/* * File: drivers/spi/bfin5xx_spi.c * Based on: N/A * Author: Luke Yang (Analog Devices Inc.) * * Created: March. 10th 2006 * Description: SPI controller driver for Blackfin 5xx * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * Modified: * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang) * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang) * * Copyright 2004-2006 Analog Devices Inc. * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; see the file COPYING. * If not, write to the Free Software Foundation, * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/ioport.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/spi/spi.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/delay.h> #include <asm/dma.h> #include <asm/bfin5xx_spi.h> MODULE_AUTHOR("Luke Yang"); MODULE_DESCRIPTION("Blackfin 5xx SPI Contoller"); MODULE_LICENSE("GPL"); #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0) #define DEFINE_SPI_REG(reg, off) \ static inline u16 read_##reg(void) \ { return *(volatile unsigned short*)(SPI0_REGBASE + off); } \ static inline void write_##reg(u16 v) \ {*(volatile unsigned short*)(SPI0_REGBASE + off) = v;\ SSYNC();} DEFINE_SPI_REG(CTRL, 0x00) DEFINE_SPI_REG(FLAG, 0x04) DEFINE_SPI_REG(STAT, 0x08) DEFINE_SPI_REG(TDBR, 0x0C) DEFINE_SPI_REG(RDBR, 0x10) DEFINE_SPI_REG(BAUD, 0x14) DEFINE_SPI_REG(SHAW, 0x18) #define START_STATE ((void*)0) #define RUNNING_STATE ((void*)1) #define DONE_STATE ((void*)2) #define ERROR_STATE ((void*)-1) #define QUEUE_RUNNING 0 #define QUEUE_STOPPED 1 int dma_requested; struct driver_data { /* Driver model hookup */ struct platform_device *pdev; /* SPI framework hookup */ struct spi_master *master; /* BFIN hookup */ struct bfin5xx_spi_master *master_info; /* Driver message queue */ struct workqueue_struct *workqueue; struct work_struct pump_messages; spinlock_t lock; struct list_head queue; int busy; int run; /* Message Transfer pump */ struct tasklet_struct pump_transfers; /* Current message transfer state info */ struct spi_message *cur_msg; struct spi_transfer *cur_transfer; struct chip_data *cur_chip; size_t len_in_bytes; size_t len; void *tx; void *tx_end; void *rx; void *rx_end; int dma_mapped; dma_addr_t rx_dma; dma_addr_t tx_dma; size_t rx_map_len; size_t tx_map_len; u8 n_bytes; void (*write) (struct driver_data *); void (*read) (struct driver_data *); void (*duplex) (struct driver_data *); }; struct chip_data { u16 ctl_reg; u16 baud; u16 flag; u8 chip_select_num; u8 n_bytes; u8 width; /* 0 or 1 */ u8 enable_dma; u8 bits_per_word; /* 8 or 16 */ u8 cs_change_per_word; u8 cs_chg_udelay; void (*write) (struct driver_data *); void (*read) (struct driver_data *); void (*duplex) (struct driver_data *); }; static void bfin_spi_enable(struct driver_data *drv_data) { u16 cr; cr = read_CTRL(); write_CTRL(cr | BIT_CTL_ENABLE); SSYNC(); } static void bfin_spi_disable(struct driver_data *drv_data) { u16 cr; cr = read_CTRL(); write_CTRL(cr & (~BIT_CTL_ENABLE)); SSYNC(); } /* Caculate the SPI_BAUD register value based on input HZ */ static u16 hz_to_spi_baud(u32 speed_hz) { u_long sclk = get_sclk(); u16 spi_baud = (sclk / (2 * speed_hz)); if ((sclk % (2 * speed_hz)) > 0) spi_baud++; return spi_baud; } static int flush(struct driver_data *drv_data) { unsigned long limit = loops_per_jiffy << 1; /* wait for stop and clear stat */ while (!