/* * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000-2002 * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/version.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/completion.h> #include <linux/utsname.h> #include <linux/mm.h> #include <asm/io.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/mutex.h> #include <asm/irq.h> #include <asm/byteorder.h> #include <asm/unaligned.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/usb.h> #include "usb.h" #include "hcd.h" #include "hub.h" /*-------------------------------------------------------------------------*/ /* * USB Host Controller Driver framework * * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing * HCD-specific behaviors/bugs. * * This does error checks, tracks devices and urbs, and delegates to a * "hc_driver" only for code (and data) that really needs to know about * hardware differences. That includes root hub registers, i/o queues, * and so on ... but as little else as possible. * * Shared code includes most of the "root hub" code (these are emulated, * though each HC's hardware works differently) and PCI glue, plus request * tracking overhead. The HCD code should only block on spinlocks or on * hardware handshaking; blocking on software events (such as other kernel * threads releasing resources, or completing actions) is all generic. * * Happens the USB 2.0 spec says this would be invisible inside the "USBD", * and includes mostly a "HCDI" (HCD Interface) along with some APIs used * only by the hub driver ... and that neither should be seen or used by * usb client device drivers. * * Contributors of ideas or unattributed patches include: David Brownell, * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... * * HISTORY: * 2002-02-21 Pull in most of the usb_bus support from usb.c; some * associated cleanup. "usb_hcd" still != "usb_bus". * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. */ /*-------------------------------------------------------------------------*/ /* Keep track of which host controller drivers are loaded */ unsigned long usb_hcds_loaded; EXPORT_SYMBOL_GPL(usb_hcds_loaded); /* host controllers we manage */ LIST_HEAD (usb_bus_list); EXPORT_SYMBOL_GPL (usb_bus_list); /* used when allocating bus numbers */ #define USB_MAXBUS 64 struct usb_busmap { unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; }; static struct usb_busmap busmap; /* used when updating list of hcds */ DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ EXPORT_SYMBOL_GPL (usb_bus_list_lock); /* used for controlling access to virtual root hubs */ static DEFINE_SPINLOCK(hcd_root_hub_lock); /* used when updating an endpoint's URB list */ static DEFINE_SPINLOCK(hcd_urb_list_lock); /* used to protect against unlinking URBs after the device is gone */ static DEFINE_SPINLOCK(hcd_urb_unlink_lock); /* wait queue for synchronous unlinks */ DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); static inline int is_root_hub(struct usb_device *udev) { return (udev->parent == NULL); } /*-------------------------------------------------------------------------*/ /* * Sharable chunks of root hub code. */ /*-------------------------------------------------------------------------*/ #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) /* usb 2.0 root hub device descriptor */ static const u8 usb2_rh_dev_descriptor [18] = { 0x12, /* __u8 bLength; */ 0x01, /* __u8 bDescriptorType; Device */ 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 0x03, /* __u8 iManufacturer; */ 0x02, /* __u8 iProduct; */ 0x01, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ /* usb 1.1 root hub device descriptor */ static const u8 usb11_rh_dev_descriptor [18] = { 0x12, /* __u8 bLength; */ 0x01, /* __u8 bDescriptorType; Device */ 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 0x00, /* __u8 bDeviceSubClass; */ 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 0x03, /* __u8 iManufacturer; */ 0x02, /* __u8 iProduct; */ 0x01, /* __u8 iSerialNumber; */ 0x01 /* __u8 bNumConfigurations; */ }; /*-------------------------------------------------------------------------*/ /* Configuration descriptors for our root hubs */ static const u8 fs_rh_config_descriptor [] = { /* one configuration */ 0x09, /* __u8 bLength; */ 0x02, /* __u8 bDescriptorType; Configuration */ 0x19, 0x00, /* __le16 