#include "sysdef.h" #include "wbhal_f.h" /////////////////////////////////////////////////////////////////////////////////////////////////// // Original Phy.h //***************************************************************************** /***************************************************************************** ; For MAXIM2825/6/7 Ver. 331 or more ; Edited by Tiger, Sep-17-2003 ; revised by Ben, Sep-18-2003 0x00 0x000a2 0x01 0x21cc0 ;0x02 0x13802 0x02 0x1383a ;channe1 01 ; 0x03 0x30142 ; 0x04 0x0b333; ;channe1 02 ;0x03 0x32141 ;0x04 0x08444; ;channe1 03 ;0x03 0x32143 ;0x04 0x0aeee; ;channe1 04 ;0x03 0x32142 ;0x04 0x0b333; ;channe1 05 ;0x03 0x31141 ;0x04 0x08444; ;channe1 06 ; 0x03 0x31143; 0x04 0x0aeee; ;channe1 07 ;0x03 0x31142 ;0x04 0x0b333; ;channe1 08 ;0x03 0x33141 ;0x04 0x08444; ;channe1 09 ;0x03 0x33143 ;0x04 0x0aeee; ;channe1 10 ;0x03 0x33142 ;0x04 0x0b333; ;channe1 11 ;0x03 0x30941 ;0x04 0x08444; ;channe1 12 ;0x03 0x30943 ;0x04 0x0aeee; ;channe1 13 ;0x03 0x30942 ;0x04 0x0b333; 0x05 0x28986 0x06 0x18008 0x07 0x38400 0x08 0x05100; 100 Hz DC ;0x08 0x05900; 30 KHz DC 0x09 0x24f08 0x0a 0x17e00, 0x17ea0 0x0b 0x37d80 0x0c 0x0c900 // 0x0ca00 (lager power 9db than 0x0c000), 0x0c000 *****************************************************************************/ // MAX2825 (pure b/g) u32 max2825_rf_data[] = { (0x00<<18)|0x000a2, (0x01<<18)|0x21cc0, (0x02<<18)|0x13806, (0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6, (0x06<<18)|0x18008, (0x07<<18)|0x38000, (0x08<<18)|0x05100, (0x09<<18)|0x24f08, (0x0A<<18)|0x14000, (0x0B<<18)|0x37d80, (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100 }; u32 max2825_channel_data_24[][3] = { {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify }; u32 max2825_power_data_24[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100}; /****************************************************************************/ // MAX2827 (a/b/g) u32 max2827_rf_data[] = { (0x00<<18)|0x000a2, (0x01<<18)|0x21cc0, (0x02<<18)|0x13806, (0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6, (0x06<<18)|0x18008, (0x07<<18)|0x38000, (0x08<<18)|0x05100, (0x09<<18)|0x24f08, (0x0A<<18)|0x14000, (0x0B<<18)|0x37d80, (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100 }; u32 max2827_channel_data_24[][3] = { {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify }; u32 max2827_channel_data_50[][3] = { {(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 36 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 40 {(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6}, // channel 44 {(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x2A9A6}, // channel 48 {(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x2A9A6}, // channel 52 {(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x2A9A6}, // channel 56 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2A9A6}, // channel 60 {(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x2A9A6} // channel 64 }; u32 max2827_power_data_24[] = {(0x0C<<18)|0x0C000, (0x0C<<18)|0x0D600, (0x0C<<18)|0x0C100}; u32 max2827_power_data_50[] = {(0x0C<<18)|0x0C400, (0x0C<<18)|0x0D500, (0x0C<<18)|0x0C300}; /****************************************************************************/ // MAX2828 (a/b/g) u32 max2828_rf_data[] = { (0x00<<18)|0x000a2, (0x01<<18)|0x21cc0, (0x02<<18)|0x13806, (0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6, (0x06<<18)|0x18008, (0x07<<18)|0x38000, (0x08<<18)|0x05100, (0x09<<18)|0x24f08, (0x0A<<18)|0x14000, (0x0B<<18)|0x37d80, (0x0C<<18)|0x0c100 // 11a: 0x0c300, 11g: 0x0c100 }; u32 max2828_channel_data_24[][3] = { {(0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 01 {(0x03<<18)|0x32141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 02 {(0x03<<18)|0x32143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 03 {(0x03<<18)|0x32142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 04 {(0x03<<18)|0x31141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 05 {(0x03<<18)|0x31143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 06 {(0x03<<18)|0x31142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 07 {(0x03<<18)|0x33141, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 08 {(0x03<<18)|0x33143, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 09 {(0x03<<18)|0x33142, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 10 {(0x03<<18)|0x30941, (0x04<<18)|0x08444, (0x05<<18)|0x289A6}, // channe1 11 {(0x03<<18)|0x30943, (0x04<<18)|0x0aeee, (0x05<<18)|0x289A6}, // channe1 12 {(0x03<<18)|0x30942, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channe1 13 {(0x03<<18)|0x32941, (0x04<<18)|0x09999, (0x05<<18)|0x289A6} // 14 (2484MHz) hhmodify }; u32 max2828_channel_data_50[][3] = { {(0x03<<18)|0x33cc3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 36 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 40 {(0x03<<18)|0x302c2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6}, // channel 44 {(0x03<<18)|0x322c1, (0x04<<18)|0x09999, (0x05<<18)|0x289A6}, // channel 48 {(0x03<<18)|0x312c1, (0x04<<18)|0x0a666, (0x05<<18)|0x289A6}, // channel 52 {(0x03<<18)|0x332c3, (0x04<<18)|0x08ccc, (0x05<<18)|0x289A6}, // channel 56 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x289A6}, // channel 60 {(0x03<<18)|0x30ac2, (0x04<<18)|0x0b333, (0x05<<18)|0x289A6} // channel 64 }; u32 max2828_power_data_24[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100}; u32 max2828_power_data_50[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100}; /****************************************************************************/ // LA20040728 kevin // MAX2829 (a/b/g) u32 max2829_rf_data[] = { (0x00<<18)|0x000a2, (0x01<<18)|0x23520, (0x02<<18)|0x13802, (0x03<<18)|0x30142, (0x04<<18)|0x0b333, (0x05<<18)|0x28906, (0x06<<18)|0x18008, (0x07<<18)|0x3B500, (0x08<<18)|0x05100, (0x09<<18)|0x24f08, (0x0A<<18)|0x14000, (0x0B<<18)|0x37d80, (0x0C<<18)|0x0F300 //TXVGA=51, (MAX-6 dB) }; u32 max2829_channel_data_24[][3] = { {(3<<18)|0x30142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 01 (2412MHz) {(3<<18)|0x32141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 02 (2417MHz) {(3<<18)|0x32143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 03 (2422MHz) {(3<<18)|0x32142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 04 (2427MHz) {(3<<18)|0x31141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 05 (2432MHz) {(3<<18)|0x31143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 06 (2437MHz) {(3<<18)|0x31142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 07 (2442MHz) {(3<<18)|0x33141, (4<<18)|0x08444, (5<<18)|0x289C6}, // 08 (2447MHz) {(3<<18)|0x33143, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 09 (2452MHz) {(3<<18)|0x33142, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 10 (2457MHz) {(3<<18)|0x30941, (4<<18)|0x08444, (5<<18)|0x289C6}, // 11 (2462MHz) {(3<<18)|0x30943, (4<<18)|0x0aeee, (5<<18)|0x289C6}, // 12 (2467MHz) {(3<<18)|0x30942, (4<<18)|0x0b333, (5<<18)|0x289C6}, // 13 (2472MHz) {(3<<18)|0x32941, (4<<18)|0x09999, (5<<18)|0x289C6}, // 14 (2484MHz) hh-modify }; u32 max2829_channel_data_50[][4] = { {36, (3<<18)|0x33cc3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 36 (5.180GHz) {40, (3<<18)|0x302c0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 40 (5.200GHz) {44, (3<<18)|0x302c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 44 (5.220GHz) {48, (3<<18)|0x322c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 48 (5.240GHz) {52, (3<<18)|0x312c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 52 (5.260GHz) {56, (3<<18)|0x332c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 56 (5.280GHz) {60, (3<<18)|0x30ac0, (4<<18)|0x08000, (5<<18)|0x2A946}, // 60 (5.300GHz) {64, (3<<18)|0x30ac2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 64 (5.320GHz) {100, (3<<18)|0x30ec0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 100 (5.500GHz) {104, (3<<18)|0x30ec2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 104 (5.520GHz) {108, (3<<18)|0x32ec1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 108 (5.540GHz) {112, (3<<18)|0x31ec1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 112 (5.560GHz) {116, (3<<18)|0x33ec3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 116 (5.580GHz) {120, (3<<18)|0x301c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 120 (5.600GHz) {124, (3<<18)|0x301c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 124 (5.620GHz) {128, (3<<18)|0x321c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 128 (5.640GHz) {132, (3<<18)|0x311c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 132 (5.660GHz) {136, (3<<18)|0x331c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 136 (5.680GHz) {140, (3<<18)|0x309c0, (4<<18)|0x08000, (5<<18)|0x2A9C6}, // 140 (5.700GHz) {149, (3<<18)|0x329c2, (4<<18)|0x0b333, (5<<18)|0x2A9C6}, // 149 (5.745GHz) {153, (3<<18)|0x319c1, (4<<18)|0x09999, (5<<18)|0x2A9C6}, // 153 (5.765GHz) {157, (3<<18)|0x339c1, (4<<18)|0x0a666, (5<<18)|0x2A9C6}, // 157 (5.785GHz) {161, (3<<18)|0x305c3, (4<<18)|0x08ccc, (5<<18)|0x2A9C6}, // 161 (5.805GHz) // Japan { 184, (3<<18)|0x308c2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 184 (4.920GHz) { 188, (3<<18)|0x328c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 188 (4.940GHz) { 192, (3<<18)|0x318c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 192 (4.960GHz) { 196, (3<<18)|0x338c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 196 (4.980GHz) { 8, (3<<18)|0x324c1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 8 (5.040GHz) { 12, (3<<18)|0x314c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 12 (5.060GHz) { 16, (3<<18)|0x334c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 16 (5.080GHz) { 34, (3<<18)|0x31cc2, (4<<18)|0x0b333, (5<<18)|0x2A946}, // 34 (5.170GHz) { 38, (3<<18)|0x33cc1, (4<<18)|0x09999, (5<<18)|0x2A946}, // 38 (5.190GHz) { 42, (3<<18)|0x302c1, (4<<18)|0x0a666, (5<<18)|0x2A946}, // 42 (5.210GHz) { 46, (3<<18)|0x322c3, (4<<18)|0x08ccc, (5<<18)|0x2A946}, // 46 (5.230GHz) }; /***************************************************************************** ; For MAXIM2825/6/7 Ver. 317 or less ; Edited by Tiger, Sep-17-2003 for 2.4Ghz channels ; Updated by Tiger, Sep-22-2003 for 5.0Ghz channels ; Corrected by Tiger, Sep-23-2003, for 0x03 and 0x04 of 5.0Ghz channels 0x00 0x00080 0x01 0x214c0 0x02 0x13802 ;2.4GHz Channels ;channe1 01 (2.412GHz); 0x03 0x30143 ;0x04 0x0accc ;channe1 02 (2.417GHz); 0x03 0x32140 ;0x04 0x09111 ;channe1 03 (2.422GHz); 0x03 0x32142 ;0x04 0x0bbbb ;channe1 04 (2.427GHz); 0x03 0x32143 ;0x04 0x0accc ;channe1 05 (2.432GHz); 0x03 0x31140 ;0x04 0x09111 ;channe1 06 (2.437GHz); 0x03 0x31142 ;0x04 0x0bbbb ;channe1 07 (2.442GHz); 0x03 0x31143 ;0x04 0x0accc ;channe1 08 (2.447GHz); 0x03 0x33140 ;0x04 0x09111 ;channe1 09 (2.452GHz); 0x03 0x33142 ;0x04 0x0bbbb ;channe1 10 (2.457GHz); 0x03 0x33143 ;0x04 0x0accc ;channe1 11 (2.462GHz); 0x03 0x30940 ;0x04 0x09111 ;channe1 12 (2.467GHz); 0x03 0x30942 ;0x04 0x0bbbb ;channe1 13 (2.472GHz); 0x03 0x30943 ;0x04 0x0accc ;5.0Ghz Channels ;channel 36 (5.180GHz); 0x03 0x33cc0 ;0x04 0x0b333 ;channel 40 (5.200GHz); 0x03 0x302c0 ;0x04 0x08000 ;channel 44 (5.220GHz); 0x03 0x302c2 ;0x04 0x0b333 ;channel 48 (5.240GHz); 0x03 0x322c1 ;0x04 0x09999 ;channel 52 (5.260GHz); 0x03 0x312c1 ;0x04 0x0a666 ;channel 56 (5.280GHz); 0x03 0x332c3 ;0x04 0x08ccc ;channel 60 (5.300GHz); 0x03 0x30ac0 ;0x04 0x08000 ;channel 64 (5.320GHz); 0x03 0x30ac2 ;0x04 0x08333 ;2.4GHz band ;0x05 0x28986; ;5.0GHz band 0x05 0x2a986 0x06 0x18008 0x07 0x38400 0x08 0x05108 0x09 0x27ff8 0x0a 0x14000 0x0b 0x37f99 0x0c 0x0c000 *****************************************************************************/ u32 maxim_317_rf_data[] = { (0x00<<18)|0x000a2, (0x01<<18)|0x214c0, (0x02<<18)|0x13802, (0x03<<18)|0x30143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986, (0x06<<18)|0x18008, (0x07<<18)|0x38400, (0x08<<18)|0x05108, (0x09<<18)|0x27ff8, (0x0A<<18)|0x14000, (0x0B<<18)|0x37f99, (0x0C<<18)|0x0c000 }; u32 maxim_317_channel_data_24[][3] = { {(0x03<<18)|0x30143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 01 {(0x03<<18)|0x32140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 02 {(0x03<<18)|0x32142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 03 {(0x03<<18)|0x32143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 04 {(0x03<<18)|0x31140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 05 {(0x03<<18)|0x31142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 06 {(0x03<<18)|0x31143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 07 {(0x03<<18)|0x33140, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 08 {(0x03<<18)|0x33142, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 09 {(0x03<<18)|0x33143, (0x04<<18)|0x0accc, (0x05<<18)|0x28986}, // channe1 10 {(0x03<<18)|0x30940, (0x04<<18)|0x09111, (0x05<<18)|0x28986}, // channe1 11 {(0x03<<18)|0x30942, (0x04<<18)|0x0bbbb, (0x05<<18)|0x28986}, // channe1 12 {(0x03<<18)|0x30943, (0x04<<18)|0x0accc, (0x05<<18)|0x28986} // channe1 13 }; u32 maxim_317_channel_data_50[][3] = { {(0x03<<18)|0x33cc0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a986}, // channel 36 {(0x03<<18)|0x302c0, (0x04<<18)|0x08000, (0x05<<18)|0x2a986}, // channel 40 {(0x03<<18)|0x302c3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a986}, // channel 44 {(0x03<<18)|0x322c1, (0x04<<18)|0x09666, (0x05<<18)|0x2a986}, // channel 48 {(0x03<<18)|0x312c2, (0x04<<18)|0x09999, (0x05<<18)|0x2a986}, // channel 52 {(0x03<<18)|0x332c0, (0x04<<18)|0x0b333, (0x05<<18)|0x2a99e}, // channel 56 {(0x03<<18)|0x30ac0, (0x04<<18)|0x08000, (0x05<<18)|0x2a99e}, // channel 60 {(0x03<<18)|0x30ac3, (0x04<<18)|0x0accc, (0x05<<18)|0x2a99e} // channel 64 }; u32 maxim_317_power_data_24[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100}; u32 maxim_317_power_data_50[] = {(0x0C<<18)|0x0c000, (0x0C<<18)|0x0c100}; /***************************************************************************** ;;AL2230 MP (Mass Production Version) ;;RF Registers Setting for Airoha AL2230 silicon after June 1st, 2004 ;;Updated by Tiger Huang (June 1st, 2004) ;;20-bit length and LSB first ;;Ch01 (2412MHz) ;0x00 0x09EFC ;0x01 0x8CCCC; ;;Ch02 (2417MHz) ;0x00 0x09EFC ;0x01 0x8CCCD; ;;Ch03 (2422MHz) ;0x00 0x09E7C ;0x01 0x8CCCC; ;;Ch04 (2427MHz) ;0x00 0x09E7C ;0x01 0x8CCCD; ;;Ch05 (2432MHz) ;0x00 0x05EFC ;0x01 0x8CCCC; ;;Ch06 (2437MHz) ;0x00 0x05EFC ;0x01 0x8CCCD; ;;Ch07 (2442MHz) ;0x00 0x05E7C ;0x01 0x8CCCC; ;;Ch08 (2447MHz) ;0x00 0x05E7C ;0x01 0x8CCCD; ;;Ch09 (2452MHz) ;0x00 0x0DEFC ;0x01 0x8CCCC; ;;Ch10 (2457MHz) ;0x00 0x0DEFC ;0x01 0x8CCCD; ;;Ch11 (2462MHz) ;0x00 0x0DE7C ;0x01 0x8CCCC; ;;Ch12 (2467MHz) ;0x00 0x0DE7C ;0x01 0x8CCCD; ;;Ch13 (2472MHz) ;0x00 0x03EFC ;0x01 0x8CCCC; ;;Ch14 (2484Mhz) ;0x00 0x03E7C ;0x01 0x86666; 0x02 0x401D8; RXDCOC BW 100Hz for RXHP low ;;0x02 0x481DC; RXDCOC BW 30Khz for RXHP low 0x03 0xCFFF0 0x04 0x23800 0x05 0xA3B72 0x06 0x6DA01 0x07 0xE1688 0x08 0x11600 0x09 0x99E02 0x0A 0x5DDB0 0x0B 0xD9900 0x0C 0x3FFBD 0x0D 0xB0000 0x0F 0xF00A0 ;RF Calibration for Airoha AL2230 ;Edit by Ben Chang (01/30/04) ;Updated by Tiger Huang (03/03/04) 0x0f 0xf00a0 ; Initial Setting 0x0f 0xf00b0 ; Activate TX DCC 0x0f 0xf02a0 ; Activate Phase Calibration 0x0f 0xf00e0 ; Activate Filter RC Calibration 0x0f 0xf00a0 ; Restore Initial Setting *****************************************************************************/ u32 al2230_rf_data[] = { (0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCC, (0x02<<20)|0x40058,// 20060627 Anson 0x401D8, (0x03<<20)|0xCFFF0, (0x04<<20)|0x24100,// 20060627 Anson 0x23800, (0x05<<20)|0xA3B2F,// 20060627 Anson 0xA3B72 (0x06<<20)|0x6DA01, (0x07<<20)|0xE3628,// 20060627 Anson 0xE1688, (0x08<<20)|0x11600, (0x09<<20)|0x9DC02,// 20060627 Anosn 0x97602,//0x99E02, //0x9AE02 (0x0A<<20)|0x5ddb0, // 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth (0x0B<<20)|0xD9900, (0x0C<<20)|0x3FFBD, (0x0D<<20)|0xB0000, (0x0F<<20)|0xF01A0 // 20060627 Anson 0xF00A0 }; u32 al2230s_rf_data[] = { (0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCC, (0x02<<20)|0x40058,// 20060419 0x401D8, (0x03<<20)|0xCFFF0, (0x04<<20)|0x24100,// 20060419 0x23800, (0x05<<20)|0xA3B2F,// 20060419 0xA3B72, (0x06<<20)|0x6DA01, (0x07<<20)|0xE3628,// 20060419 0xE1688, (0x08<<20)|0x11600, (0x09<<20)|0x9DC02,// 20060419 0x97602,//0x99E02, //0x9AE02 (0x0A<<20)|0x5DDB0,// 941206 For QCOM interference 0x588b0,//0x5DDB0, 940601 adj 0x5aa30 for bluetooth (0x0B<<20)|0xD9900, (0x0C<<20)|0x3FFBD, (0x0D<<20)|0xB0000, (0x0F<<20)|0xF01A0 // 20060419 0xF00A0 }; u32 al2230_channel_data_24[][2] = { {(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCC}, // channe1 01 {(0x00<<20)|0x09EFC, (0x01<<20)|0x8CCCD}, // channe1 02 {(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCC}, // channe1 03 {(0x00<<20)|0x09E7C, (0x01<<20)|0x8CCCD}, // channe1 04 {(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCC}, // channe1 05 {(0x00<<20)|0x05EFC, (0x01<<20)|0x8CCCD}, // channe1 06 {(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCC}, // channe1 07 {(0x00<<20)|0x05E7C, (0x01<<20)|0x8CCCD}, // channe1 08 {(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCC}, // channe1 09 {(0x00<<20)|0x0DEFC, (0x01<<20)|0x8CCCD}, // channe1 10 {(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCC}, // channe1 11 {(0x00<<20)|0x0DE7C, (0x01<<20)|0x8CCCD}, // channe1 12 {(0x00<<20)|0x03EFC, (0x01<<20)|0x8CCCC}, // channe1 13 {(0x00<<20)|0x03E7C, (0x01<<20)|0x86666} // channe1 14 }; // Current setting. u32 airoha_power_data_24[] = {(0x09<<20)|0x90202, (0x09<<20)|0x96602, (0x09<<20)|0x97602}; #define AIROHA_TXVGA_LOW_INDEX 31 // Index for 0x90202 #define AIROHA_TXVGA_MIDDLE_INDEX 12 // Index for 0x96602 #define AIROHA_TXVGA_HIGH_INDEX 8 // Index for 0x97602 1.0.24.0 1.0.28.0 /* u32 airoha_power_data_24[] = { 0x9FE02, // Max - 0 dB 0x9BE02, // Max - 1 dB 0x9DE02, // Max - 2 dB 0x99E02, // Max - 3 dB 0x9EE02, // Max - 4 dB 0x9AE02, // Max - 5 dB 0x9CE02, // Max - 6 dB 0x98E02, // Max - 7 dB 0x97602, // Max - 8 dB 0x93602, // Max - 9 dB 0x95602, // Max - 10 dB 0x91602, // Max - 11 dB 0x96602, // Max - 12 dB 0x92602, // Max - 13 dB 0x94602, // Max - 14 dB 0x90602, // Max - 15 dB 0x97A02, // Max - 16 dB 0x93A02, // Max - 17 dB 0x95A02, // Max - 18 dB 0x91A02, // Max - 19 dB 0x96A02, // Max - 20 dB 0x92A02, // Max - 21 dB 0x94A02, // Max - 22 dB 0x90A02, // Max - 23 dB 0x97202, // Max - 24 dB 0x93202, // Max - 25 dB 0x95202, // Max - 26 dB 0x91202, // Max - 27 dB 0x96202, // Max - 28 dB 0x92202, // Max - 29 dB 0x94202, // Max - 30 dB 0x90202 // Max - 31 dB }; */ // 20040927 1.1.69.1000 ybjiang // from John u32 al2230_txvga_data[][2] = { //value , index {0x090202, 0}, {0x094202, 2}, {0x092202, 4}, {0x096202, 6}, {0x091202, 8}, {0x095202, 10}, {0x093202, 12}, {0x097202, 14}, {0x090A02, 16}, {0x094A02, 18}, {0x092A02, 20}, {0x096A02, 22}, {0x091A02, 24}, {0x095A02, 26}, {0x093A02, 28}, {0x097A02, 30}, {0x090602, 32}, {0x094602, 34}, {0x092602, 36}, {0x096602, 38}, {0x091602, 40}, {0x095602, 42}, {0x093602, 44}, {0x097602, 46}, {0x090E02, 48}, {0x098E02, 49}, {0x094E02, 50}, {0x09CE02, 51}, {0x092E02, 52}, {0x09AE02, 53}, {0x096E02, 54}, {0x09EE02, 55}, {0x091E02, 56}, {0x099E02, 57}, {0x095E02, 58}, {0x09DE02, 59}, {0x093E02, 60}, {0x09BE02, 61}, {0x097E02, 62}, {0x09FE02, 63} }; //-------------------------------- // For Airoha AL7230, 2.4Ghz band // Edit by Tiger, (March, 9, 2005) // 24bit, MSB first //channel independent registers: u32 al7230_rf_data_24[] = { (0x00<<24)|0x003790, (0x01<<24)|0x133331, (0x02<<24)|0x841FF2, (0x03<<24)|0x3FDFA3, (0x04<<24)|0x7FD784, (0x05<<24)|0x802B55, (0x06<<24)|0x56AF36, (0x07<<24)|0xCE0207, (0x08<<24)|0x6EBC08, (0x09<<24)|0x221BB9, (0x0A<<24)|0xE0000A, (0x0B<<24)|0x08071B, (0x0C<<24)|0x000A3C, (0x0D<<24)|0xFFFFFD, (0x0E<<24)|0x00000E, (0x0F<<24)|0x1ABA8F }; u32 al7230_channel_data_24[][2] = { {(0x00<<24)|0x003790, (0x01<<24)|0x133331}, // channe1 01 {(0x00<<24)|0x003790, (0x01<<24)|0x1B3331}, // channe1 02 {(0x00<<24)|0x003790, (0x01<<24)|0x033331}, // channe1 03 {(0x00<<24)|0x003790, (0x01<<24)|0x0B3331}, // channe1 04 {(0x00<<24)|0x0037A0, (0x01<<24)|0x133331}, // channe1 05 {(0x00<<24)|0x0037A0, (0x01<<24)|0x1B3331}, // channe1 06 {(0x00<<24)|0x0037A0, (0x01<<24)|0x033331}, // channe1 07 {(0x00<<24)|0x0037A0, (0x01<<24)|0x0B3331}, // channe1 08 {(0x00<<24)|0x0037B0, (0x01<<24)|0x133331}, // channe1 09 {(0x00<<24)|0x0037B0, (0x01<<24)|0x1B3331}, // channe1 10 {(0x00<<24)|0x0037B0, (0x01<<24)|0x033331}, // channe1 11 {(0x00<<24)|0x0037B0, (0x01<<24)|0x0B3331}, // channe1 12 {(0x00<<24)|0x0037C0, (0x01<<24)|0x133331}, // channe1 13 {(0x00<<24)|0x0037C0, (0x01<<24)|0x066661} // channel 14 }; //channel independent registers: u32 