { hpriv->signal[idx].amps = 0x7 << 8; hpriv->signal[idx].pre = 0x1 << 5; return; } port_mmio = mv_port_base(mmio, idx); tmp = readl(port_mmio + PHY_MODE2); hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */ hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */ } static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) { writel(0x00000060, mmio + MV_GPIO_PORT_CTL); } static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port) { void __iomem *port_mmio = mv_port_base(mmio, port); u32 hp_flags = hpriv->hp_flags; int fix_phy_mode2 = hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); int fix_phy_mode4 = hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); u32 m2, tmp; if (fix_phy_mode2) { m2 = readl(port_mmio + PHY_MODE2); m2 &= ~(1 << 16); m2 |= (1 << 31); writel(m2, port_mmio + PHY_MODE2); udelay(200); m2 = readl(port_mmio + PHY_MODE2); m2 &= ~((1 << 16) | (1 << 31)); writel(m2, port_mmio + PHY_MODE2); udelay(200); } /* who knows what this magic does */ tmp = readl(port_mmio + PHY_MODE3); tmp &= ~0x7F800000; tmp |= 0x2A800000; writel(tmp, port_mmio + PHY_MODE3); if (fix_phy_mode4) { u32 m4; m4 = readl(port_mmio + PHY_MODE4); if (hp_flags & MV_HP_ERRATA_60X1B2) tmp = readl(port_mmio + 0x310); m4 = (m4 & ~(1 << 1)) | (1 << 0); writel(m4, port_mmio + PHY_MODE4); if (hp_flags & MV_HP_ERRATA_60X1B2) writel(tmp, port_mmio + 0x310); } /* Revert values of pre-emphasis and signal amps to the saved ones */ m2 = readl(port_mmio + PHY_MODE2); m2 &= ~MV_M2_PREAMP_MASK; m2 |= hpriv->signal[port].amps; m2 |= hpriv->signal[port].pre; m2 &= ~(1 << 16); /* according to mvSata 3.6.1, some IIE values are fixed */ if (IS_GEN_IIE(hpriv)) { m2 &= ~0xC30FF01F; m2 |= 0x0000900F; } writel(m2, port_mmio + PHY_MODE2); } static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio, unsigned int port_no) { void __iomem *port_mmio = mv_port_base(mmio, port_no); writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS); if (IS_60XX(hpriv)) { u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL); ifctl |= (1 << 12) | (1 << 7); writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL); } udelay(25); /* allow reset propagation */ /* Spec never mentions clearing the bit. Marvell's driver does * clear the bit, however. */ writelfl(0, port_mmio + EDMA_CMD_OFS); hpriv->ops->phy_errata(hpriv, mmio, port_no); if (IS_50XX(hpriv)) mdelay(1); } static void mv_stop_and_reset(struct ata_port *ap) { struct mv_host_priv *hpriv = ap->host_set->private_data; void __iomem *mmio = ap->host_set->mmio_base; mv_stop_dma(ap); mv_channel_reset(hpriv, mmio, ap->port_no); __mv_phy_reset(ap, 0); } static inline void __msleep(unsigned int msec, int can_sleep) { if (can_sleep) msleep(msec); else mdelay(msec); } /** * __mv_phy_reset - Perform eDMA reset followed by COMRESET * @ap: ATA channel to manipulate * * Part of this is taken from __sata_phy_reset and modified to * not sleep since this routine gets called from interrupt level. * * LOCKING: * Inherited from caller. This is coded to safe to call at * interrupt level, i.e. it does not sleep. */ static void __mv_phy_reset(struct ata_port *ap, int can_sleep) { struct mv_port_priv *pp = ap->private_data; struct mv_host_priv *hpriv = ap->host_set->private_data; void __iomem *port_mmio = mv_ap_base(ap); struct ata_taskfile tf; struct ata_device *dev = &ap->device[0]; unsigned long timeout; int retry = 5; u32 sstatus; VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x " "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); /* Issue COMRESET via SControl */ comreset_retry: scr_write_flush(ap, SCR_CONTROL, 0x301); __msleep(1, can_sleep); scr_write_flush(ap, SCR_CONTROL, 0x300); __msleep(20, can_sleep); timeout = jiffies + msecs_to_jiffies(200); do { sstatus = scr_read(ap, SCR_STATUS) & 0x3; if ((sstatus == 3) || (sstatus == 0)) break; __msleep(1, can_sleep); } while (time_before(jiffies, timeout)); /* work around errata */ if (IS_60XX(hpriv) && (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) && (retry-- > 0)) goto comreset_retry; DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x " "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS), mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL)); if (sata_dev_present(ap)) { ata_port_probe(ap); } else { printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n", ap->id, scr_read(ap, SCR_STATUS)); ata_port_disable(ap); return; } ap->cbl = ATA_CBL_SATA; /* even after SStatus reflects that device is ready, * it seems to take a while for link to be fully * established (and thus Status no longer 0x80/0x7F), * so we poll a bit for that, here. */ retry = 20; while (1) { u8 drv_stat = ata_check_status(ap); if ((drv_stat != 0x80) && (drv_stat != 0x7f)) break; __msleep(500, can_sleep); if (retry-- <= 0) break; } tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr); tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr); tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr); tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr); dev->class = ata_dev_classify(&tf); if (!ata_dev_enabled(dev)) { VPRINTK("Port disabled post-sig: No device present.