wTotalLength; */ 0x01, /* __u8 bNumInterfaces; (1) */ 0x01, /* __u8 bConfigurationValue; */ 0x00, /* __u8 iConfiguration; */ 0xc0, /* __u8 bmAttributes; Bit 7: must be set, 6: Self-powered, 5: Remote wakeup, 4..0: resvd */ 0x00, /* __u8 MaxPower; */ /* USB 1.1: * USB 2.0, single TT organization (mandatory): * one interface, protocol 0 * * USB 2.0, multiple TT organization (optional): * two interfaces, protocols 1 (like single TT) * and 2 (multiple TT mode) ... config is * sometimes settable * NOT IMPLEMENTED */ /* one interface */ 0x09, /* __u8 if_bLength; */ 0x04, /* __u8 if_bDescriptorType; Interface */ 0x00, /* __u8 if_bInterfaceNumber; */ 0x00, /* __u8 if_bAlternateSetting; */ 0x01, /* __u8 if_bNumEndpoints; */ 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 0x00, /* __u8 if_bInterfaceSubClass; */ 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 0x00, /* __u8 if_iInterface; */ /* one endpoint (status change endpoint) */ 0x07, /* __u8 ep_bLength; */ 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x03, /* __u8 ep_bmAttributes; Interrupt */ 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ }; static const u8 hs_rh_config_descriptor [] = { /* one configuration */ 0x09, /* __u8 bLength; */ 0x02, /* __u8 bDescriptorType; Configuration */ 0x19, 0x00, /* __le16 wTotalLength; */ 0x01, /* __u8 bNumInterfaces; (1) */ 0x01, /* __u8 bConfigurationValue; */ 0x00, /* __u8 iConfiguration; */ 0xc0, /* __u8 bmAttributes; Bit 7: must be set, 6: Self-powered, 5: Remote wakeup, 4..0: resvd */ 0x00, /* __u8 MaxPower; */ /* USB 1.1: * USB 2.0, single TT organization (mandatory): * one interface, protocol 0 * * USB 2.0, multiple TT organization (optional): * two interfaces, protocols 1 (like single TT) * and 2 (multiple TT mode) ... config is * sometimes settable * NOT IMPLEMENTED */ /* one interface */ 0x09, /* __u8 if_bLength; */ 0x04, /* __u8 if_bDescriptorType; Interface */ 0x00, /* __u8 if_bInterfaceNumber; */ 0x00, /* __u8 if_bAlternateSetting; */ 0x01, /* __u8 if_bNumEndpoints; */ 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 0x00, /* __u8 if_bInterfaceSubClass; */ 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 0x00, /* __u8 if_iInterface; */ /* one endpoint (status change endpoint) */ 0x07, /* __u8 ep_bLength; */ 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 0x03, /* __u8 ep_bmAttributes; Interrupt */ /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) * see hub.c:hub_configure() for details. */ (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ }; /*-------------------------------------------------------------------------*/ /* * helper routine for returning string descriptors in UTF-16LE * input can actually be ISO-8859-1; ASCII is its 7-bit subset */ static int ascii2utf (char *s, u8 *utf, int utfmax) { int retval; for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { *utf++ = *s++; *utf++ = 0; } if (utfmax > 0) { *utf = *s; ++retval; } return retval; } /* * rh_string - provides manufacturer, product and serial strings for root hub * @id: the string ID number (1: serial number, 2: product, 3: vendor) * @hcd: the host controller for this root hub * @data: return packet in UTF-16 LE * @len: length of the return packet * * Produces either a manufacturer, product or serial number string for the * virtual root hub device. */ static int rh_string ( int id, struct usb_hcd *hcd, u8 *data, int len ) { char buf [100]; // language ids if (id == 0) { buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ len = min (len, 4); memcpy (data, buf, len); return len; // serial number } else if (id == 1) { strlcpy (buf, hcd->self.bus_name, sizeof buf); // product description } else if (id == 2) { strlcpy (buf, hcd->product_desc, sizeof buf); // id 3 == vendor description } else if (id == 3) { snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, init_utsname()->release, hcd->driver->description); // unsupported IDs --> "protocol stall" } else return -EPIPE; switch (len) { /* All cases fall through */ default: len = 2 + ascii2utf (buf, data + 2, len - 2); case 2: data [1] = 3; /* type == string */ case 1: data [0] = 2 * (strlen (buf) + 1); case 0: ; /* Compiler wants a statement here */ } return len; } /* Root hub control transfers execute synchronously */ static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) { struct