(read_STAT() & BIT_STAT_SPIF) && limit--) continue; write_STAT(BIT_STAT_CLR); return limit; } /* stop controller and re-config current chip*/ static void restore_state(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; /* Clear status and disable clock */ write_STAT(BIT_STAT_CLR); bfin_spi_disable(drv_data); dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n"); #if defined(CONFIG_BF534) || defined(CONFIG_BF536) || defined(CONFIG_BF537) dev_dbg(&drv_data->pdev->dev, "chip select number is %d\n", chip->chip_select_num); switch (chip->chip_select_num) { case 1: bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3c00); SSYNC(); break; case 2: case 3: bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJSE_SPI); SSYNC(); bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800); SSYNC(); break; case 4: bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS4E_SPI); SSYNC(); bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3840); SSYNC(); break; case 5: bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS5E_SPI); SSYNC(); bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3820); SSYNC(); break; case 6: bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS6E_SPI); SSYNC(); bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3810); SSYNC(); break; case 7: bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJCE_SPI); SSYNC(); bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800); SSYNC(); break; } #endif /* Load the registers */ write_CTRL(chip->ctl_reg); write_BAUD(chip->baud); write_FLAG(chip->flag); } /* used to kick off transfer in rx mode */ static unsigned short dummy_read(void) { unsigned short tmp; tmp = read_RDBR(); return tmp; } static void null_writer(struct driver_data *drv_data) { u8 n_bytes = drv_data->n_bytes; while (drv_data->tx < drv_data->tx_end) { write_TDBR(0); while ((read_STAT() & BIT_STAT_TXS)) continue; drv_data->tx += n_bytes; } } static void null_reader(struct driver_data *drv_data) { u8 n_bytes = drv_data->n_bytes; dummy_read(); while (drv_data->rx < drv_data->rx_end) { while (!(read_STAT() & BIT_STAT_RXS)) continue; dummy_read(); drv_data->rx += n_bytes; } } static void u8_writer(struct driver_data *drv_data) { dev_dbg(&drv_data->pdev->dev, "cr8-s is 0x%x\n", read_STAT()); while (drv_data->tx < drv_data->tx_end) { write_TDBR(*(u8 *) (drv_data->tx)); while (read_STAT() & BIT_STAT_TXS) continue; ++drv_data->tx; } /* poll for SPI completion before returning */ while (!(read_STAT() & BIT_STAT_SPIF)) continue; } static void u8_cs_chg_writer(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; while (drv_data->tx < drv_data->tx_end) { write_FLAG(chip->flag); SSYNC(); write_TDBR(*(u8 *) (drv_data->tx)); while (read_STAT() & BIT_STAT_TXS) continue; while (!(read_STAT() & BIT_STAT_SPIF)) continue; write_FLAG(0xFF00 | chip->flag); SSYNC(); if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); ++drv_data->tx; } write_FLAG(0xFF00); SSYNC(); } static void u8_reader(struct driver_data *drv_data) { dev_dbg(&drv_data->pdev->dev, "cr-8 is 0x%x\n", read_STAT()); /* clear TDBR buffer before read(else it will be shifted out) */ write_TDBR(0xFFFF); dummy_read(); while (drv_data->rx < drv_data->rx_end - 1) { while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u8 *) (drv_data->rx) = read_RDBR(); ++drv_data->rx; } while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u8 *) (drv_data->rx) = read_SHAW(); ++drv_data->rx; } static void u8_cs_chg_reader(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; while (drv_data->rx < drv_data->rx_end) { write_FLAG(chip->flag); SSYNC(); read_RDBR(); /* kick off */ while (!(read_STAT() & BIT_STAT_RXS)) continue; while (!(read_STAT() & BIT_STAT_SPIF)) continue; *(u8 *) (drv_data->rx) = read_SHAW(); write_FLAG(0xFF00 | chip->flag); SSYNC(); if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); ++drv_data->rx; } write_FLAG(0xFF00); SSYNC(); } static void u8_duplex(struct driver_data *drv_data) { /* in duplex mode, clk is triggered by writing of TDBR */ while (drv_data->rx < drv_data->rx_end) { write_TDBR(*(u8 *) (drv_data->tx)); while (!