\n"); ata_port_disable(ap); } writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; VPRINTK("EXIT\n"); } static void mv_phy_reset(struct ata_port *ap) { __mv_phy_reset(ap, 1); } /** * mv_eng_timeout - Routine called by libata when SCSI times out I/O * @ap: ATA channel to manipulate * * Intent is to clear all pending error conditions, reset the * chip/bus, fail the command, and move on. * * LOCKING: * This routine holds the host_set lock while failing the command. */ static void mv_eng_timeout(struct ata_port *ap) { struct ata_queued_cmd *qc; printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id); DPRINTK("All regs @ start of eng_timeout\n"); mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no, to_pci_dev(ap->host_set->dev)); qc = ata_qc_from_tag(ap, ap->active_tag); printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n", ap->host_set->mmio_base, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd); mv_err_intr(ap); mv_stop_and_reset(ap); qc->err_mask |= AC_ERR_TIMEOUT; ata_eh_qc_complete(qc); } /** * mv_port_init - Perform some early initialization on a single port. * @port: libata data structure storing shadow register addresses * @port_mmio: base address of the port * * Initialize shadow register mmio addresses, clear outstanding * interrupts on the port, and unmask interrupts for the future * start of the port. * * LOCKING: * Inherited from caller. */ static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio) { unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS; unsigned serr_ofs; /* PIO related setup */ port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); port->error_addr = port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); port->status_addr = port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); /* special case: control/altstatus doesn't have ATA_REG_ address */ port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS; /* unused: */ port->cmd_addr = port->bmdma_addr = port->scr_addr = 0; /* Clear any currently outstanding port interrupt conditions */ serr_ofs = mv_scr_offset(SCR_ERROR); writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs); writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); /* unmask all EDMA error interrupts */ writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS); VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", readl(port_mmio + EDMA_CFG_OFS), readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS), readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS)); } static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv, unsigned int board_idx) { u8 rev_id; u32 hp_flags = hpriv->hp_flags; pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); switch(board_idx) { case chip_5080: hpriv->ops = &mv5xxx_ops; hp_flags |= MV_HP_50XX; switch (rev_id) { case 0x1: hp_flags |= MV_HP_ERRATA_50XXB0; break; case 0x3: hp_flags |= MV_HP_ERRATA_50XXB2; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying 50XXB2 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_50XXB2; break; } break; case chip_504x: case chip_508x: hpriv->ops = &mv5xxx_ops; hp_flags |= MV_HP_50XX; switch (rev_id) { case 0x0: hp_flags |= MV_HP_ERRATA_50XXB0; break; case 0x3: hp_flags |= MV_HP_ERRATA_50XXB2; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying B2 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_50XXB2; break; } break; case chip_604x: case chip_608x: hpriv->ops = &mv6xxx_ops; switch (rev_id) { case 0x7: hp_flags |= MV_HP_ERRATA_60X1B2; break; case 0x9: hp_flags |= MV_HP_ERRATA_60X1C0; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying B2 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_60X1B2; break; } break; case chip_7042: case chip_6042: hpriv->ops = &mv6xxx_ops; hp_flags |= MV_HP_GEN_IIE; switch (rev_id) { case 0x0: hp_flags |= MV_HP_ERRATA_XX42A0; break; case 0x1: hp_flags |= MV_HP_ERRATA_60X1C0; break; default: dev_printk(KERN_WARNING, &pdev->dev, "Applying 60X1C0 workarounds to unknown rev\n"); hp_flags |= MV_HP_ERRATA_60X1C0; break; } break; default: printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx); return 1; } hpriv->hp_flags = hp_flags; return 0; } /** * mv_init_host - Perform some early initialization of the host. * @pdev: host PCI device * @probe_ent: early data struct representing the host * * If possible, do an early global reset of the host. Then do * our port init and clear/unmask all/relevant host interrupts. * * LOCKING: * Inherited from caller. */ static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent, unsigned int board_idx) { int rc = 0, n_hc, port, hc; void __iomem *mmio = probe_ent->mmio_base; struct mv_host_priv *hpriv = probe_ent->private_data; /* global interrupt mask */ writel(0, mmio + HC_MAIN_IRQ_MASK_OFS); rc = mv_chip_id(pdev, hpriv, board_idx); if (rc) goto done; n_hc = mv_get_hc_count(probe_ent->host_flags); probe_ent->n_ports = MV_PORTS_PER_HC * n_hc; for (port = 0; port < probe_ent->n_ports; port++) hpriv->ops->read_preamp(hpriv, port, mmio); rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); if (rc) goto done; hpriv->ops->reset_flash(hpriv, mmio); hpriv->ops->reset_bus(pdev, mmio); hpriv->ops->enable_leds(hpriv, mmio); for (port = 0; port < probe_ent->n_ports; port++) { if (IS_60XX(hpriv)) { void __iomem *port_mmio = mv_port_base(mmio, port); u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL); ifctl |= (1 << 12); writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL); } hpriv->ops->phy_errata(hpriv, mmio, port); } for (port = 0; port < probe_ent->n_ports; port++) { void __iomem *port_mmio = mv_port_base(mmio, port); mv_port_init(&probe_ent->port[port], port_mmio); } for (hc = 0; hc < n_hc; hc++) { void __iomem *hc_mmio = mv_hc_base(mmio, hc); VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " "(before clear)=0x%08x\n", hc, readl(hc_mmio + HC_CFG_OFS), readl(hc_mmio + HC_IRQ_CAUSE_OFS)); /* Clear any currently outstanding hc interrupt conditions */ writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); } /* Clear any currently outstanding host interrupt conditions */ writelfl(0, mmio + PCI_IRQ_CAUSE_OFS); /* and unmask interrupt generation for host regs */ writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " "PCI int cause/mask=0x%08x/0x%08x\n", readl(mmio + HC_MAIN_IRQ_CAUSE_OFS), readl(mmio + HC_MAIN_IRQ_MASK_OFS), readl(mmio + PCI_IRQ_CAUSE_OFS), readl(mmio + PCI_IRQ_MASK_OFS)); done: return rc; } /** * mv_print_info - Dump key info to kernel log for perusal. * @probe_ent: early data struct representing the host * * FIXME: complete this. * * LOCKING: * Inherited from caller. */ static void mv_print_info(struct ata_probe_ent *probe_ent) { struct pci_dev *pdev = to_pci_dev(probe_ent->dev); struct mv_host_priv *hpriv = probe_ent->private_data; u8 rev_id, scc; const char *scc_s; /* Use this to determine the HW stepping of the chip so we know * what errata to workaround */ pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id); pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); if (scc == 0) scc_s = "SCSI"; else if (scc == 0x01) scc_s = "RAID"; else scc_s = "unknown"; dev_printk(KERN_INFO, &pdev->dev, "%u slots %u ports %s mode IRQ via %s\n", (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports, scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); } /** * mv_init_one - handle a positive probe of a Marvell host * @pdev: PCI device found * @ent: PCI device ID entry for the matched host * * LOCKING: * Inherited from caller. */ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int printed_version = 0; struct ata_probe_ent *probe_ent = NULL; struct mv_host_priv *hpriv; unsigned int board_idx = (unsigned int)ent->driver_data; void __iomem *mmio_base; int pci_dev_busy = 0, rc; if (!printed_version++) dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n"); rc = pci_enable_device(pdev); if (rc) { return rc; } rc = pci_request_regions(pdev, DRV_NAME); if (rc) { pci_dev_busy = 1; goto err_out; } probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL); if (probe_ent == NULL) { rc = -ENOMEM; goto err_out_regions; } memset(probe_ent, 0, sizeof(*probe_ent)); probe_ent->dev = pci_dev_to_dev(pdev); INIT_LIST_HEAD(&probe_ent->node); mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0); if (mmio_base == NULL) { rc = -ENOMEM; goto err_out_free_ent; } hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL); if (!hpriv) { rc = -ENOMEM; goto err_out_iounmap; } memset(hpriv, 0, sizeof(*hpriv)); probe_ent->sht = mv_port_info[board_idx].sht; probe_ent->host_flags = mv_port_info[board_idx].host_flags; probe_ent->pio_mask = mv_port_info[board_idx].pio_mask; probe_ent->udma_mask = mv_port_info[board_idx].udma_mask; probe_ent->port_ops = mv_port_info[board_idx].port_ops; probe_ent->irq = pdev->irq; probe_ent->irq_flags = SA_SHIRQ; probe_ent->mmio_base = mmio_base; probe_ent->private_data = hpriv; /* initialize adapter */ rc = mv_init_host(pdev, probe_ent, board_idx); if (rc) { goto err_out_hpriv; } /* Enable interrupts */ if (msi && pci_enable_msi(pdev) == 0) { hpriv->hp_flags |= MV_HP_FLAG_MSI; } else { pci_intx(pdev, 1); } mv_dump_pci_cfg(pdev, 0x68); mv_print_info(probe_ent); if (ata_device_add(probe_ent) == 0) { rc = -ENODEV; /* No devices discovered */ goto err_out_dev_add; } kfree(probe_ent); return 0; err_out_dev_add: if (MV_HP_FLAG_MSI & hpriv->hp_flags) { pci_disable_msi(pdev); } else { pci_intx(pdev, 0); } err_out_hpriv: kfree(hpriv); err_out_iounmap: pci_iounmap(pdev, mmio_base); err_out_free_ent: kfree(probe_ent); err_out_regions: pci_release_regions(pdev); err_out: if (!pci_dev_busy) { pci_disable_device(pdev); } return rc; } static int __init mv_init(void) { return pci_module_init(&mv_pci_driver); } static void __exit mv_exit(void) { pci_unregister_driver(&mv_pci_driver); } MODULE_AUTHOR("Brett Russ"); MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, mv_pci_tbl); MODULE_VERSION(DRV_VERSION); module_param(msi, int, 0444); MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); module_init(mv_init); module_exit(mv_exit);