usb_ctrlrequest *cmd; u16 typeReq, wValue, wIndex, wLength; u8 *ubuf = urb->transfer_buffer; u8 tbuf [sizeof (struct usb_hub_descriptor)] __attribute__((aligned(4))); const u8 *bufp = tbuf; int len = 0; int status; int n; u8 patch_wakeup = 0; u8 patch_protocol = 0; might_sleep(); spin_lock_irq(&hcd_root_hub_lock); status = usb_hcd_link_urb_to_ep(hcd, urb); spin_unlock_irq(&hcd_root_hub_lock); if (status) return status; urb->hcpriv = hcd; /* Indicate it's queued */ cmd = (struct usb_ctrlrequest *) urb->setup_packet; typeReq = (cmd->bRequestType << 8) | cmd->bRequest; wValue = le16_to_cpu (cmd->wValue); wIndex = le16_to_cpu (cmd->wIndex); wLength = le16_to_cpu (cmd->wLength); if (wLength > urb->transfer_buffer_length) goto error; urb->actual_length = 0; switch (typeReq) { /* DEVICE REQUESTS */ /* The root hub's remote wakeup enable bit is implemented using * driver model wakeup flags. If this system supports wakeup * through USB, userspace may change the default "allow wakeup" * policy through sysfs or these calls. * * Most root hubs support wakeup from downstream devices, for * runtime power management (disabling USB clocks and reducing * VBUS power usage). However, not all of them do so; silicon, * board, and BIOS bugs here are not uncommon, so these can't * be treated quite like external hubs. * * Likewise, not all root hubs will pass wakeup events upstream, * to wake up the whole system. So don't assume root hub and * controller capabilities are identical. */ case DeviceRequest | USB_REQ_GET_STATUS: tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) << USB_DEVICE_REMOTE_WAKEUP) | (1 << USB_DEVICE_SELF_POWERED); tbuf [1] = 0; len = 2; break; case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: if (wValue == USB_DEVICE_REMOTE_WAKEUP) device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); else goto error; break; case DeviceOutRequest | USB_REQ_SET_FEATURE: if (device_can_wakeup(&hcd->self.root_hub->dev) && wValue == USB_DEVICE_REMOTE_WAKEUP) device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); else goto error; break; case DeviceRequest | USB_REQ_GET_CONFIGURATION: tbuf [0] = 1; len = 1; /* FALLTHROUGH */ case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: break; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: switch (wValue & 0xff00) { case USB_DT_DEVICE << 8: if (hcd->driver->flags & HCD_USB2) bufp = usb2_rh_dev_descriptor; else if (hcd->driver->flags & HCD_USB11) bufp = usb11_rh_dev_descriptor; else goto error; len = 18; if (hcd->has_tt) patch_protocol = 1; break; case USB_DT_CONFIG << 8: if (hcd->driver->flags & HCD_USB2) { bufp = hs_rh_config_descriptor; len = sizeof hs_rh_config_descriptor; } else { bufp = fs_rh_config_descriptor; len = sizeof fs_rh_config_descriptor; } if (device_can_wakeup(&hcd->self.root_hub->dev)) patch_wakeup = 1; break; case USB_DT_STRING << 8: n = rh_string (wValue & 0xff, hcd, ubuf, wLength); if (n < 0) goto error; urb->actual_length = n; break; default: goto error; } break; case DeviceRequest | USB_REQ_GET_INTERFACE: tbuf [0] = 0; len = 1; /* FALLTHROUGH */ case DeviceOutRequest | USB_REQ_SET_INTERFACE: break; case DeviceOutRequest | USB_REQ_SET_ADDRESS: // wValue == urb->dev->devaddr dev_dbg (hcd->self.controller, "root hub device address %d\n", wValue); break; /* INTERFACE REQUESTS (no defined feature/status flags) */ /* ENDPOINT REQUESTS */ case EndpointRequest | USB_REQ_GET_STATUS: // ENDPOINT_HALT flag tbuf [0] = 0; tbuf [1] = 0; len = 2; /* FALLTHROUGH */ case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: case EndpointOutRequest | USB_REQ_SET_FEATURE: dev_dbg (hcd->self.controller, "no endpoint features yet\n"); break; /* CLASS REQUESTS (and errors) */ default: /* non-generic request */ switch (typeReq) { case GetHubStatus: case GetPortStatus: len = 4; break; case GetHubDescriptor: len = sizeof (struct usb_hub_descriptor); break; } status = hcd->driver->hub_control (hcd, typeReq, wValue, wIndex, tbuf, wLength); break; error: /* "protocol stall" on error */ status = -EPIPE; } if (status) { len = 0; if (status != -EPIPE) { dev_dbg (hcd->self.controller, "CTRL: TypeReq=0x%x val=0x%x " "idx=0x%x len=%d ==> %d\n", typeReq, wValue, wIndex, wLength, status); } } if (len) { if (urb->transfer_buffer_length < len) len = urb->transfer_buffer_length; urb->actual_length = len; // always USB_DIR_IN, toward host memcpy (ubuf, bufp, len); /* report whether RH hardware supports remote wakeup */ if (patch_wakeup && len > offsetof (struct usb_config_descriptor, bmAttributes)) ((struct usb_config_descriptor *)ubuf)->bmAttributes |= USB_CONFIG_ATT_WAKEUP; /* report whether RH hardware has an integrated TT */ if (patch_protocol && len > offsetof(struct usb_device_descriptor, bDeviceProtocol)) ((struct usb_device_descriptor *) ubuf)-> bDeviceProtocol = 1; } /* any errors get returned through the urb completion */ spin_lock_irq(&hcd_root_hub_lock); usb_hcd_unlink_urb_from_ep(hcd, urb); /* This peculiar use of spinlocks echoes what real HC drivers do. * Avoiding calls to local_irq_disable/enable makes the code * RT-friendly. */ spin_unlock(&hcd_root_hub_lock); usb_hcd_giveback_urb(hcd, urb, status); spin_lock(&hcd_root_hub_lock); spin_unlock_irq(&hcd_root_hub_lock); return 0; } /*-------------------------------------------------------------------------*/ /* * Root Hub interrupt transfers are polled using a timer if the * driver requests it; otherwise the driver is responsible for * calling usb_hcd_poll_rh_status() when an event occurs. * * Completions are called in_interrupt(), but they may or may not * be in_irq(). */ void usb_hcd_poll_rh_status(struct usb_hcd *hcd) { struct urb *urb; int length; unsigned long flags; char buffer[4]; /* Any root hubs with > 31 ports? */ if (unlikely(!hcd->rh_registered)) return; if (!hcd->uses_new_polling && !hcd->status_urb) return; length = hcd->driver->hub_status_data(hcd, buffer); if (length > 0) { /* try to complete the status urb */ spin_lock_irqsave(&hcd_root_hub_lock, flags); urb = hcd->status_urb; if (urb) { hcd->poll_pending = 0; hcd->status_urb = NULL; urb->actual_length = length; memcpy(urb->transfer_buffer, buffer, length); usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&hcd_root_hub_lock); usb_hcd_giveback_urb(hcd, urb, 0); spin_lock(&hcd_root_hub_lock); } else { length = 0; hcd->poll_pending = 1; } spin_unlock_irqrestore(&hcd_root_hub_lock, flags); } /* The USB 2.0 spec says 256 ms. This is close enough and won't * exceed that limit if HZ is 100. The math is more clunky than * maybe expected, this is to make sure that all timers for USB devices * fire at the same time to give the CPU a break inbetween */ if (hcd->uses_new_polling ? hcd->poll_rh : (length == 0 && hcd->status_urb != NULL)) mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); } EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); /* timer callback */ static void rh_timer_func (unsigned long _hcd) { usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); } /*-------------------------------------------------------------------------*/ static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) { int retval; unsigned long flags; int len = 1 + (urb->dev->maxchild / 8); spin_lock_irqsave (&hcd_root_hub_lock, flags); if (hcd->status_urb || urb->transfer_buffer_length < len) { dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); retval = -EINVAL; goto done; } retval = usb_hcd_link_urb_to_ep(hcd, urb); if (retval) goto done; hcd->status_urb = urb; urb->hcpriv = hcd; /* indicate it's queued */ if (!hcd->uses_new_polling) mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); /* If a status change has already occurred, report it ASAP */ else if (hcd->poll_pending) mod_timer(&hcd->rh_timer, jiffies); retval = 0; done: spin_unlock_irqrestore (&hcd_root_hub_lock, flags); return retval; } static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) { if (usb_endpoint_xfer_int(&urb->ep->desc)) return rh_queue_status (hcd, urb); if (usb_endpoint_xfer_control(&urb->ep->desc)) return rh_call_control (hcd, urb); return -EINVAL; } /*-------------------------------------------------------------------------*/ /* Unlinks of root-hub control URBs are legal, but they don't do anything * since these URBs always execute synchronously. */ static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { unsigned long flags; int rc; spin_lock_irqsave(&hcd_root_hub_lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (rc) goto done; if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ ; /* Do nothing */ } else { /* Status URB */ if (!hcd->uses_new_polling) del_timer (&hcd->rh_timer); if (urb == hcd->status_urb) { hcd->status_urb = NULL; usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&hcd_root_hub_lock); usb_hcd_giveback_urb(hcd, urb, status); spin_lock(&hcd_root_hub_lock); } } done: spin_unlock_irqrestore(&hcd_root_hub_lock, flags); return rc; } /* * Show & store the current value of authorized_default */ static ssize_t usb_host_authorized_default_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *rh_usb_dev = to_usb_device(dev); struct usb_bus *usb_bus = rh_usb_dev->bus; struct usb_hcd *usb_hcd; if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ return -ENODEV; usb_hcd = bus_to_hcd(usb_bus); return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); } static ssize_t usb_host_authorized_default_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { ssize_t result; unsigned val; struct usb_device *rh_usb_dev = to_usb_device(dev); struct usb_bus *usb_bus = rh_usb_dev->bus; struct usb_hcd *usb_hcd; if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ return -ENODEV; usb_hcd = bus_to_hcd(usb_bus); result = sscanf(buf, "%u\n", &val); if (result == 1) { usb_hcd->authorized_default = val? 1 : 0; result = size; } else result = -EINVAL; return result; } static DEVICE_ATTR(authorized_default, 0644, usb_host_authorized_default_show, usb_host_authorized_default_store); /* Group all the USB bus attributes */ static struct attribute *usb_bus_attrs[] = { &dev_attr_authorized_default.attr, NULL, }; static struct attribute_group usb_bus_attr_group = { .name = NULL, /* we want them in the same directory */ .attrs = usb_bus_attrs, }; /*-------------------------------------------------------------------------*/ static struct class *usb_host_class; int usb_host_init(void) { int retval = 0; usb_host_class = class_create(THIS_MODULE, "usb_host"); if (IS_ERR(usb_host_class)) retval = PTR_ERR(usb_host_class); return retval; } void usb_host_cleanup(void) { class_destroy(usb_host_class); } /** * usb_bus_init - shared initialization code * @bus: the bus structure being initialized * * This code is used to initialize a usb_bus structure, memory for which is * separately managed. */ static void usb_bus_init (struct usb_bus *bus) { memset (&bus->devmap, 0, sizeof(struct usb_devmap)); bus->devnum_next = 1; bus->root_hub = NULL; bus->busnum = -1; bus->bandwidth_allocated = 0; bus->bandwidth_int_reqs = 0; bus->bandwidth_isoc_reqs = 0; INIT_LIST_HEAD (&bus->bus_list); } /*-------------------------------------------------------------------------*/ /** * usb_register_bus - registers the USB host controller with the usb core * @bus: pointer to the bus to register * Context: !in_interrupt() * * Assigns a bus number, and links the controller into usbcore data * structures so that it can be seen by scanning the bus list. */ static int usb_register_bus(struct usb_bus *bus) { int result = -E2BIG; int busnum; mutex_lock(&usb_bus_list_lock); busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); if (busnum >= USB_MAXBUS) { printk (KERN_ERR "%s: too many buses\n", usbcore_name); goto error_find_busnum; } set_bit (busnum, busmap.busmap); bus->busnum = busnum; bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0), bus, "usb_host%d", busnum); result = PTR_ERR(bus->dev); if (IS_ERR(bus->dev)) goto error_create_class_dev; /* Add it to the local list of buses */ list_add (&bus->bus_list, &usb_bus_list); mutex_unlock(&usb_bus_list_lock); usb_notify_add_bus(bus); dev_info (bus->controller, "new USB bus registered, assigned bus " "number %d\n", bus->busnum); return 0; error_create_class_dev: clear_bit(busnum, busmap.busmap); error_find_busnum: mutex_unlock(&usb_bus_list_lock); return result; } /** * usb_deregister_bus - deregisters the USB host controller * @bus: pointer to the bus to deregister * Context: !in_interrupt() * * Recycles the bus number, and unlinks the controller from usbcore data * structures so that it won't be seen by scanning the bus list. */ static void usb_deregister_bus (struct usb_bus *bus) { dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); /* * NOTE: make sure that all the devices are removed by the * controller code, as well as having it call this when cleaning * itself up */ mutex_lock(&usb_bus_list_lock); list_del (&bus->bus_list); mutex_unlock(&usb_bus_list_lock); usb_notify_remove_bus(bus); clear_bit (bus->busnum, busmap.busmap); device_unregister(bus->dev); } /** * register_root_hub - called by usb_add_hcd() to register a root hub * @hcd: host controller for this root hub * * This function registers the root hub with the USB subsystem. It sets up * the device properly in the device tree and then calls usb_new_device() * to register the usb device. It also assigns the root hub's USB address * (always 1). */ static int register_root_hub(struct usb_hcd *hcd) { struct device *parent_dev = hcd->self.controller; struct usb_device *usb_dev = hcd->self.root_hub; const int devnum = 1; int retval; usb_dev->devnum = devnum; usb_dev->bus->devnum_next = devnum + 1; memset (&usb_dev->bus->devmap.devicemap, 0, sizeof usb_dev->bus->devmap.devicemap); set_bit (devnum, usb_dev->bus->devmap.devicemap); usb_set_device_state(usb_dev, USB_STATE_ADDRESS); mutex_lock(&usb_bus_list_lock); usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64); retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); if (retval != sizeof usb_dev->descriptor) { mutex_unlock(&usb_bus_list_lock); dev_dbg (parent_dev, "can't read %s device descriptor %d\n", dev_name(&usb_dev->dev), retval); return (retval < 0) ? retval : -EMSGSIZE; } retval = usb_new_device (usb_dev); if (retval) { dev_err (parent_dev, "can't register root hub for %s, %d\n", dev_name(&usb_dev->dev), retval); } mutex_unlock(&usb_bus_list_lock); if (retval == 0) { spin_lock_irq (&hcd_root_hub_lock); hcd->rh_registered = 1; spin_unlock_irq (&hcd_root_hub_lock); /* Did the HC die before the root hub was registered? */ if (hcd->state == HC_STATE_HALT) usb_hc_died (hcd); /* This time clean up */ } return retval; } /*-------------------------------------------------------------------------*/ /** * usb_calc_bus_time - approximate periodic transaction time in nanoseconds * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} * @is_input: true iff the transaction sends data to the host * @isoc: true for isochronous transactions, false for interrupt ones * @bytecount: how many bytes in the transaction. * * Returns approximate bus time in nanoseconds for a periodic transaction. * See USB 2.0 spec section 5.11.3; only periodic transfers need to be * scheduled in software, this function is only used for such scheduling. */ long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) { unsigned long tmp; switch (speed) { case USB_SPEED_LOW: /* INTR only */ if (is_input) { tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); } else { tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); } case USB_SPEED_FULL: /* ISOC or INTR */ if (isoc) { tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); } else { tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; return (9107L + BW_HOST_DELAY + tmp); } case USB_SPEED_HIGH: /* ISOC or INTR */ // FIXME adjust for input vs output if (isoc) tmp = HS_NSECS_ISO (bytecount); else tmp = HS_NSECS (bytecount); return tmp; default: pr_debug ("%s: bogus device speed!\n", usbcore_name); return -1; } } EXPORT_SYMBOL_GPL(usb_calc_bus_time); /*-------------------------------------------------------------------------*/ /* * Generic HC operations. */ /*-------------------------------------------------------------------------*/ /** * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue * @hcd: host controller to which @urb was submitted * @urb: URB being submitted * * Host controller drivers should call this routine in their enqueue() * method. The HCD's private spinlock must be held and interrupts must * be disabled. The actions carried out here are required for URB * submission, as well as for endpoint shutdown and for usb_kill_urb. * * Returns 0 for no error, otherwise a negative error code (in which case * the enqueue() method must fail). If no error occurs but enqueue() fails * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing * the private spinlock and returning. */ int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) { int rc = 0; spin_lock(&hcd_urb_list_lock); /* Check that the URB isn't being killed */ if (unlikely(urb->reject)) { rc = -EPERM; goto done; } if (unlikely(!urb->ep->enabled)) { rc = -ENOENT; goto done; } if (unlikely(!urb->dev->can_submit)) { rc = -EHOSTUNREACH; goto done; } /* * Check the host controller's state and add the URB to the * endpoint's queue. */ switch (hcd->state) { case