al7230_rf_data_50[] = { (0x00<<24)|0x0FF520, (0x01<<24)|0x000001, (0x02<<24)|0x451FE2, (0x03<<24)|0x5FDFA3, (0x04<<24)|0x6FD784, (0x05<<24)|0x853F55, (0x06<<24)|0x56AF36, (0x07<<24)|0xCE0207, (0x08<<24)|0x6EBC08, (0x09<<24)|0x221BB9, (0x0A<<24)|0xE0600A, (0x0B<<24)|0x08044B, (0x0C<<24)|0x00143C, (0x0D<<24)|0xFFFFFD, (0x0E<<24)|0x00000E, (0x0F<<24)|0x12BACF //5Ghz default state }; u32 al7230_channel_data_5[][4] = { //channel dependent registers: 0x00, 0x01 and 0x04 //11J =========== {184, (0x00<<24)|0x0FF520, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 184 {188, (0x00<<24)|0x0FF520, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 188 {192, (0x00<<24)|0x0FF530, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 192 {196, (0x00<<24)|0x0FF530, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 196 {8, (0x00<<24)|0x0FF540, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 008 {12, (0x00<<24)|0x0FF540, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 012 {16, (0x00<<24)|0x0FF550, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 016 {34, (0x00<<24)|0x0FF560, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 034 {38, (0x00<<24)|0x0FF570, (0x01<<24)|0x100001, (0x04<<24)|0x77F784}, // channel 038 {42, (0x00<<24)|0x0FF570, (0x01<<24)|0x1AAAA1, (0x04<<24)|0x77F784}, // channel 042 {46, (0x00<<24)|0x0FF570, (0x01<<24)|0x055551, (0x04<<24)|0x77F784}, // channel 046 //11 A/H ========= {36, (0x00<<24)|0x0FF560, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 036 {40, (0x00<<24)|0x0FF570, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 040 {44, (0x00<<24)|0x0FF570, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 044 {48, (0x00<<24)|0x0FF570, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 048 {52, (0x00<<24)|0x0FF580, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 052 {56, (0x00<<24)|0x0FF580, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 056 {60, (0x00<<24)|0x0FF580, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 060 {64, (0x00<<24)|0x0FF590, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 064 {100, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 100 {104, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 104 {108, (0x00<<24)|0x0FF5C0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 108 {112, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 112 {116, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 116 {120, (0x00<<24)|0x0FF5D0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 120 {124, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 124 {128, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 128 {132, (0x00<<24)|0x0FF5E0, (0x01<<24)|0x0AAAA1, (0x04<<24)|0x77F784}, // channel 132 {136, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x155551, (0x04<<24)|0x77F784}, // channel 136 {140, (0x00<<24)|0x0FF5F0, (0x01<<24)|0x000001, (0x04<<24)|0x67F784}, // channel 140 {149, (0x00<<24)|0x0FF600, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 149 {153, (0x00<<24)|0x0FF600, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784}, // channel 153 {157, (0x00<<24)|0x0FF600, (0x01<<24)|0x0D5551, (0x04<<24)|0x77F784}, // channel 157 {161, (0x00<<24)|0x0FF610, (0x01<<24)|0x180001, (0x04<<24)|0x77F784}, // channel 161 {165, (0x00<<24)|0x0FF610, (0x01<<24)|0x02AAA1, (0x04<<24)|0x77F784} // channel 165 }; //; RF Calibration <=== Register 0x0F //0x0F 0x1ABA8F; start from 2.4Ghz default state //0x0F 0x9ABA8F; TXDC compensation //0x0F 0x3ABA8F; RXFIL adjustment //0x0F 0x1ABA8F; restore 2.4Ghz default state //;TXVGA Mapping Table <=== Register 0x0B u32 al7230_txvga_data[][2] = { {0x08040B, 0}, //TXVGA=0; {0x08041B, 1}, //TXVGA=1; {0x08042B, 2}, //TXVGA=2; {0x08043B, 3}, //TXVGA=3; {0x08044B, 4}, //TXVGA=4; {0x08045B, 5}, //TXVGA=5; {0x08046B, 6}, //TXVGA=6; {0x08047B, 7}, //TXVGA=7; {0x08048B, 8}, //TXVGA=8; {0x08049B, 9}, //TXVGA=9; {0x0804AB, 10}, //TXVGA=10; {0x0804BB, 11}, //TXVGA=11; {0x0804CB, 12}, //TXVGA=12; {0x0804DB, 13}, //TXVGA=13; {0x0804EB, 14}, //TXVGA=14; {0x0804FB, 15}, //TXVGA=15; {0x08050B, 16}, //TXVGA=16; {0x08051B, 17}, //TXVGA=17; {0x08052B, 18}, //TXVGA=18; {0x08053B, 19}, //TXVGA=19; {0x08054B, 20}, //TXVGA=20; {0x08055B, 21}, //TXVGA=21; {0x08056B, 22}, //TXVGA=22; {0x08057B, 23}, //TXVGA=23; {0x08058B, 24}, //TXVGA=24; {0x08059B, 25}, //TXVGA=25; {0x0805AB, 26}, //TXVGA=26; {0x0805BB, 27}, //TXVGA=27; {0x0805CB, 28}, //TXVGA=28; {0x0805DB, 29}, //TXVGA=29; {0x0805EB, 30}, //TXVGA=30; {0x0805FB, 31}, //TXVGA=31; {0x08060B, 32}, //TXVGA=32; {0x08061B, 33}, //TXVGA=33; {0x08062B, 34}, //TXVGA=34; {0x08063B, 35}, //TXVGA=35; {0x08064B, 36}, //TXVGA=36; {0x08065B, 37}, //TXVGA=37; {0x08066B, 38}, //TXVGA=38; {0x08067B, 39}, //TXVGA=39; {0x08068B, 40}, //TXVGA=40; {0x08069B, 41}, //TXVGA=41; {0x0806AB, 42}, //TXVGA=42; {0x0806BB, 43}, //TXVGA=43; {0x0806CB, 44}, //TXVGA=44; {0x0806DB, 45}, //TXVGA=45; {0x0806EB, 46}, //TXVGA=46; {0x0806FB, 47}, //TXVGA=47; {0x08070B, 48}, //TXVGA=48; {0x08071B, 49}, //TXVGA=49; {0x08072B, 50}, //TXVGA=50; {0x08073B, 51}, //TXVGA=51; {0x08074B, 52}, //TXVGA=52; {0x08075B, 53}, //TXVGA=53; {0x08076B, 54}, //TXVGA=54; {0x08077B, 55}, //TXVGA=55; {0x08078B, 56}, //TXVGA=56; {0x08079B, 57}, //TXVGA=57; {0x0807AB, 58}, //TXVGA=58; {0x0807BB, 59}, //TXVGA=59; {0x0807CB, 60}, //TXVGA=60; {0x0807DB, 61}, //TXVGA=61; {0x0807EB, 62}, //TXVGA=62; {0x0807FB, 63}, //TXVGA=63; }; //-------------------------------- //; W89RF242 RFIC SPI programming initial data //; Winbond WLAN 11g RFIC BB-SPI register -- version FA5976A rev 1.3b //; Update Date: Ocotber 3, 2005 by PP10 Hsiang-Te Ho //; //; Version 1.3b revision items: (Oct. 1, 2005 by HTHo) for FA5976A u32 w89rf242_rf_data[] = { (0x00<<24)|0xF86100, // 20060721 0xF86100, //; 3E184; MODA (0x00) -- Normal mode ; calibration off (0x01<<24)|0xEFFFC2, //; 3BFFF; MODB (0x01) -- turn off RSSI, and other circuits are turned on (0x02<<24)|0x102504, //; 04094; FSET (0x02) -- default 20MHz crystal ; Icmp=1.5mA (0x03<<24)|0x026286, //; 0098A; FCHN (0x03) -- default CH7, 2442MHz (0x04<<24)|0x000208, // 20060612.1.a 0x0002C8, // 20050818 // 20050816 0x000388 //; 02008; FCAL (0x04) -- XTAL Freq Trim=001000 (socket board#1); FA5976AYG_v1.3C (0x05<<24)|0x24C60A, // 20060612.1.a 0x24C58A, // 941003 0x24C48A, // 20050818.2 0x24848A, // 20050818 // 20050816 0x24C48A //; 09316; GANA (0x05) -- TX VGA default (TXVGA=0x18(12)) & TXGPK=110 ; FA5976A_1.3D (0x06<<24)|0x3432CC, // 941003 0x26C34C, // 20050818 0x06B40C //; 0D0CB; GANB (0x06) -- RXDC(DC offset) on; LNA=11; RXVGA=001011(11) ; RXFLSW=11(010001); RXGPK=00; RXGCF=00; -50dBm input (0x07<<24)|0x0C68CE, // 20050818.2 0x0C66CE, // 20050818 // 20050816 0x0C68CE //; 031A3; FILT (0x07) -- TX/RX filter with auto-tuning; TFLBW=011; RFLBW=100 (0x08<<24)|0x100010, //; 04000; TCAL (0x08) -- //for LO (0x09<<24)|0x004012, // 20060612.1.a 0x6E4012, // 0x004012, //; 1B900; RCALA (0x09) -- FASTS=11; HPDE=01 (100nsec); SEHP=1 (select B0 pin=RXHP); RXHP=1 (Turn on RXHP function)(FA5976A_1.3C) (0x0A<<24)|0x704014, //; 1C100; RCALB (0x0A) (0x0B<<24)|0x18BDD6, // 941003 0x1805D6, // 20050818.2 0x1801D6, // 20050818 // 20050816 0x1805D6 //; 062F7; IQCAL (0x0B) -- Turn on LO phase tuner=0111 & RX-LO phase = 0111; FA5976A_1.3B (2005/09/29) (0x0C<<24)|0x575558, // 20050818.2 0x555558, // 20050818 // 20050816 0x575558 //; 15D55 ; IBSA (0x0C) -- IFPre =11 ; TC5376A_v1.3A for corner (0x0D<<24)|0x55545A, // 20060612.1.a 0x55555A, //; 15555 ; IBSB (0x0D) (0x0E<<24)|0x5557DC, // 20060612.1.a 0x55555C, // 941003 0x5557DC, //; 1555F ; IBSC (0x0E) -- IRLNA & IRLNB (PTAT & Const current)=01/01; FA5976B_1.3F (2005/11/25) (0x10<<24)|0x000C20, // 941003 0x000020, // 20050818 //; 00030 ; TMODA (0x10) -- LNA_gain_step=0011 ; LNA=15/16dB (0x11<<24)|0x0C0022, // 941003 0x030022 // 20050818.2 0x030022 // 20050818 // 20050816 0x0C0022 //; 03000 ; TMODB (0x11) -- Turn ON RX-Q path Test Switch; To improve IQ path group delay (FA5976A_1.3C) (0x12<<24)|0x000024 // 20060612.1.a 0x001824 // 941003 add //; TMODC (0x12) -- Turn OFF Tempearure sensor }; u32 w89rf242_channel_data_24[][2] = { {(0x03<<24)|0x025B06, (0x04<<24)|0x080408}, // channe1 01 {(0x03<<24)|0x025C46, (0x04<<24)|0x080408}, // channe1 02 {(0x03<<24)|0x025D86, (0x04<<24)|0x080408}, // channe1 03 {(0x03<<24)|0x025EC6, (0x04<<24)|0x080408}, // channe1 04 {(0x03<<24)|0x026006, (0x04<<24)|0x080408}, // channe1 05 {(0x03<<24)|0x026146, (0x04<<24)|0x080408}, // channe1 06 {(0x03<<24)|0x026286, (0x04<<24)|0x080408}, // channe1 07 {(0x03<<24)|0x0263C6, (0x04<<24)|0x080408}, // channe1 08 {(0x03<<24)|0x026506, (0x04<<24)|0x080408}, // channe1 09 {(0x03<<24)|0x026646, (0x04<<24)|0x080408}, // channe1 10 {(0x03<<24)|0x026786, (0x04<<24)|0x080408}, // channe1 11 {(0x03<<24)|0x0268C6, (0x04<<24)|0x080408}, // channe1 12 {(0x03<<24)|0x026A06, (0x04<<24)|0x080408}, // channe1 13 {(0x03<<24)|0x026D06, (0x04<<24)|0x080408} // channe1 14 }; u32 w89rf242_power_data_24[] = {(0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A, (0x05<<24)|0x24C48A}; // 20060315.6 Enlarge for new scale // 20060316.6 20060619.2.a add mapping array u32 w89rf242_txvga_old_mapping[][2] = { {0, 0} , // New <-> Old {1, 1} , {2, 2} , {3, 3} , {4, 4} , {6, 5} , {8, 6 }, {10, 7 }, {12, 8 }, {14, 9 }, {16, 10}, {18, 11}, {20, 12}, {22, 13}, {24, 14}, {26, 15}, {28, 16}, {30, 17}, {32, 18}, {34, 19}, }; // 20060619.3 modify from Bruce's mail u32 w89rf242_txvga_data[][5] = { //low gain mode { (0x05<<24)|0x24C00A, 0, 0x00292315, 0x0800FEFF, 0x52523131 },// ; min gain { (0x05<<24)|0x24C80A, 1, 0x00292315, 0x0800FEFF, 0x52523131 }, { (0x05<<24)|0x24C04A, 2, 0x00292315, 0x0800FEFF, 0x52523131 },// (default) +14dBm (ANT) { (0x05<<24)|0x24C84A, 3, 0x00292315, 0x0800FEFF, 0x52523131 }, //TXVGA=0x10 { (0x05<<24)|0x24C40A, 4, 0x00292315, 0x0800FEFF, 0x60603838 }, { (0x05<<24)|0x24C40A, 5, 0x00262114, 0x0700FEFF, 0x65653B3B }, //TXVGA=0x11 { (0x05<<24)|0x24C44A, 6, 0x00241F13, 0x0700FFFF, 0x58583333 }, { (0x05<<24)|0x24C44A, 7, 0x00292315, 0x0800FEFF, 0x5E5E3737 }, //TXVGA=0x12 { (0x05<<24)|0x24C48A, 8, 0x00262114, 0x0700FEFF, 0x53533030 }, { (0x05<<24)|0x24C48A, 9, 0x00241F13, 0x0700FFFF, 0x59593434 }, //TXVGA=0x13 { (0x05<<24)|0x24C4CA, 10, 0x00292315, 0x0800FEFF, 0x52523030 }, { (0x05<<24)|0x24C4CA, 11, 0x00262114, 0x0700FEFF, 0x56563232 }, //TXVGA=0x14 { (0x05<<24)|0x24C50A, 12, 