(read_STAT() & BIT_STAT_SPIF)) continue; while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u8 *) (drv_data->rx) = read_RDBR(); ++drv_data->rx; ++drv_data->tx; } } static void u8_cs_chg_duplex(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; while (drv_data->rx < drv_data->rx_end) { write_FLAG(chip->flag); SSYNC(); write_TDBR(*(u8 *) (drv_data->tx)); while (!(read_STAT() & BIT_STAT_SPIF)) continue; while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u8 *) (drv_data->rx) = read_RDBR(); write_FLAG(0xFF00 | chip->flag); SSYNC(); if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); ++drv_data->rx; ++drv_data->tx; } write_FLAG(0xFF00); SSYNC(); } static void u16_writer(struct driver_data *drv_data) { dev_dbg(&drv_data->pdev->dev, "cr16 is 0x%x\n", read_STAT()); while (drv_data->tx < drv_data->tx_end) { write_TDBR(*(u16 *) (drv_data->tx)); while ((read_STAT() & BIT_STAT_TXS)) continue; drv_data->tx += 2; } /* poll for SPI completion before returning */ while (!(read_STAT() & BIT_STAT_SPIF)) continue; } static void u16_cs_chg_writer(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; while (drv_data->tx < drv_data->tx_end) { write_FLAG(chip->flag); SSYNC(); write_TDBR(*(u16 *) (drv_data->tx)); while ((read_STAT() & BIT_STAT_TXS)) continue; while (!(read_STAT() & BIT_STAT_SPIF)) continue; write_FLAG(0xFF00 | chip->flag); SSYNC(); if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); drv_data->tx += 2; } write_FLAG(0xFF00); SSYNC(); } static void u16_reader(struct driver_data *drv_data) { dev_dbg(&drv_data->pdev->dev, "cr-16 is 0x%x\n", read_STAT()); dummy_read(); while (drv_data->rx < (drv_data->rx_end - 2)) { while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u16 *) (drv_data->rx) = read_RDBR(); drv_data->rx += 2; } while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u16 *) (drv_data->rx) = read_SHAW(); drv_data->rx += 2; } static void u16_cs_chg_reader(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; while (drv_data->rx < drv_data->rx_end) { write_FLAG(chip->flag); SSYNC(); read_RDBR(); /* kick off */ while (!(read_STAT() & BIT_STAT_RXS)) continue; while (!(read_STAT() & BIT_STAT_SPIF)) continue; *(u16 *) (drv_data->rx) = read_SHAW(); write_FLAG(0xFF00 | chip->flag); SSYNC(); if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); drv_data->rx += 2; } write_FLAG(0xFF00); SSYNC(); } static void u16_duplex(struct driver_data *drv_data) { /* in duplex mode, clk is triggered by writing of TDBR */ while (drv_data->tx < drv_data->tx_end) { write_TDBR(*(u16 *) (drv_data->tx)); while (!(read_STAT() & BIT_STAT_SPIF)) continue; while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u16 *) (drv_data->rx) = read_RDBR(); drv_data->rx += 2; drv_data->tx += 2; } } static void u16_cs_chg_duplex(struct driver_data *drv_data) { struct chip_data *chip = drv_data->cur_chip; while (drv_data->tx < drv_data->tx_end) { write_FLAG(chip->flag); SSYNC(); write_TDBR(*(u16 *) (drv_data->tx)); while (!(read_STAT() & BIT_STAT_SPIF)) continue; while (!(read_STAT() & BIT_STAT_RXS)) continue; *(u16 *) (drv_data->rx) = read_RDBR(); write_FLAG(0xFF00 | chip->flag); SSYNC(); if (chip->cs_chg_udelay) udelay(chip->cs_chg_udelay); drv_data->rx += 2; drv_data->tx += 2; } write_FLAG(0xFF00); SSYNC(); } /* test if ther is more transfer to be done */ static void *next_transfer(struct driver_data *drv_data) { struct spi_message *msg = drv_data->cur_msg; struct spi_transfer *trans = drv_data->cur_transfer; /* Move to next transfer */ if (trans->transfer_list.next != &msg->transfers) { drv_data->cur_transfer = list_entry(trans->transfer_list.next, struct spi_transfer, transfer_list); return RUNNING_STATE; } else return DONE_STATE; } /* * caller already set message->status; * dma and pio irqs are blocked give finished message back */ static void giveback(struct driver_data *drv_data) { struct spi_transfer *last_transfer; unsigned long flags; struct spi_message *msg; spin_lock_irqsave(&drv_data->lock, flags); msg = drv_data->cur_msg; drv_data->cur_msg = NULL; drv_data->cur_transfer = NULL; drv_data->cur_chip = NULL; queue_work(drv_data->workqueue, &drv_data->pump_messages); spin_unlock_irqrestore(&drv_data->lock, flags); last_transfer = list_entry(msg->transfers.prev, struct spi_transfer, transfer_list); msg->state = NULL; /* disable chip select signal. And not stop spi in autobuffer mode */ if (drv_data->tx_dma != 0xFFFF) { write_FLAG(0xFF00); bfin_spi_disable(drv_data); } if (msg->complete) msg->complete(msg->context); } static irqreturn_t dma_irq_handler(int irq, void *dev_id) { struct driver_data *drv_data = (struct driver_data *)dev_id; struct spi_message *msg = drv_data->cur_msg; dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n"); clear_dma_irqstat(CH_SPI); /* Wait for DMA to complete */ while (get_dma_curr_irqstat(CH_SPI) & DMA_RUN) continue; /* * wait for the last transaction shifted out. HRM states: * at this point there may still be data in the SPI DMA FIFO waiting * to be transmitted ... software needs to poll TXS in the SPI_STAT * register until it goes low for 2 successive reads */ if (drv_data->tx != NULL) { while ((bfin_read_SPI_STAT() & TXS) || (bfin_read_SPI_STAT() & TXS)) continue; } while (!(bfin_read_SPI_STAT() & SPIF)) continue; bfin_spi_disable(drv_data); msg->actual_length += drv_data->len_in_bytes; /* Move to next transfer */ msg->state = next_transfer(drv_data); /* Schedule transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); /* free the irq handler before next transfer */ dev_dbg(&drv_data->pdev->dev, "disable dma channel irq%d\n", CH_SPI); dma_disable_irq(CH_SPI); return IRQ_HANDLED; } static void pump_transfers(unsigned long data) { struct driver_data *drv_data = (struct driver_data *)data; struct spi_message *message = NULL; struct spi_transfer *transfer = NULL; struct spi_transfer *previous = NULL; struct chip_data *chip = NULL; u8 width; u16 cr, dma_width, dma_config; u32 tranf_success = 1; /* Get current state information */ message = drv_data->cur_msg; transfer = drv_data->cur_transfer; chip = drv_data->cur_chip; /* * if msg is error or done, report it back using complete() callback */ /* Handle for abort */ if (message->state == ERROR_STATE) { message->status = -EIO; giveback(drv_data); return; } /* Handle end of message */ if (message->state == DONE_STATE) { message->status = 0; giveback(drv_data); return; } /* Delay if requested at end of transfer */ if (message->state == RUNNING_STATE) { previous = list_entry(transfer->transfer_list.prev, struct spi_transfer, transfer_list); if (previous->delay_usecs) udelay(previous->delay_usecs); } /* Setup the transfer state based on the type of transfer */ if (flush(drv_data) == 0) { dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); message->status = -EIO; giveback(drv_data); return; } if (transfer->tx_buf != NULL) { drv_data->tx = (void *)transfer->tx_buf; drv_data->tx_end = drv_data->tx + transfer->len; dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n", transfer->tx_buf, drv_data->tx_end); } else { drv_data->tx = NULL; } if (transfer->rx_buf != NULL) { drv_data->rx = transfer->rx_buf; drv_data->rx_end = drv_data->rx + transfer->len; dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n", transfer->rx_buf, drv_data->rx_end); } else { drv_data->rx = NULL; } drv_data->rx_dma = transfer->rx_dma; drv_data->tx_dma = transfer->tx_dma; drv_data->len_in_bytes = transfer->len; width = chip->width; if (width == CFG_SPI_WORDSIZE16) { drv_data->len = (transfer->len) >> 1; } else { drv_data->len = transfer->len; } drv_data->write = drv_data->tx ? chip->write : null_writer; drv_data->read = drv_data->rx ? chip->read : null_reader; drv_data->duplex = chip->duplex ? chip->duplex : null_writer; dev_dbg(&drv_data->pdev->dev, "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n", drv_data->write, chip->write, null_writer); /* speed and width has been set on per message */ message->state = RUNNING_STATE; dma_config = 0; /* restore spi status for each spi transfer */ if (transfer->speed_hz) { write_BAUD(hz_to_spi_baud(transfer->speed_hz)); } else { write_BAUD(chip->baud); } write_FLAG(chip->flag); dev_dbg(&drv_data->pdev->dev, "now pumping a transfer: width is %d, len is %d\n", width, transfer->len); /* * Try to map dma buffer and do a dma transfer if * successful use different way to r/w according to * drv_data->cur_chip->enable_dma */ if (drv_data->cur_chip->enable_dma && drv_data->len > 6) { write_STAT(BIT_STAT_CLR); disable_dma(CH_SPI); clear_dma_irqstat(CH_SPI); bfin_spi_disable(drv_data); /* config dma channel */ dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n"); if (width == CFG_SPI_WORDSIZE16) { set_dma_x_count(CH_SPI, drv_data->len); set_dma_x_modify(CH_SPI, 2); dma_width = WDSIZE_16; } else { set_dma_x_count(CH_SPI, drv_data->len); set_dma_x_modify(CH_SPI, 1); dma_width = WDSIZE_8; } /* set transfer width,direction. And enable spi */ cr = (read_CTRL() & (~BIT_CTL_TIMOD)); /* dirty hack for autobuffer DMA mode */ if (drv_data->tx_dma == 0xFFFF) { dev_dbg(&drv_data->pdev->dev, "doing autobuffer DMA out.\n"); /* no irq in autobuffer mode */ dma_config = (DMAFLOW_AUTO | RESTART | dma_width | DI_EN); set_dma_config(CH_SPI, dma_config); set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx); enable_dma(CH_SPI); write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) | (CFG_SPI_ENABLE << 14)); /* just return here, there can only be one transfer in this mode */ message->status = 0; giveback(drv_data); return; } /* In dma mode, rx or tx must be NULL in one transfer */ if (drv_data->rx != NULL) { /* set transfer mode, and enable SPI */ dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n"); /* disable SPI before write to TDBR */ write_CTRL(cr & ~BIT_CTL_ENABLE); /* clear tx reg soformer data is not shifted out */ write_TDBR(0xFF); set_dma_x_count(CH_SPI, drv_data->len); /* start dma */ dma_enable_irq(CH_SPI); dma_config = (WNR | RESTART | dma_width | DI_EN); set_dma_config(CH_SPI, dma_config); set_dma_start_addr(CH_SPI, (unsigned long)drv_data->rx); enable_dma(CH_SPI); cr |= CFG_SPI_DMAREAD | (width << 8) | (CFG_SPI_ENABLE << 14); /* set transfer mode, and enable SPI */ write_CTRL(cr); } else if (drv_data->tx != NULL) { dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n"); /* start dma */ dma_enable_irq(CH_SPI); dma_config = (RESTART | dma_width | DI_EN); set_dma_config(CH_SPI, dma_config); set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx); enable_dma(CH_SPI); write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) | (CFG_SPI_ENABLE << 14)); } } else { /* IO mode write then read */ dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n"); write_STAT(BIT_STAT_CLR); if (drv_data->tx != NULL && drv_data->rx != NULL) { /* full duplex mode */ BUG_ON((drv_data->tx_end - drv_data->tx) != (drv_data->rx_end - drv_data->rx)); cr = (read_CTRL() & (~BIT_CTL_TIMOD)); cr |= CFG_SPI_WRITE | (width << 8) | (CFG_SPI_ENABLE << 14); dev_dbg(&drv_data->pdev->dev, "IO duplex: cr is 0x%x\n", cr); write_CTRL(cr); SSYNC(); drv_data->duplex(drv_data); if (drv_data->tx != drv_data->tx_end) tranf_success = 0; } else if (drv_data->tx != NULL) { /* write only half duplex */ cr = (read_CTRL() & (~BIT_CTL_TIMOD)); cr |= CFG_SPI_WRITE | (width << 8) | (CFG_SPI_ENABLE << 14); dev_dbg(&drv_data->pdev->dev, "IO write: cr is 0x%x\n", cr); write_CTRL(cr); SSYNC(); drv_data->write(drv_data); if (drv_data->tx != drv_data->tx_end) tranf_success = 0; } else if (drv_data->rx != NULL) { /* read only half duplex */ cr = (read_CTRL() & (~BIT_CTL_TIMOD)); cr |= CFG_SPI_READ | (width << 8) | (CFG_SPI_ENABLE << 14); dev_dbg(&drv_data->pdev->dev, "IO read: cr is 0x%x\n", cr); write_CTRL(cr); SSYNC(); drv_data->read(drv_data); if (drv_data->rx != drv_data->rx_end) tranf_success = 0; } if (!tranf_success) { dev_dbg(&drv_data->pdev->dev, "IO write error!