HC_STATE_RUNNING: case HC_STATE_RESUMING: urb->unlinked = 0; list_add_tail(&urb->urb_list, &urb->ep->urb_list); break; default: rc = -ESHUTDOWN; goto done; } done: spin_unlock(&hcd_urb_list_lock); return rc; } EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); /** * usb_hcd_check_unlink_urb - check whether an URB may be unlinked * @hcd: host controller to which @urb was submitted * @urb: URB being checked for unlinkability * @status: error code to store in @urb if the unlink succeeds * * Host controller drivers should call this routine in their dequeue() * method. The HCD's private spinlock must be held and interrupts must * be disabled. The actions carried out here are required for making * sure than an unlink is valid. * * Returns 0 for no error, otherwise a negative error code (in which case * the dequeue() method must fail). The possible error codes are: * * -EIDRM: @urb was not submitted or has already completed. * The completion function may not have been called yet. * * -EBUSY: @urb has already been unlinked. */ int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, int status) { struct list_head *tmp; /* insist the urb is still queued */ list_for_each(tmp, &urb->ep->urb_list) { if (tmp == &urb->urb_list) break; } if (tmp != &urb->urb_list) return -EIDRM; /* Any status except -EINPROGRESS means something already started to * unlink this URB from the hardware. So there's no more work to do. */ if (urb->unlinked) return -EBUSY; urb->unlinked = status; /* IRQ setup can easily be broken so that USB controllers * never get completion IRQs ... maybe even the ones we need to * finish unlinking the initial failed usb_set_address() * or device descriptor fetch. */ if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && !is_root_hub(urb->dev)) { dev_warn(hcd->self.controller, "Unlink after no-IRQ? " "Controller is probably using the wrong IRQ.\n"); set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); } return 0; } EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); /** * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue * @hcd: host controller to which @urb was submitted * @urb: URB being unlinked * * Host controller drivers should call this routine before calling * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and * interrupts must be disabled. The actions carried out here are required * for URB completion. */ void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) { /* clear all state linking urb to this dev (and hcd) */ spin_lock(&hcd_urb_list_lock); list_del_init(&urb->urb_list); spin_unlock(&hcd_urb_list_lock); } EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); /* * Some usb host controllers can only perform dma using a small SRAM area. * The usb core itself is however optimized for host controllers that can dma * using regular system memory - like pci devices doing bus mastering. * * To support host controllers with limited dma capabilites we provide dma * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. * For this to work properly the host controller code must first use the * function dma_declare_coherent_memory() to point out which memory area * that should be used for dma allocations. * * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for * dma using dma_alloc_coherent() which in turn allocates from the memory * area pointed out with dma_declare_coherent_memory(). * * So, to summarize... * * - We need "local" memory, canonical example being * a small SRAM on a discrete controller being the * only memory that the controller can read ... * (a) "normal" kernel memory is no good, and * (b) there's not enough to share * * - The only *portable* hook for such stuff in the * DMA framework is dma_declare_coherent_memory() * * - So we use that, even though the primary requirement * is that the memory be "local" (hence addressible * by that device), not "coherent". * */ static int hcd_alloc_coherent(struct usb_bus *bus, gfp_t mem_flags, dma_addr_t *dma_handle, void **vaddr_handle, size_t size, enum dma_data_direction dir) { unsigned char *vaddr; vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), mem_flags, dma_handle); if (!vaddr) return -ENOMEM; /* * Store the virtual address of the buffer at the end * of the allocated dma buffer. The size of the buffer * may be uneven so use unaligned functions