0x00292315, 0x0800FEFF, 0x54543131 }, { (0x05<<24)|0x24C50A, 13, 0x00262114, 0x0700FEFF, 0x58583434 }, //TXVGA=0x15 { (0x05<<24)|0x24C54A, 14, 0x00292315, 0x0800FEFF, 0x54543131 }, { (0x05<<24)|0x24C54A, 15, 0x00262114, 0x0700FEFF, 0x59593434 }, //TXVGA=0x16 { (0x05<<24)|0x24C58A, 16, 0x00292315, 0x0800FEFF, 0x55553131 }, { (0x05<<24)|0x24C58A, 17, 0x00292315, 0x0800FEFF, 0x5B5B3535 }, //TXVGA=0x17 { (0x05<<24)|0x24C5CA, 18, 0x00262114, 0x0700FEFF, 0x51512F2F }, { (0x05<<24)|0x24C5CA, 19, 0x00241F13, 0x0700FFFF, 0x55553131 }, //TXVGA=0x18 { (0x05<<24)|0x24C60A, 20, 0x00292315, 0x0800FEFF, 0x4F4F2E2E }, { (0x05<<24)|0x24C60A, 21, 0x00262114, 0x0700FEFF, 0x53533030 }, //TXVGA=0x19 { (0x05<<24)|0x24C64A, 22, 0x00292315, 0x0800FEFF, 0x4E4E2D2D }, { (0x05<<24)|0x24C64A, 23, 0x00262114, 0x0700FEFF, 0x53533030 }, //TXVGA=0x1A { (0x05<<24)|0x24C68A, 24, 0x00292315, 0x0800FEFF, 0x50502E2E }, { (0x05<<24)|0x24C68A, 25, 0x00262114, 0x0700FEFF, 0x55553131 }, //TXVGA=0x1B { (0x05<<24)|0x24C6CA, 26, 0x00262114, 0x0700FEFF, 0x53533030 }, { (0x05<<24)|0x24C6CA, 27, 0x00292315, 0x0800FEFF, 0x5A5A3434 }, //TXVGA=0x1C { (0x05<<24)|0x24C70A, 28, 0x00292315, 0x0800FEFF, 0x55553131 }, { (0x05<<24)|0x24C70A, 29, 0x00292315, 0x0800FEFF, 0x5D5D3636 }, //TXVGA=0x1D { (0x05<<24)|0x24C74A, 30, 0x00292315, 0x0800FEFF, 0x5F5F3737 }, { (0x05<<24)|0x24C74A, 31, 0x00262114, 0x0700FEFF, 0x65653B3B }, //TXVGA=0x1E { (0x05<<24)|0x24C78A, 32, 0x00292315, 0x0800FEFF, 0x66663B3B }, { (0x05<<24)|0x24C78A, 33, 0x00262114, 0x0700FEFF, 0x70704141 }, //TXVGA=0x1F { (0x05<<24)|0x24C7CA, 34, 0x00292315, 0x0800FEFF, 0x72724242 } }; /////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////// //============================================================================================================= // Uxx_ReadEthernetAddress -- // // Routine Description: // Reads in the Ethernet address from the IC. // // Arguments: // pHwData - The pHwData structure // // Return Value: // // The address is stored in EthernetIDAddr. //============================================================================================================= void Uxx_ReadEthernetAddress( struct hw_data * pHwData ) { u32 ltmp; // Reading Ethernet address from EEPROM and set into hardware due to MAC address maybe change. // Only unplug and plug again can make hardware read EEPROM again. 20060727 Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08000000 ); // Start EEPROM access + Read + address(0x0d) Wb35Reg_ReadSync( pHwData, 0x03b4, <mp ); *(u16 *)pHwData->PermanentMacAddress = cpu_to_le16((u16)ltmp); //20060926 anson's endian Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08010000 ); // Start EEPROM access + Read + address(0x0d) Wb35Reg_ReadSync( pHwData, 0x03b4, <mp ); *(u16 *)(pHwData->PermanentMacAddress + 2) = cpu_to_le16((u16)ltmp); //20060926 anson's endian Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08020000 ); // Start EEPROM access + Read + address(0x0d) Wb35Reg_ReadSync( pHwData, 0x03b4, <mp ); *(u16 *)(pHwData->PermanentMacAddress + 4) = cpu_to_le16((u16)ltmp); //20060926 anson's endian *(u16 *)(pHwData->PermanentMacAddress + 6) = 0; Wb35Reg_WriteSync( pHwData, 0x03e8, cpu_to_le32(*(u32 *)pHwData->PermanentMacAddress) ); //20060926 anson's endian Wb35Reg_WriteSync( pHwData, 0x03ec, cpu_to_le32(*(u32 *)(pHwData->PermanentMacAddress+4)) ); //20060926 anson's endian } //=============================================================================================================== // CardGetMulticastBit -- // Description: // For a given multicast address, returns the byte and bit in the card multicast registers that it hashes to. // Calls CardComputeCrc() to determine the CRC value. // Arguments: // Address - the address // Byte - the byte that it hashes to // Value - will have a 1 in the relevant bit // Return Value: // None. //============================================================================================================== void CardGetMulticastBit( u8 Address[ETH_ALEN], u8 *Byte, u8 *Value ) { u32 Crc; u32 BitNumber; // First compute the CRC. Crc = CardComputeCrc(Address, ETH_ALEN); // The computed CRC is bit0~31 from left to right //At first we should do right shift 25bits, and read 7bits by using '&', 2^7=128 BitNumber = (u32) ((Crc >> 26) & 0x3f); *Byte = (u8) (BitNumber >> 3);// 900514 original (BitNumber / 8) *Value = (u8) ((u8)1 << (BitNumber % 8)); } void Uxx_power_on_procedure( struct hw_data * pHwData ) { u32 ltmp, loop; if( pHwData->phy_type <= RF_MAXIM_V1 ) Wb35Reg_WriteSync( pHwData, 0x03d4, 0xffffff38 ); else { Wb35Reg_WriteSync( pHwData, 0x03f4, 0xFF5807FF );// 20060721 For NEW IC 0xFF5807FF // 20060511.1 Fix the following 4 steps for Rx of RF 2230 initial fail Wb35Reg_WriteSync( pHwData, 0x03d4, 0x80 );// regulator on only msleep(10); // Modify 20051221.1.b Wb35Reg_WriteSync( pHwData, 0x03d4, 0xb8 );// REG_ON RF_RSTN on, and msleep(10); // Modify 20051221.1.b ltmp = 0x4968; if( (pHwData->phy_type == RF_WB_242) || (RF_WB_242_1 == pHwData->phy_type) ) // 20060619.5 Add ltmp = 0x4468; Wb35Reg_WriteSync( pHwData, 0x03d0, ltmp ); Wb35Reg_WriteSync( pHwData, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0 msleep(20); // Modify 20051221.1.b Wb35Reg_ReadSync( pHwData, 0x03d0, <mp ); loop = 500; // Wait for 5 second 20061101 while( !(ltmp & 0x20) && loop-- ) { msleep(10); // Modify 20051221.1.b if( !Wb35Reg_ReadSync( pHwData, 0x03d0, <mp ) ) break; } Wb35Reg_WriteSync( pHwData, 0x03d4, 0xe0 );// MLK_EN } Wb35Reg_WriteSync( pHwData, 0x03b0, 1 );// Reset hardware first msleep(10); // Add this 20051221.1.b // Set burst write delay Wb35Reg_WriteSync( pHwData, 0x03f8, 0x7ff ); } void Set_ChanIndep_RfData_al7230_24( struct hw_data * pHwData, u32 *pltmp ,char number) { u8 i; for( i=0; iphy_para[i] = al7230_rf_data_24[i]; pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_24[i]&0xffffff); } } void Set_ChanIndep_RfData_al7230_50( struct hw_data * pHwData, u32 *pltmp, char number) { u8 i; for( i=0; iphy_para[i] = al7230_rf_data_50[i]; pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_rf_data_50[i]&0xffffff); } } //============================================================================================================= // RFSynthesizer_initial -- //============================================================================================================= void RFSynthesizer_initial(struct hw_data * pHwData) { u32 altmp[32]; u32 * pltmp = altmp; u32 ltmp; u8 number=0x00; // The number of register vale u8 i; // // bit[31] SPI Enable. // 1=perform synthesizer program operation. This bit will // cleared automatically after the operation is completed. // bit[30] SPI R/W Control // 0=write, 1=read // bit[29:24] SPI Data Format Length // bit[17:4 ] RF Data bits. // bit[3 :0 ] RF address. switch( pHwData->phy_type ) { case RF_MAXIM_2825: case RF_MAXIM_V1: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331) number = sizeof(max2825_rf_data)/sizeof(max2825_rf_data[0]); for( i=0; iphy_para[i] = max2825_rf_data[i];// Backup Rf parameter pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_rf_data[i], 18); } break; case RF_MAXIM_2827: number = sizeof(max2827_rf_data)/sizeof(max2827_rf_data[0]); for( i=0; iphy_para[i] = max2827_rf_data[i]; pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_rf_data[i], 18); } break; case RF_MAXIM_2828: number = sizeof(max2828_rf_data)/sizeof(max2828_rf_data[0]); for( i=0; iphy_para[i] = max2828_rf_data[i]; pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_rf_data[i], 18); } break; case RF_MAXIM_2829: number = sizeof(max2829_rf_data)/sizeof(max2829_rf_data[0]); for( i=0; iphy_para[i] = max2829_rf_data[i]; pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_rf_data[i], 18); } break; case RF_AIROHA_2230: number = sizeof(al2230_rf_data)/sizeof(al2230_rf_data[0]); for( i=0; iphy_para[i] = al2230_rf_data[i]; pltmp[i] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data[i], 20); } break; case RF_AIROHA_2230S: number = sizeof(al2230s_rf_data)/sizeof(al2230s_rf_data[0]); for( i=0; iphy_para[i] = al2230s_rf_data[i]; pltmp[i] = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230s_rf_data[i], 20); } break; case RF_AIROHA_7230: //Start to fill RF parameters, PLL_ON should be pulled low. Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000000 ); #ifdef _PE_STATE_DUMP_ printk("* PLL_ON low\n"); #endif number = sizeof(al7230_rf_data_24)/sizeof(al7230_rf_data_24[0]); Set_ChanIndep_RfData_al7230_24(pHwData, pltmp, number); break; case RF_WB_242: case RF_WB_242_1: // 20060619.5 Add number = sizeof(w89rf242_rf_data)/sizeof(w89rf242_rf_data[0]); for( i=0; iVCO_trim<<4; } pHwData->phy_para[i] = ltmp; pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( ltmp, 24); } break; } pHwData->phy_number = number; // The 16 is the maximum capability of hardware. Here use 12 if( number > 12 ) { //Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 12, NO_INCREMENT ); for( i=0; i<12; i++ ) // For Al2230 Wb35Reg_WriteSync( pHwData, 0x0864, pltmp[i] ); pltmp += 12; number -= 12; } // Write to register. number must less and equal than 16 for( i=0; iCalOneTime ) return; pHwData->CalOneTime = 1; switch( pHwData->phy_type ) { case RF_AIROHA_2230: // 20060511.1 --- Modifying the follow step for Rx issue----------------- ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x07<<20)|0xE168E, 20); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(10); ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_rf_data[7], 20); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(10); case RF_AIROHA_2230S: // 20060420 Add this // 20060511.1 --- Modifying the follow step for Rx issue----------------- Wb35Reg_WriteSync( pHwData, 0x03d4, 0x80 );// regulator on only msleep(10); // Modify 20051221.1.b Wb35Reg_WriteSync( pHwData, 0x03d4, 0xa0 );// PLL_PD REF_PD set to 0 msleep(10); // Modify 20051221.1.b Wb35Reg_WriteSync( pHwData, 0x03d4, 0xe0 );// MLK_EN Wb35Reg_WriteSync( pHwData, 0x03b0, 1 );// Reset hardware first msleep(10); // Add this 20051221.1.b //------------------------------------------------------------------------ // The follow code doesn't use the burst-write mode //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Raise Initial Setting ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); ltmp = pHwData->reg.BB5C & 0xfffff000; Wb35Reg_WriteSync( pHwData, 0x105c, ltmp ); pHwData->reg.BB50 |= 0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060315.1 modify Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50); msleep(5); //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01B0); //Activate Filter Cal. ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01B0, 20); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01e0); //Activate TX DCC ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01E0, 20); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); //phy_set_rf_data(phw_data, 0x0F, (0x0F<<20) | 0xF01A0); //Resotre Initial Setting ltmp = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( (0x0F<<20) | 0xF01A0, 20); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); // //Force TXI(Q)P(N) to normal control Wb35Reg_WriteSync( pHwData, 0x105c, pHwData->reg.BB5C ); pHwData->reg.BB50 &= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START); Wb35Reg_WriteSync( pHwData, 0x1050, pHwData->reg.BB50); break; case RF_AIROHA_7230: //RF parameters have filled completely, PLL_ON should be //pulled high Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000080 ); #ifdef _PE_STATE_DUMP_ printk("* PLL_ON high\n"); #endif //2.4GHz //ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F; //Wb35Reg_WriteSync pHwData, 0x0864, ltmp ); //msleep(1); // Sleep 1 ms ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x9ABA8F; Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x3ABA8F; Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x1ABA8F; Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); //5GHz Wb35Reg_WriteSync( pHwData, 0x03dc, 0x00000000 ); #ifdef _PE_STATE_DUMP_ printk("* PLL_ON low\n"); #endif number = sizeof(al7230_rf_data_50)/sizeof(al7230_rf_data_50[0]); Set_ChanIndep_RfData_al7230_50(pHwData, pltmp, number); // Write to register. number must less and equal than 16 for( i=0; ireg.BB5C & 0xfffff000; Wb35Reg_WriteSync( pHwData, 0x105c, ltmp ); Wb35Reg_WriteSync( pHwData, 0x1058, 0 ); pHwData->reg.BB50 |= 0x3;//(MASK_IQCAL_MODE|MASK_CALIB_START);//20060630 Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50); //----- Calibration (1). VCO frequency calibration //Calibration (1a.0). Synthesizer reset (HTHo corrected 2005/05/10) ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00101E, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); // Sleep 5ms //Calibration (1a). VCO frequency calibration mode ; waiting 2msec VCO calibration time ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFE69c0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(2); // Sleep 2ms //----- Calibration (2). TX baseband Gm-C filter auto-tuning //Calibration (2a). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (2b.0). TX filter auto-tuning BW: TFLBW=101 (TC5376A default) ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (2b). send TX reset signal (HTHo corrected May 10, 2005) ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00201E, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (2c). turn-on TX Gm-C filter auto-tuning ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFCEBC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); udelay(150); // Sleep 150 us //turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF8EBC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //----- Calibration (3). RX baseband Gm-C filter auto-tuning //Calibration (3a). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (3b.0). RX filter auto-tuning BW: RFLBW=100 (TC5376A+corner default; July 26, 2005) ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x07<<24) | 0x0C68CE, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (3b). send RX reset signal (HTHo corrected May 10, 2005) ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x0F<<24) | 0x00401E, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (3c). turn-on RX Gm-C filter auto-tuning ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFEEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); udelay(150); // Sleep 150 us //Calibration (3e). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //----- Calibration (4). TX LO leakage calibration //Calibration (4a). TX LO leakage calibration ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFD6BC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); udelay(150); // Sleep 150 us //----- Calibration (5). RX DC offset calibration //Calibration (5a). turn off ENCAL signal and set to RX SW DC caliration mode ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (5b). turn off AGC servo-loop & RSSI ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEBFFC2, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //; for LNA=11 -------- //Calibration (5c-h). RX DC offset current bias ON; & LNA=11; RXVGA=111111 ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x343FCC, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(2); // Sleep 2ms //Calibration (5f). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //; for LNA=10 -------- //Calibration (5c-m). RX DC offset current bias ON; & LNA=10; RXVGA=111111 ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x342FCC, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(2); // Sleep 2ms //Calibration (5f). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //; for LNA=01 -------- //Calibration (5c-m). RX DC offset current bias ON; & LNA=01; RXVGA=111111 ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x341FCC, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(2); // Sleep 2ms //Calibration (5f). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //; for LNA=00 -------- //Calibration (5c-l). RX DC offset current bias ON; & LNA=00; RXVGA=111111 ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x06<<24) | 0x340FCC, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (5d). turn on RX DC offset cal function; and waiting 2 msec cal time ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFF6DC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(2); // Sleep 2ms //Calibration (5f). turn off ENCAL signal ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xFAEDC0, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //Calibration (5g). turn on AGC servo-loop ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x01<<24) | 0xEFFFC2, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); //; ----- Calibration (7). Switch RF chip to normal mode //0x00 0xF86100 ; 3E184 ; Switch RF chip to normal mode // msleep(10); // @@ 20060721 ltmp = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( (0x00<<24) | 0xF86100, 24); Wb35Reg_WriteSync( pHwData, 0x0864, ltmp ); msleep(5); // Sleep 5 ms // //write back // Wb35Reg_WriteSync(pHwData, 0x105c, pHwData->reg.BB5C); // pHwData->reg.BB50 &= ~0x13;//(MASK_IQCAL_MODE|MASK_CALIB_START); // 20060315.1 fix // Wb35Reg_WriteSync(pHwData, 0x1050, pHwData->reg.BB50); // msleep(1); // Sleep 1 ms break; } } void BBProcessor_AL7230_2400( struct hw_data * pHwData) { struct wb35_reg *reg = &pHwData->reg; u32 pltmp[12]; pltmp[0] = 0x16A8337A; // 0x16a5215f; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9AFF9AA6; // 0x9aff9ca6; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55D00A04; // 0x55d00a04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xFFF72031; // 0xFfFf2138; // 0x100c AGC_Ctrl4 reg->BB0C = 0xFFF72031; pltmp[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7 pltmp[5] = 0x00CAA333; // 0x00eaa333; // 0x1014 AGC_Ctrl6 pltmp[6] = 0xF2211111; // 0x11111111; // 0x1018 AGC_Ctrl7 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x06443440; // 0x1020 AGC_Ctrl9 pltmp[9] = 0xA8002A79; // 0xa9002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0x40000528; // 20050927 0x40000228 pltmp[11] = 0x232D7F30; // 0x23457f30;// 0x102c A_ACQ_Ctrl reg->BB2C = 0x232D7F30; Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002c54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002c54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = 0x00332C1B; // 0x00453B24; // 0x1048 11b TX RC filter pltmp[7] = 0x0A00FEFF; // 0x0E00FEFF; // 0x104c 11b TX RC filter pltmp[8] = 0x2B106208; // 0x1050 MODE_Ctrl reg->BB50 = 0x2B106208; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x52524242; // 0x64645252; // 0x1058 IQ_Alpha reg->BB58 = 0x52524242; pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); } void BBProcessor_AL7230_5000( struct hw_data * pHwData) { struct wb35_reg *reg = &pHwData->reg; u32 pltmp[12]; pltmp[0] = 0x16AA6678; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9AFFA0B2; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xEFFF233E; // 0x100c AGC_Ctrl4 reg->BB0C = 0xEFFF233E; pltmp[4] = 0x0FacDCC5; // 0x1010 AGC_Ctrl5 // 20050927 0x0FacDCB7 pltmp[5] = 0x00CAA333; // 0x1014 AGC_Ctrl6 pltmp[6] = 0xF2432111; // 0x1018 AGC_Ctrl7 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x05C43440; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0x40000528; // 20050927 0x40000228 pltmp[11] = 0x232FDF30;// 0x102c A_ACQ_Ctrl reg->BB2C = 0x232FDF30; Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x80002C7C; // 0x1030 B_ACQ_Ctrl pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = 0x00332C1B; // 0x1048 11b TX RC filter pltmp[7] = 0x0A00FEFF; // 0x104c 11b TX RC filter pltmp[8] = 0x2B107208; // 0x1050 MODE_Ctrl reg->BB50 = 0x2B107208; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x52524242; // 0x1058 IQ_Alpha reg->BB58 = 0x52524242; pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); } //============================================================================================================= // BBProcessorPowerupInit -- // // Description: // Initialize the Baseband processor. // // Arguments: // pHwData - Handle of the USB Device. // // Return values: // None. //============================================================================================================= void BBProcessor_initial( struct hw_data * pHwData ) { struct wb35_reg *reg = &pHwData->reg; u32 i, pltmp[12]; switch( pHwData->phy_type ) { case RF_MAXIM_V1: // Initializng the Winbond 2nd BB(with Phy board (v1) + Maxim 331) pltmp[0] = 0x16F47E77; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9AFFAEA4; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xEFFF1A34; // 0x100c AGC_Ctrl4 reg->BB0C = 0xEFFF1A34; pltmp[4] = 0x0FABE0B7; // 0x1010 AGC_Ctrl5 pltmp[5] = 0x00CAA332; // 0x1014 AGC_Ctrl6 pltmp[6] = 0xF6632111; // 0x1018 AGC_Ctrl7 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = (pHwData->phy_type==3) ? 