\n"); message->state = ERROR_STATE; } else { /* Update total byte transfered */ message->actual_length += drv_data->len; /* Move to next transfer of this msg */ message->state = next_transfer(drv_data); } /* Schedule next transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); } } /* pop a msg from queue and kick off real transfer */ static void pump_messages(struct work_struct *work) { struct driver_data *drv_data = container_of(work, struct driver_data, pump_messages); unsigned long flags; /* Lock queue and check for queue work */ spin_lock_irqsave(&drv_data->lock, flags); if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) { /* pumper kicked off but no work to do */ drv_data->busy = 0; spin_unlock_irqrestore(&drv_data->lock, flags); return; } /* Make sure we are not already running a message */ if (drv_data->cur_msg) { spin_unlock_irqrestore(&drv_data->lock, flags); return; } /* Extract head of queue */ drv_data->cur_msg = list_entry(drv_data->queue.next, struct spi_message, queue); list_del_init(&drv_data->cur_msg->queue); /* Initial message state */ drv_data->cur_msg->state = START_STATE; drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, struct spi_transfer, transfer_list); /* Setup the SSP using the per chip configuration */ drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); restore_state(drv_data); dev_dbg(&drv_data->pdev->dev, "got a message to pump, state is set to: baud %d, flag 0x%x, ctl 0x%x\n", drv_data->cur_chip->baud, drv_data->cur_chip->flag, drv_data->cur_chip->ctl_reg); dev_dbg(&drv_data->pdev->dev, "the first transfer len is %d\n", drv_data->cur_transfer->len); /* Mark as busy and launch transfers */ tasklet_schedule(&drv_data->pump_transfers); drv_data->busy = 1; spin_unlock_irqrestore(&drv_data->lock, flags); } /* * got a msg to transfer, queue it in drv_data->queue. * And kick off message pumper */ static int transfer(struct spi_device *spi, struct spi_message *msg) { struct driver_data *drv_data = spi_master_get_devdata(spi->master); unsigned long flags; spin_lock_irqsave(&drv_data->lock, flags); if (drv_data->run == QUEUE_STOPPED) { spin_unlock_irqrestore(&drv_data->lock, flags); return -ESHUTDOWN; } msg->actual_length = 0; msg->status = -EINPROGRESS; msg->state = START_STATE; dev_dbg(&spi->dev, "adding an msg in transfer() \n"); list_add_tail(&msg->queue, &drv_data->queue); if (drv_data->run == QUEUE_RUNNING && !drv_data->busy) queue_work(drv_data->workqueue, &drv_data->pump_messages); spin_unlock_irqrestore(&drv_data->lock, flags); return 0; } /* first setup for new devices */ static int setup(struct spi_device *spi) { struct bfin5xx_spi_chip *chip_info = NULL; struct chip_data *chip; struct driver_data *drv_data = spi_master_get_devdata(spi->master); u8 spi_flg; /* Abort device setup if requested features are not supported */ if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) { dev_err(&spi->dev, "requested mode not fully supported\n"); return -EINVAL; } /* Zero (the default) here means 8 bits */ if (!spi->bits_per_word) spi->bits_per_word = 8; if (spi->bits_per_word != 8 && spi->bits_per_word != 16) return -EINVAL; /* Only alloc (or use chip_info) on first setup */ chip = spi_get_ctldata(spi); if (chip == NULL) { chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; chip->enable_dma = 0; chip_info = spi->controller_data; } /* chip_info isn't always needed */ if (chip_info) { chip->enable_dma = chip_info->enable_dma != 0 && drv_data->master_info->enable_dma; chip->ctl_reg = chip_info->ctl_reg; chip->bits_per_word = chip_info->bits_per_word; chip->cs_change_per_word = chip_info->cs_change_per_word; chip->cs_chg_udelay = chip_info->cs_chg_udelay; } /* translate common spi framework into our register */ if (spi->mode & SPI_CPOL) chip->ctl_reg |= CPOL; if (spi->mode & SPI_CPHA) chip->ctl_reg |= CPHA; if (spi->mode & SPI_LSB_FIRST) chip->ctl_reg |= LSBF; /* we dont support running in slave mode (yet?) */ chip->ctl_reg |= MSTR; /* * if any one SPI chip is registered and wants DMA, request the * DMA channel for it */ if (chip->enable_dma && !dma_requested) { /* register dma irq handler */ if (request_dma(CH_SPI, "BF53x_SPI_DMA") < 0) { dev_dbg(&spi->dev, "Unable to request BlackFin SPI DMA channel\n"); return -ENODEV; } if (set_dma_callback(CH_SPI, (void *)dma_irq_handler, drv_data) < 0) { dev_dbg(&spi->dev, "Unable to set dma callback\n"); return -EPERM; } dma_disable_irq(CH_SPI); dma_requested = 1; } /* * Notice: for blackfin, the speed_hz is the value of register * SPI_BAUD, not the real baudrate */ chip->baud = hz_to_spi_baud(spi->max_speed_hz); spi_flg = ~(1 << (spi->chip_select)); chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select)); chip->chip_select_num = spi->chip_select; switch (chip->bits_per_word) { case 8: chip->n_bytes = 1; chip->width = CFG_SPI_WORDSIZE8; chip->read = chip->cs_change_per_word ? u8_cs_chg_reader : u8_reader; chip->write = chip->cs_change_per_word ? u8_cs_chg_writer : u8_writer; chip->duplex = chip->cs_change_per_word ? u8_cs_chg_duplex : u8_duplex; break; case 16: chip->n_bytes = 2; chip->width = CFG_SPI_WORDSIZE16; chip->read = chip->cs_change_per_word ? u16_cs_chg_reader : u16_reader; chip->write = chip->cs_change_per_word ? u16_cs_chg_writer : u16_writer; chip->duplex = chip->cs_change_per_word ? u16_cs_chg_duplex : u16_duplex; break; default: dev_err(&spi->dev, "%d bits_per_word is not supported\n", chip->bits_per_word); kfree(chip); return -ENODEV; } dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n", spi->modalias, chip->width, chip->enable_dma); dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n", chip->ctl_reg, chip->flag); spi_set_ctldata(spi, chip); return 0; } /* * callback for spi framework. * clean driver specific data */ static void cleanup(struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata(spi); kfree(chip); } static inline int init_queue(struct driver_data *drv_data) { INIT_LIST_HEAD(&drv_data->queue); spin_lock_init(&drv_data->lock); drv_data->run = QUEUE_STOPPED; drv_data->busy = 0; /* init transfer tasklet */ tasklet_init(&drv_data->pump_transfers, pump_transfers, (unsigned long)drv_data); /* init messages workqueue */ INIT_WORK(&drv_data->pump_messages, pump_messages); drv_data->workqueue = create_singlethread_workqueue(drv_data->master->dev.parent->bus_id); if (drv_data->workqueue == NULL) return -EBUSY; return 0; } static inline int start_queue(struct driver_data *drv_data) { unsigned long flags; spin_lock_irqsave(&drv_data->lock, flags); if (drv_data->run == QUEUE_RUNNING || drv_data->busy) { spin_unlock_irqrestore(&drv_data->lock, flags); return -EBUSY; } drv_data->run = QUEUE_RUNNING; drv_data->cur_msg = NULL; drv_data->cur_transfer = NULL; drv_data->cur_chip = NULL; spin_unlock_irqrestore(&drv_data->lock, flags); queue_work(drv_data->workqueue, &drv_data->pump_messages); return 0; } static inline int stop_queue(struct driver_data *drv_data) { unsigned long flags; unsigned limit = 500; int status = 0; spin_lock_irqsave(&drv_data->lock, flags); /* * This is a bit lame, but is optimized for the common execution path. * A wait_queue on the drv_data->busy could be used, but then the common * execution path (pump_messages) would be required to call wake_up or * friends on every SPI message. Do this instead */ drv_data->run = QUEUE_STOPPED; while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) { spin_unlock_irqrestore(&drv_data->lock, flags); msleep(10); spin_lock_irqsave(&drv_data->lock, flags); } if (!list_empty(&drv_data->queue) || drv_data->busy) status = -EBUSY; spin_unlock_irqrestore(&drv_data->lock, flags); return status; } static inline int destroy_queue(struct driver_data *drv_data) { int status; status = stop_queue(drv_data); if (status != 0) return status; destroy_workqueue(drv_data->workqueue); return 0; } static int __init bfin5xx_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct bfin5xx_spi_master *platform_info; struct spi_master *master; struct driver_data *drv_data = 0; int status = 0; platform_info = dev->platform_data; /* Allocate master with space for drv_data */ master = spi_alloc_master(dev, sizeof(struct driver_data) + 16); if (!master) { dev_err(&pdev->dev, "can not alloc spi_master\n"); return -ENOMEM; } drv_data = spi_master_get_devdata(master); drv_data->master = master; drv_data->master_info = platform_info; drv_data->pdev = pdev; master->bus_num = pdev->id; master->num_chipselect = platform_info->num_chipselect; master->cleanup = cleanup; master->setup = setup; master->transfer = transfer; /* Initial and start queue */ status = init_queue(drv_data); if (status != 0) { dev_err(&pdev->dev, "problem initializing queue\n"); goto out_error_queue_alloc; } status = start_queue(drv_data); if (status != 0) { dev_err(&pdev->dev, "problem starting queue\n"); goto out_error_queue_alloc; } /* Register with the SPI framework */ platform_set_drvdata(pdev, drv_data); status = spi_register_master(master); if (status != 0) { dev_err(&pdev->dev, "problem registering spi master\n"); goto out_error_queue_alloc; } dev_dbg(&pdev->dev, "controller probe successfully\n"); return status; out_error_queue_alloc: destroy_queue(drv_data); spi_master_put(master); return status; } /* stop hardware and remove the driver */ static int __devexit bfin5xx_spi_remove(struct platform_device *pdev) { struct driver_data *drv_data = platform_get_drvdata(pdev); int status = 0; if (!drv_data) return 0; /* Remove the queue */ status = destroy_queue(drv_data); if (status != 0) return status; /* Disable the SSP at the peripheral and SOC level */ bfin_spi_disable(drv_data); /* Release DMA */ if (drv_data->master_info->enable_dma) { if (dma_channel_active(CH_SPI)) free_dma(CH_SPI); } /* Disconnect from the SPI framework */ spi_unregister_master(drv_data->master); /* Prevent double remove */ platform_set_drvdata(pdev, NULL); return 0; } #ifdef CONFIG_PM static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state) { struct driver_data *drv_data = platform_get_drvdata(pdev); int status = 0; status = stop_queue(drv_data); if (status != 0) return status; /* stop hardware */ bfin_spi_disable(drv_data); return 0; } static int bfin5xx_spi_resume(struct platform_device *pdev) { struct driver_data *drv_data = platform_get_drvdata(pdev); int status = 0; /* Enable the SPI interface */ bfin_spi_enable(drv_data); /* Start the queue running */ status = start_queue(drv_data); if (status != 0) { dev_err(&pdev->dev, "problem starting queue (%d)\n", status); return status; } return 0; } #else #define bfin5xx_spi_suspend NULL #define bfin5xx_spi_resume NULL #endif /* CONFIG_PM */ MODULE_ALIAS("bfin-spi-master"); /* for platform bus hotplug */ static struct platform_driver bfin5xx_spi_driver = { .driver = { .name = "bfin-spi-master", .owner = THIS_MODULE, }, .suspend = bfin5xx_spi_suspend, .resume = bfin5xx_spi_resume, .remove = __devexit_p(bfin5xx_spi_remove), }; static int __init bfin5xx_spi_init(void) { return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe); } module_init(bfin5xx_spi_init); static void __exit bfin5xx_spi_exit(void) { platform_driver_unregister(&bfin5xx_spi_driver); } module_exit(bfin5xx_spi_exit);