0x40000a28 : 0x40000228; // 0x1028 MAXIM_331(b31=0) + WBRF_V1(b11=1) : MAXIM_331(b31=0) + WBRF_V2(b11=0) pltmp[11] = 0x232FDF30; // 0x102c A_ACQ_Ctrl reg->BB2C = 0x232FDF30; //Modify for 33's 1.0.95.xxx version, antenna 1 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter pltmp[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106208; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x64646464; // 0x1058 IQ_Alpha reg->BB58 = 0x64646464; pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; //------------------------------------------------------------------ //[20040722 WK] //Only for baseband version 2 // case RF_MAXIM_317: case RF_MAXIM_2825: case RF_MAXIM_2827: case RF_MAXIM_2828: pltmp[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xefff1a34; // 0x100c AGC_Ctrl4 reg->BB0C = 0xefff1a34; pltmp[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5 pltmp[5] = 0x00caa332; // 0x1014 AGC_Ctrl6 pltmp[6] = 0xf6632111; // 0x1018 AGC_Ctrl7 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0x40000528; // 0x40000128; Modify for 33's 1.0.95 pltmp[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl reg->BB2C = 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B6C8769; // 0x1038 B_TXRX_Ctrl pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter pltmp[7] = 0x0D00FDFF; // 0x104c 11b TX RC filter pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106208; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x64646464; // 0x1058 IQ_Alpha reg->BB58 = 0x64646464; pltmp[11] = 0xAA28C000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; case RF_MAXIM_2829: pltmp[0] = 0x16b47e77; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9affaea4; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xf4ff1632; // 0xefff1a34; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95 reg->BB0C = 0xf4ff1632; // 0xefff1a34; Modify for 33's 1.0.95 pltmp[4] = 0x0fabe0b7; // 0x1010 AGC_Ctrl5 pltmp[5] = 0x00caa332; // 0x1014 AGC_Ctrl6 pltmp[6] = 0xf8632112; // 0xf6632111; // 0x1018 AGC_Ctrl7 Modify for 33's 1.0.95 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04CC3640; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0x40000528; // 0x40000128; modify for 33's 1.0.95 pltmp[11] = 0x232fdf30; // 0x102c A_ACQ_Ctrl reg->BB2C = 0x232fdf30; //Modify for 33's 1.0.95.xxx version, antenna 1 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5b2c8769; // 0x5B6C8769; // 0x1038 B_TXRX_Ctrl Modify for 33's 1.0.95 pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = 0x002c2617; // 0x00453B24; // 0x1048 11b TX RC filter Modify for 33's 1.0.95 pltmp[7] = 0x0800feff; // 0x0D00FDFF; // 0x104c 11b TX RC filter Modify for 33's 1.0.95 pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106208; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x64644a4a; // 0x64646464; // 0x1058 IQ_Alpha Modify for 33's 1.0.95 reg->BB58 = 0x64646464; pltmp[11] = 0xAA28C000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; case RF_AIROHA_2230: pltmp[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77 pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version reg->BB0C = 0xFFFd203c; pltmp[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version pltmp[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version pltmp[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0X40000528; //0x40000228 pltmp[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730 reg->BB2C = 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769 pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = BB48_DEFAULT_AL2230_11G; // 0x1048 11b TX RC filter 20060613.2 reg->BB48 = BB48_DEFAULT_AL2230_11G; // 20051221 ch14 20060613.2 pltmp[7] = BB4C_DEFAULT_AL2230_11G; // 0x104c 11b TX RC filter 20060613.2 reg->BB4C = BB4C_DEFAULT_AL2230_11G; // 20060613.1 20060613.2 pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106200; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x52524242; // 0x1058 IQ_Alpha reg->BB58 = 0x52524242; pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; case RF_AIROHA_2230S: // 20060420 Add this pltmp[0] = 0X16764A77; // 0x1000 AGC_Ctrl1 //0x16765A77 pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xFFFd203c; // 0xFFFb203a; // 0x100c AGC_Ctrl4 Modify for 33's 1.0.95.xxx version reg->BB0C = 0xFFFd203c; pltmp[4] = 0X0FBFDCc5; // 0X0FBFDCA0; // 0x1010 AGC_Ctrl5 //0x0FB2E0B7 Modify for 33's 1.0.95.xxx version pltmp[5] = 0x00caa332; // 0x00caa333; // 0x1014 AGC_Ctrl6 Modify for 33's 1.0.95.xxx version pltmp[6] = 0XF6632111; // 0XF1632112; // 0x1018 AGC_Ctrl7 //0xf6632112 Modify for 33's 1.0.95.xxx version pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0X40000528; //0x40000228 pltmp[11] = 0x232dfF30; // 0x232A9F30; // 0x102c A_ACQ_Ctrl //0x232a9730 reg->BB2C = 0x232dfF30; //Modify for 33's 1.0.95.xxx version, antenna 1 Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl //0x5B6C8769 pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3C = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = BB48_DEFAULT_AL2230_11G; // 0x1048 11b TX RC filter 20060613.2 reg->BB48 = BB48_DEFAULT_AL2230_11G; // 20051221 ch14 20060613.2 pltmp[7] = BB4C_DEFAULT_AL2230_11G; // 0x104c 11b TX RC filter 20060613.2 reg->BB4C = BB4C_DEFAULT_AL2230_11G; // 20060613.1 pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106200; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x52523232; // 20060419 0x52524242; // 0x1058 IQ_Alpha reg->BB58 = 0x52523232; // 20060419 0x52524242; pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; case RF_AIROHA_7230: /* pltmp[0] = 0x16a84a77; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9affafb2; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55d00a04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xFFFb203a; // 0x100c AGC_Ctrl4 reg->BB0c = 0xFFFb203a; pltmp[4] = 0x0FBFDCB7; // 0x1010 AGC_Ctrl5 pltmp[5] = 0x00caa333; // 0x1014 AGC_Ctrl6 pltmp[6] = 0xf6632112; // 0x1018 AGC_Ctrl7 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04C43640; // 0x1020 AGC_Ctrl9 pltmp[9] = 0x00002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0x40000228; pltmp[11] = 0x232A9F30;// 0x102c A_ACQ_Ctrl reg->BB2c = 0x232A9F30; Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl pltmp[3] = 0x00000000; // 0x103c 11a TX LS filter reg->BB3c = 0x00000000; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = 0x00453B24; // 0x1048 11b TX RC filter pltmp[7] = 0x0E00FEFF; // 0x104c 11b TX RC filter pltmp[8] = 0x27106200; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106200; pltmp[9] = 0; // 0x1054 reg->BB54 = 0x00000000; pltmp[10] = 0x64645252; // 0x1058 IQ_Alpha reg->BB58 = 0x64645252; pltmp[11] = 0xAA0AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); */ BBProcessor_AL7230_2400( pHwData ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; case RF_WB_242: case RF_WB_242_1: // 20060619.5 Add pltmp[0] = 0x16A8525D; // 0x1000 AGC_Ctrl1 pltmp[1] = 0x9AFF9ABA; // 0x1004 AGC_Ctrl2 pltmp[2] = 0x55D00A04; // 0x1008 AGC_Ctrl3 pltmp[3] = 0xEEE91C32; // 0x100c AGC_Ctrl4 reg->BB0C = 0xEEE91C32; pltmp[4] = 0x0FACDCC5; // 0x1010 AGC_Ctrl5 pltmp[5] = 0x000AA344; // 0x1014 AGC_Ctrl6 pltmp[6] = 0x22222221; // 0x1018 AGC_Ctrl7 pltmp[7] = 0x0FA3F0ED; // 0x101c AGC_Ctrl8 pltmp[8] = 0x04CC3440; // 20051018 0x03CB3440; // 0x1020 AGC_Ctrl9 20051014 0x03C33440 pltmp[9] = 0xA9002A79; // 0x1024 AGC_Ctrl10 pltmp[10] = 0x40000528; // 0x1028 pltmp[11] = 0x23457F30; // 0x102c A_ACQ_Ctrl reg->BB2C = 0x23457F30; Wb35Reg_BurstWrite( pHwData, 0x1000, pltmp, 12, AUTO_INCREMENT ); pltmp[0] = 0x00002C54; // 0x1030 B_ACQ_Ctrl reg->BB30 = 0x00002C54; pltmp[1] = 0x00C0D6C5; // 0x1034 A_TXRX_Ctrl pltmp[2] = 0x5B2C8769; // 0x1038 B_TXRX_Ctrl pltmp[3] = pHwData->BB3c_cal; // 0x103c 11a TX LS filter reg->BB3C = pHwData->BB3c_cal; pltmp[4] = 0x00003F29; // 0x1040 11a TX LS filter pltmp[5] = 0x0EFEFBFE; // 0x1044 11a TX LS filter pltmp[6] = BB48_DEFAULT_WB242_11G; // 0x1048 11b TX RC filter 20060613.2 reg->BB48 = BB48_DEFAULT_WB242_11G; // 20060613.1 20060613.2 pltmp[7] = BB4C_DEFAULT_WB242_11G; // 0x104c 11b TX RC filter 20060613.2 reg->BB4C = BB4C_DEFAULT_WB242_11G; // 20060613.1 20060613.2 pltmp[8] = 0x27106208; // 0x1050 MODE_Ctrl reg->BB50 = 0x27106208; pltmp[9] = pHwData->BB54_cal; // 0x1054 reg->BB54 = pHwData->BB54_cal; pltmp[10] = 0x52523131; // 0x1058 IQ_Alpha reg->BB58 = 0x52523131; pltmp[11] = 0xAA0AC000; // 20060825 0xAA2AC000; // 0x105c DC_Cancel Wb35Reg_BurstWrite( pHwData, 0x1030, pltmp, 12, AUTO_INCREMENT ); Wb35Reg_Write( pHwData, 0x1070, 0x00000045 ); break; } // Fill the LNA table reg->LNAValue[0] = (u8)(reg->BB0C & 0xff); reg->LNAValue[1] = 0; reg->LNAValue[2] = (u8)((reg->BB0C & 0xff00)>>8); reg->LNAValue[3] = 0; // Fill SQ3 table for( i=0; iSQ3_filter[i] = 0x2f; // half of Bit 0 ~ 6 } void set_tx_power_per_channel_max2829( struct hw_data * pHwData, ChanInfo Channel) { RFSynthesizer_SetPowerIndex( pHwData, 100 ); // 20060620.1 Modify } void set_tx_power_per_channel_al2230( struct hw_data * pHwData, ChanInfo Channel ) { u8 index = 100; if (pHwData->TxVgaFor24[Channel.ChanNo - 1] != 0xff) // 20060620.1 Add index = pHwData->TxVgaFor24[Channel.ChanNo - 1]; RFSynthesizer_SetPowerIndex( pHwData, index ); } void set_tx_power_per_channel_al7230( struct hw_data * pHwData, ChanInfo Channel) { u8 i, index = 100; switch ( Channel.band ) { case BAND_TYPE_DSSS: case BAND_TYPE_OFDM_24: { if (pHwData->TxVgaFor24[Channel.ChanNo - 1] != 0xff) index = pHwData->TxVgaFor24[Channel.ChanNo - 1]; } break; case BAND_TYPE_OFDM_5: { for (i =0; i<35; i++) { if (Channel.ChanNo == pHwData->TxVgaFor50[i].ChanNo) { if (pHwData->TxVgaFor50[i].TxVgaValue != 0xff) index = pHwData->TxVgaFor50[i].TxVgaValue; break; } } } break; } RFSynthesizer_SetPowerIndex( pHwData, index ); } void set_tx_power_per_channel_wb242( struct hw_data * pHwData, ChanInfo Channel) { u8 index = 100; switch ( Channel.band ) { case BAND_TYPE_DSSS: case BAND_TYPE_OFDM_24: { if (pHwData->TxVgaFor24[Channel.ChanNo - 1] != 0xff) index = pHwData->TxVgaFor24[Channel.ChanNo - 1]; } break; case BAND_TYPE_OFDM_5: break; } RFSynthesizer_SetPowerIndex( pHwData, index ); } //============================================================================================================= // RFSynthesizer_SwitchingChannel -- // // Description: // Swithch the RF channel. // // Arguments: // pHwData - Handle of the USB Device. // Channel - The channel no. // // Return values: // None. //============================================================================================================= void RFSynthesizer_SwitchingChannel( struct hw_data * pHwData, ChanInfo Channel ) { struct wb35_reg *reg = &pHwData->reg; u32 pltmp[16]; // The 16 is the maximum capability of hardware u32 count, ltmp; u8 i, j, number; u8 ChnlTmp; switch( pHwData->phy_type ) { case RF_MAXIM_2825: case RF_MAXIM_V1: // 11g Winbond 2nd BB(with Phy board (v1) + Maxim 331) if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 13 { for( i=0; i<3; i++ ) pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_channel_data_24[Channel.ChanNo-1][i], 18); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT ); } RFSynthesizer_SetPowerIndex( pHwData, 100 ); break; case RF_MAXIM_2827: if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 13 { for( i=0; i<3; i++ ) pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_24[Channel.ChanNo-1][i], 18); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT ); } else if( Channel.band == BAND_TYPE_OFDM_5 ) // channel 36 ~ 64 { ChnlTmp = (Channel.ChanNo - 36) / 4; for( i=0; i<3; i++ ) pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_channel_data_50[ChnlTmp][i], 18); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT ); } RFSynthesizer_SetPowerIndex( pHwData, 100 ); break; case RF_MAXIM_2828: if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 13 { for( i=0; i<3; i++ ) pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_24[Channel.ChanNo-1][i], 18); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT ); } else if( Channel.band == BAND_TYPE_OFDM_5 ) // channel 36 ~ 64 { ChnlTmp = (Channel.ChanNo - 36) / 4; for ( i = 0; i < 3; i++) pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_channel_data_50[ChnlTmp][i], 18); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT ); } RFSynthesizer_SetPowerIndex( pHwData, 100 ); break; case RF_MAXIM_2829: if( Channel.band <= BAND_TYPE_OFDM_24) { for( i=0; i<3; i++ ) pltmp[i] = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2829_channel_data_24[Channel.ChanNo-1][i], 18); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 3, NO_INCREMENT ); } else if( Channel.band == BAND_TYPE_OFDM_5 ) { count = sizeof(max2829_channel_data_50) / sizeof(max2829_channel_data_50[0]); for( i=0; iband) { if (Channel.band <= BAND_TYPE_OFDM_24) { //Update BB register BBProcessor_AL7230_2400(pHwData); number = sizeof(al7230_rf_data_24)/sizeof(al7230_rf_data_24[0]); Set_ChanIndep_RfData_al7230_24(pHwData, pltmp, number); } else { //Update BB register BBProcessor_AL7230_5000(pHwData); number = sizeof(al7230_rf_data_50)/sizeof(al7230_rf_data_50[0]); Set_ChanIndep_RfData_al7230_50(pHwData, pltmp, number); } // Write to register. number must less and equal than 16 Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, number, NO_INCREMENT ); #ifdef _PE_STATE_DUMP_ printk("Band changed\n"); #endif } if( Channel.band <= BAND_TYPE_OFDM_24 ) // channel 1 ~ 14 { for( i=0; i<2; i++ ) pltmp[i] = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_channel_data_24[Channel.ChanNo-1][i]&0xffffff); Wb35Reg_BurstWrite( pHwData, 0x0864, pltmp, 2, NO_INCREMENT ); } else if( Channel.band == BAND_TYPE_OFDM_5 ) { //Update Reg12 if ((Channel.ChanNo > 64) && (Channel.ChanNo <= 165)) { ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x00143c; Wb35Reg_Write( pHwData, 0x0864, ltmp ); } else //reg12 = 0x00147c at Channel 4920 ~ 5320 { ltmp = (1 << 31) | (0 << 30) | (24 << 24) | 0x00147c; Wb35Reg_Write( pHwData, 0x0864, ltmp ); } count = sizeof(al7230_channel_data_5) / sizeof(al7230_channel_data_5[0]); for (i=0; iBB50 &= ~(BIT(11)|BIT(12)); Wb35Reg_Write( pHwData, 0x1050, reg->BB50 ); // MODE_Ctrl // MAC: select 2.4 GHz, bit[5]=0 reg->M78_ERPInformation &= ~BIT(5); Wb35Reg_Write( pHwData, 0x0878, reg->M78_ERPInformation ); // enable 11b Baseband reg->BB30 &= ~BIT(31); Wb35Reg_Write( pHwData, 0x1030, reg->BB30 ); } else if( (Channel.band == BAND_TYPE_OFDM_5) ) { // BB: select 5 GHz reg->BB50 &= ~(BIT(11)|BIT(12)); if (Channel.ChanNo <=64 ) reg->BB50 |= BIT(12); // 10-5.25GHz else if ((Channel.ChanNo >= 100) && (Channel.ChanNo <= 124)) reg->BB50 |= BIT(11); // 01-5.48GHz else if ((Channel.ChanNo >=128) && (Channel.ChanNo <= 161)) reg->BB50 |= (BIT(12)|BIT(11)); // 11-5.775GHz else //Chan 184 ~ 196 will use bit[12-11] = 10 in version sh-src-1.2.25 reg->BB50 |= BIT(12); Wb35Reg_Write( pHwData, 0x1050, reg->BB50 ); // MODE_Ctrl //(1) M78 should alway use 2.4G setting when using RF_AIROHA_7230 //(2) BB30 has been updated previously. if (pHwData->phy_type != RF_AIROHA_7230) { // MAC: select 5 GHz, bit[5]=1 reg->M78_ERPInformation |= BIT(5); Wb35Reg_Write( pHwData, 0x0878, reg->M78_ERPInformation ); // disable 11b Baseband reg->BB30 |= BIT(31); Wb35Reg_Write( pHwData, 0x1030, reg->BB30 ); } } } //Set the tx power directly from DUT GUI, not from the EEPROM. Return the current setting u8 RFSynthesizer_SetPowerIndex( struct hw_data * pHwData, u8 PowerIndex ) { u32 Band = pHwData->band; u8 index=0; if( pHwData->power_index == PowerIndex ) // 20060620.1 Add return PowerIndex; if (RF_MAXIM_2825 == pHwData->phy_type) { // Channel 1 - 13 index = RFSynthesizer_SetMaxim2825Power( pHwData, PowerIndex ); } else if (RF_MAXIM_2827 == pHwData->phy_type) { if( Band <= BAND_TYPE_OFDM_24 ) // Channel 1 - 13 index = RFSynthesizer_SetMaxim2827_24Power( pHwData, PowerIndex ); else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64 index = RFSynthesizer_SetMaxim2827_50Power( pHwData, PowerIndex ); } else if (RF_MAXIM_2828 == pHwData->phy_type) { if( Band <= BAND_TYPE_OFDM_24 ) // Channel 1 - 13 index = RFSynthesizer_SetMaxim2828_24Power( pHwData, PowerIndex ); else// if( Band == BAND_TYPE_OFDM_5 ) // Channel 36 - 64 index = RFSynthesizer_SetMaxim2828_50Power( pHwData, PowerIndex ); } else if( RF_AIROHA_2230 == pHwData->phy_type ) { //Power index: 0 ~ 63 // Channel 1 - 14 index = RFSynthesizer_SetAiroha2230Power( pHwData, PowerIndex ); index = (u8)al2230_txvga_data[index][1]; } else if( RF_AIROHA_2230S == pHwData->phy_type ) // 20060420 Add this { //Power index: 0 ~ 63 // Channel 1 - 14 index = RFSynthesizer_SetAiroha2230Power( pHwData, PowerIndex ); index = (u8)al2230_txvga_data[index][1]; } else if( RF_AIROHA_7230 == pHwData->phy_type ) { //Power index: 0 ~ 63 index = RFSynthesizer_SetAiroha7230Power( pHwData, PowerIndex ); index = (u8)al7230_txvga_data[index][1]; } else if( (RF_WB_242 == pHwData->phy_type) || (RF_WB_242_1 == pHwData->phy_type) ) // 20060619.5 Add { //Power index: 0 ~ 19 for original. New range is 0 ~ 33 index = RFSynthesizer_SetWinbond242Power( pHwData, PowerIndex ); index = (u8)w89rf242_txvga_data[index][1]; } pHwData->power_index = index; // Backup current return index; } //-- Sub function u8 RFSynthesizer_SetMaxim2828_24Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; if( index > 1 ) index = 1; PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_24[index], 18); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return index; } //-- u8 RFSynthesizer_SetMaxim2828_50Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; if( index > 1 ) index = 1; PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2828_power_data_50[index], 18); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return index; } //-- u8 RFSynthesizer_SetMaxim2827_24Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; if( index > 1 ) index = 1; PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_24[index], 18); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return index; } //-- u8 RFSynthesizer_SetMaxim2827_50Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; if( index > 1 ) index = 1; PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2827_power_data_50[index], 18); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return index; } //-- u8 RFSynthesizer_SetMaxim2825Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; if( index > 1 ) index = 1; PowerData = (1 << 31) | (0 << 30) | (18 << 24) | BitReverse( max2825_power_data_24[index], 18); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return index; } //-- u8 RFSynthesizer_SetAiroha2230Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; u8 i,count; count = sizeof(al2230_txvga_data) / sizeof(al2230_txvga_data[0]); for (i=0; i= index) break; } if (i == count) i--; PowerData = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( al2230_txvga_data[i][0], 20); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return i; } //-- u8 RFSynthesizer_SetAiroha7230Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; u8 i,count; //PowerData = (1 << 31) | (0 << 30) | (20 << 24) | BitReverse( airoha_power_data_24[index], 20); count = sizeof(al7230_txvga_data) / sizeof(al7230_txvga_data[0]); for (i=0; i= index) break; } if (i == count) i--; PowerData = (1 << 31) | (0 << 30) | (24 << 24) | (al7230_txvga_data[i][0]&0xffffff); Wb35Reg_Write( pHwData, 0x0864, PowerData ); return i; } u8 RFSynthesizer_SetWinbond242Power( struct hw_data * pHwData, u8 index ) { u32 PowerData; u8 i,count; count = sizeof(w89rf242_txvga_data) / sizeof(w89rf242_txvga_data[0]); for (i=0; i= index) break; } if (i == count) i--; // Set TxVga into RF PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( w89rf242_txvga_data[i][0], 24); Wb35Reg_Write( pHwData, 0x0864, PowerData ); // Update BB48 BB4C BB58 for high precision txvga Wb35Reg_Write( pHwData, 0x1048, w89rf242_txvga_data[i][2] ); Wb35Reg_Write( pHwData, 0x104c, w89rf242_txvga_data[i][3] ); Wb35Reg_Write( pHwData, 0x1058, w89rf242_txvga_data[i][4] ); // Rf vga 0 ~ 3 for temperature compensate. It will affect the scan Bss. // The i value equals to 8 or 7 usually. So It's not necessary to setup this RF register. // if( i <= 3 ) // PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x000024, 24 ); // else // PowerData = (1 << 31) | (0 << 30) | (24 << 24) | BitReverse( 0x001824, 24 ); // Wb35Reg_Write( pHwData, 0x0864, PowerData ); return i; } //=========================================================================================================== // Dxx_initial -- // Mxx_initial -- // // Routine Description: // Initial the hardware setting and module variable // //=========================================================================================================== void Dxx_initial( struct hw_data * pHwData ) { struct wb35_reg *reg = &pHwData->reg; // Old IC:Single mode only. // New IC: operation decide by Software set bit[4]. 1:multiple 0: single reg->D00_DmaControl = 0xc0000004; //Txon, Rxon, multiple Rx for new 4k DMA //Txon, Rxon, single Rx for old 8k ASIC if( !HAL_USB_MODE_BURST( pHwData ) ) reg->D00_DmaControl = 0xc0000000;//Txon, Rxon, single Rx for new 4k DMA Wb35Reg_WriteSync( pHwData, 0x0400, reg->D00_DmaControl ); } void Mxx_initial( struct hw_data * pHwData ) { struct wb35_reg *reg = &pHwData->reg; u32 tmp; u32 pltmp[11]; u16 i; //====================================================== // Initial Mxx register //====================================================== // M00 bit set #ifdef _IBSS_BEACON_SEQ_STICK_ reg->M00_MacControl = 0; // Solve beacon sequence number stop by software #else reg->M00_MacControl = 0x80000000; // Solve beacon sequence number stop by hardware #endif // M24 disable enter power save, BB RxOn and enable NAV attack reg->M24_MacControl = 0x08040042; pltmp[0] = reg->M24_MacControl; pltmp[1] = 0; // Skip M28, because no initialize value is required. // M2C CWmin and CWmax setting pHwData->cwmin = DEFAULT_CWMIN; pHwData->cwmax = DEFAULT_CWMAX; reg->M2C_MacControl = DEFAULT_CWMIN << 10; reg->M2C_MacControl |= DEFAULT_CWMAX; pltmp[2] = reg->M2C_MacControl; // M30 BSSID pltmp[3] = *(u32 *)pHwData->bssid; // M34 pHwData->AID = DEFAULT_AID; tmp = *(u16 *)(pHwData->bssid+4); tmp |= DEFAULT_AID << 16; pltmp[4] = tmp; // M38 reg->M38_MacControl = (DEFAULT_RATE_RETRY_LIMIT<<8) | (DEFAULT_LONG_RETRY_LIMIT << 4) | DEFAULT_SHORT_RETRY_LIMIT; pltmp[5] = reg->M38_MacControl; // M3C tmp = (DEFAULT_PIFST << 26) | (DEFAULT_EIFST << 16) | (DEFAULT_DIFST << 8) | (DEFAULT_SIFST << 4) | DEFAULT_OSIFST ; reg->M3C_MacControl = tmp; pltmp[6] = tmp; // M40 pHwData->slot_time_select = DEFAULT_SLOT_TIME; tmp = (DEFAULT_ATIMWD << 16) | DEFAULT_SLOT_TIME; reg->M40_MacControl = tmp; pltmp[7] = tmp; // M44 tmp = DEFAULT_MAX_TX_MSDU_LIFE_TIME << 10; // *1024 reg->M44_MacControl = tmp; pltmp[8] = tmp; // M48 pHwData->BeaconPeriod = DEFAULT_BEACON_INTERVAL; pHwData->ProbeDelay = DEFAULT_PROBE_DELAY_TIME; tmp = (DEFAULT_BEACON_INTERVAL << 16) | DEFAULT_PROBE_DELAY_TIME; reg->M48_MacControl = tmp; pltmp[9] = tmp; //M4C reg->M4C_MacStatus = (DEFAULT_PROTOCOL_VERSION << 30) | (DEFAULT_MAC_POWER_STATE << 28) | (DEFAULT_DTIM_ALERT_TIME << 24); pltmp[10] = reg->M4C_MacStatus; // Burst write //Wb35Reg_BurstWrite( pHwData, 0x0824, pltmp, 11, AUTO_INCREMENT ); for( i=0; i<11; i++ ) Wb35Reg_WriteSync( pHwData, 0x0824 + i*4, pltmp[i] ); // M60 Wb35Reg_WriteSync( pHwData, 0x0860, 0x12481248 ); reg->M60_MacControl = 0x12481248; // M68 Wb35Reg_WriteSync( pHwData, 0x0868, 0x00050900 ); // 20051018 0x000F0F00 ); // 940930 0x00131300 reg->M68_MacControl = 0x00050900; // M98 Wb35Reg_WriteSync( pHwData, 0x0898, 0xffff8888 ); reg->M98_MacControl = 0xffff8888; } void Uxx_power_off_procedure( struct hw_data * pHwData ) { // SW, PMU reset and turn off clock Wb35Reg_WriteSync( pHwData, 0x03b0, 3 ); Wb35Reg_WriteSync( pHwData, 0x03f0, 0xf9 ); } //Decide the TxVga of every channel void GetTxVgaFromEEPROM( struct hw_data * pHwData ) { u32 i, j, ltmp; u16 Value[MAX_TXVGA_EEPROM]; u8 *pctmp; u8 ctmp=0; // Get the entire TxVga setting in EEPROM for( i=0; iphy_type == RF_WB_242 ) { for( i=0; i<4; i++ ) // Only 2412 2437 2462 2484 case must be modified { for( j=0; j<(sizeof(w89rf242_txvga_old_mapping)/sizeof(w89rf242_txvga_old_mapping[0])); j++ ) { if( pctmp[i] < (u8)w89rf242_txvga_old_mapping[j][1] ) { pctmp[i] = (u8)w89rf242_txvga_old_mapping[j][0]; break; } } if( j == (sizeof(w89rf242_txvga_old_mapping)/sizeof(w89rf242_txvga_old_mapping[0])) ) pctmp[i] = (u8)w89rf242_txvga_old_mapping[j-1][0]; } } // 20060621 Add memcpy( pHwData->TxVgaSettingInEEPROM, pctmp, MAX_TXVGA_EEPROM*2 ); //MAX_TXVGA_EEPROM is u16 count EEPROMTxVgaAdjust( pHwData ); } // This function will affect the TxVga parameter in HAL. If hal_set_current_channel // or RFSynthesizer_SetPowerIndex be called, new TxVga will take effect. // TxVgaSettingInEEPROM of sHwData is an u8 array point to EEPROM contain for IS89C35 // This function will use default TxVgaSettingInEEPROM data to calculate new TxVga. void EEPROMTxVgaAdjust( struct hw_data * pHwData ) // 20060619.5 Add { u8 * pTxVga = pHwData->TxVgaSettingInEEPROM; s16 i, stmp; //-- 2.4G -- 20060704.2 Request from Tiger //channel 1 ~ 5 stmp = pTxVga[1] - pTxVga[0]; for( i=0; i<5; i++ ) pHwData->TxVgaFor24[i] = pTxVga[0] + stmp*i/4; //channel 6 ~ 10 stmp = pTxVga[2] - pTxVga[1]; for( i=5; i<10; i++ ) pHwData->TxVgaFor24[i] = pTxVga[1] + stmp*(i-5)/4; //channel 11 ~ 13 stmp = pTxVga[3] - pTxVga[2]; for( i=10; i<13; i++ ) pHwData->TxVgaFor24[i] = pTxVga[2] + stmp*(i-10)/2; //channel 14 pHwData->TxVgaFor24[13] = pTxVga[3]; //-- 5G -- if( pHwData->phy_type == RF_AIROHA_7230 ) { //channel 184 pHwData->TxVgaFor50[0].ChanNo = 184; pHwData->TxVgaFor50[0].TxVgaValue = pTxVga[4]; //channel 196 pHwData->TxVgaFor50[3].ChanNo = 196; pHwData->TxVgaFor50[3].TxVgaValue = pTxVga[5]; //interpolate pHwData->TxVgaFor50[1].ChanNo = 188; pHwData->TxVgaFor50[2].ChanNo = 192; stmp = pTxVga[5] - pTxVga[4]; pHwData->TxVgaFor50[2].TxVgaValue = pTxVga[5] - stmp/3; pHwData->TxVgaFor50[1].TxVgaValue = pTxVga[5] - stmp*2/3; //channel 16 pHwData->TxVgaFor50[6].ChanNo = 16; pHwData->TxVgaFor50[6].TxVgaValue = pTxVga[6]; pHwData->TxVgaFor50[4].ChanNo = 8; pHwData->TxVgaFor50[4].TxVgaValue = pTxVga[6]; pHwData->TxVgaFor50[5].ChanNo = 12; pHwData->TxVgaFor50[5].TxVgaValue = pTxVga[6]; //channel 36 pHwData->TxVgaFor50[8].ChanNo = 36; pHwData->TxVgaFor50[8].TxVgaValue = pTxVga[7]; pHwData->TxVgaFor50[7].ChanNo = 34; pHwData->TxVgaFor50[7].TxVgaValue = pTxVga[7]; pHwData->TxVgaFor50[9].ChanNo = 38; pHwData->TxVgaFor50[9].TxVgaValue = pTxVga[7]; //channel 40 pHwData->TxVgaFor50[10].ChanNo = 40; pHwData->TxVgaFor50[10].TxVgaValue = pTxVga[8]; //channel 48 pHwData->TxVgaFor50[14].ChanNo = 48; pHwData->TxVgaFor50[14].TxVgaValue = pTxVga[9]; //interpolate pHwData->TxVgaFor50[11].ChanNo = 42; pHwData->TxVgaFor50[12].ChanNo = 44; pHwData->TxVgaFor50[13].ChanNo = 46; stmp = pTxVga[9] - pTxVga[8]; pHwData->TxVgaFor50[13].TxVgaValue = pTxVga[9] - stmp/4; pHwData->TxVgaFor50[12].TxVgaValue = pTxVga[9] - stmp*2/4; pHwData->TxVgaFor50[11].TxVgaValue = pTxVga[9] - stmp*3/4; //channel 52 pHwData->TxVgaFor50[15].ChanNo = 52; pHwData->TxVgaFor50[15].TxVgaValue = pTxVga[10]; //channel 64 pHwData->TxVgaFor50[18].ChanNo = 64; pHwData->TxVgaFor50[18].TxVgaValue = pTxVga[11]; //interpolate pHwData->TxVgaFor50[16].ChanNo = 56; pHwData->TxVgaFor50[17].ChanNo = 60; stmp = pTxVga[11] - pTxVga[10]; pHwData->TxVgaFor50[17].TxVgaValue = pTxVga[11] - stmp/3; pHwData->TxVgaFor50[16].TxVgaValue = pTxVga[11] - stmp*2/3; //channel 100 pHwData->TxVgaFor50[19].ChanNo = 100; pHwData->TxVgaFor50[19].TxVgaValue = pTxVga[12]; //channel 112 pHwData->TxVgaFor50[22].ChanNo = 112; pHwData->TxVgaFor50[22].TxVgaValue = pTxVga[13]; //interpolate pHwData->TxVgaFor50[20].ChanNo = 104; pHwData->TxVgaFor50[21].ChanNo = 108; stmp = pTxVga[13] - pTxVga[12]; pHwData->TxVgaFor50[21].TxVgaValue = pTxVga[13] - stmp/3; pHwData->TxVgaFor50[20].TxVgaValue = pTxVga[13] - stmp*2/3; //channel 128 pHwData->TxVgaFor50[26].ChanNo = 128; pHwData->TxVgaFor50[26].TxVgaValue = pTxVga[14]; //interpolate pHwData->TxVgaFor50[23].ChanNo = 116; pHwData->TxVgaFor50[24].ChanNo = 120; pHwData->TxVgaFor50[25].ChanNo = 124; stmp = pTxVga[14] - pTxVga[13]; pHwData->TxVgaFor50[25].TxVgaValue = pTxVga[14] - stmp/4; pHwData->TxVgaFor50[24].TxVgaValue = pTxVga[14] - stmp*2/4; pHwData->TxVgaFor50[23].TxVgaValue = pTxVga[14] - stmp*3/4; //channel 140 pHwData->TxVgaFor50[29].ChanNo = 140; pHwData->TxVgaFor50[29].TxVgaValue = pTxVga[15]; //interpolate pHwData->TxVgaFor50[27].ChanNo = 132; pHwData->TxVgaFor50[28].ChanNo = 136; stmp = pTxVga[15] - pTxVga[14]; pHwData->TxVgaFor50[28].TxVgaValue = pTxVga[15] - stmp/3; pHwData->TxVgaFor50[27].TxVgaValue = pTxVga[15] - stmp*2/3; //channel 149 pHwData->TxVgaFor50[30].ChanNo = 149; pHwData->TxVgaFor50[30].TxVgaValue = pTxVga[16]; //channel 165 pHwData->TxVgaFor50[34].ChanNo = 165; pHwData->TxVgaFor50[34].TxVgaValue = pTxVga[17]; //interpolate pHwData->TxVgaFor50[31].ChanNo = 153; pHwData->TxVgaFor50[32].ChanNo = 157; pHwData->TxVgaFor50[33].ChanNo = 161; stmp = pTxVga[17] - pTxVga[16]; pHwData->TxVgaFor50[33].TxVgaValue = pTxVga[17] - stmp/4; pHwData->TxVgaFor50[32].TxVgaValue = pTxVga[17] - stmp*2/4; pHwData->TxVgaFor50[31].TxVgaValue = pTxVga[17] - stmp*3/4; } #ifdef _PE_STATE_DUMP_ printk(" TxVgaFor24 : \n"); DataDmp((u8 *)pHwData->TxVgaFor24, 14 ,0); printk(" TxVgaFor50 : \n"); DataDmp((u8 *)pHwData->TxVgaFor50, 70 ,0); #endif } void BBProcessor_RateChanging( struct hw_data * pHwData, u8 rate ) // 20060613.1 { struct wb35_reg *reg = &pHwData->reg; unsigned char Is11bRate; Is11bRate = (rate % 6) ? 1 : 0; switch( pHwData->phy_type ) { case RF_AIROHA_2230: case RF_AIROHA_2230S: // 20060420 Add this if( Is11bRate ) { if( (reg->BB48 != BB48_DEFAULT_AL2230_11B) && (reg->BB4C != BB4C_DEFAULT_AL2230_11B) ) { Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_AL2230_11B ); Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_AL2230_11B ); } } else { if( (reg->BB48 != BB48_DEFAULT_AL2230_11G) && (reg->BB4C != BB4C_DEFAULT_AL2230_11G) ) { Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_AL2230_11G ); Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_AL2230_11G ); } } break; case RF_WB_242: // 20060623 The fix only for old TxVGA setting if( Is11bRate ) { if( (reg->BB48 != BB48_DEFAULT_WB242_11B) && (reg->BB4C != BB4C_DEFAULT_WB242_11B) ) { reg->BB48 = BB48_DEFAULT_WB242_11B; reg->BB4C = BB4C_DEFAULT_WB242_11B; Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_WB242_11B ); Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_WB242_11B ); } } else { if( (reg->BB48 != BB48_DEFAULT_WB242_11G) && (reg->BB4C != BB4C_DEFAULT_WB242_11G) ) { reg->BB48 = BB48_DEFAULT_WB242_11G; reg->BB4C = BB4C_DEFAULT_WB242_11G; Wb35Reg_Write( pHwData, 0x1048, BB48_DEFAULT_WB242_11G ); Wb35Reg_Write( pHwData, 0x104c, BB4C_DEFAULT_WB242_11G ); } } break; } }