instead * of just rounding up. It makes sense to optimize for * memory footprint over access speed since the amount * of memory available for dma may be limited. */ put_unaligned((unsigned long)*vaddr_handle, (unsigned long *)(vaddr + size)); if (dir == DMA_TO_DEVICE) memcpy(vaddr, *vaddr_handle, size); *vaddr_handle = vaddr; return 0; } static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, void **vaddr_handle, size_t size, enum dma_data_direction dir) { unsigned char *vaddr = *vaddr_handle; vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); if (dir == DMA_FROM_DEVICE) memcpy(vaddr, *vaddr_handle, size); hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); *vaddr_handle = vaddr; *dma_handle = 0; } static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { enum dma_data_direction dir; int ret = 0; /* Map the URB's buffers for DMA access. * Lower level HCD code should use *_dma exclusively, * unless it uses pio or talks to another transport. */ if (is_root_hub(urb->dev)) return 0; if (usb_endpoint_xfer_control(&urb->ep->desc) && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { if (hcd->self.uses_dma) urb->setup_dma = dma_map_single( hcd->self.controller, urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); else if (hcd->driver->flags & HCD_LOCAL_MEM) ret = hcd_alloc_coherent( urb->dev->bus, mem_flags, &urb->setup_dma, (void **)&urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); } dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; if (ret == 0 && urb->transfer_buffer_length != 0 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { if (hcd->self.uses_dma) urb->transfer_dma = dma_map_single ( hcd->self.controller, urb->transfer_buffer, urb->transfer_buffer_length, dir); else if (hcd->driver->flags & HCD_LOCAL_MEM) { ret = hcd_alloc_coherent( urb->dev->bus, mem_flags, &urb->transfer_dma, &urb->transfer_buffer, urb->transfer_buffer_length, dir); if (ret && usb_endpoint_xfer_control(&urb->ep->desc) && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) hcd_free_coherent(urb->dev->bus, &urb->setup_dma, (void **)&urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); } } return ret; } static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) { enum dma_data_direction dir; if (is_root_hub(urb->dev)) return; if (usb_endpoint_xfer_control(&urb->ep->desc) && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { if (hcd->self.uses_dma) dma_unmap_single(hcd->self.controller, urb->setup_dma, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); else if (hcd->driver->flags & HCD_LOCAL_MEM) hcd_free_coherent(urb->dev->bus, &urb->setup_dma, (void **)&urb->setup_packet, sizeof(struct usb_ctrlrequest), DMA_TO_DEVICE); } dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; if (urb->transfer_buffer_length != 0 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { if (hcd->self.uses_dma) dma_unmap_single(hcd->self.controller, urb->transfer_dma, urb->transfer_buffer_length, dir); else if (hcd->driver->flags & HCD_LOCAL_MEM) hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, &urb->transfer_buffer, urb->transfer_buffer_length, dir); } } /*-------------------------------------------------------------------------*/ /* may be called in any context with a valid urb->dev usecount * caller surrenders "ownership" of urb * expects usb_submit_urb() to have sanity checked and conditioned all * inputs in the urb */ int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) { int status; struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); /* increment urb's reference count as part of giving it to the HCD * (which will control it). HCD guarantees that it either returns * an error or calls giveback(), but not both. */ usb_get_urb(urb); atomic_inc(&urb->use_count); atomic_inc(&urb->dev->urbnum); usbmon_urb_submit(&hcd->self, urb); /* NOTE requirements on root-hub callers (usbfs and the hub * driver, for now): URBs' urb->transfer_buffer must be * valid and usb_buffer_{sync,unmap}() not be needed, since * they could clobber root hub response data. Also, control * URBs must be submitted in process context with interrupts * enabled. */ status = map_urb_for_dma(hcd, urb, mem_flags); if (unlikely(status)) { usbmon_urb_submit_error(&hcd->self, urb, status); goto error; } if (is_root_hub(urb->dev)) status = rh_urb_enqueue(hcd, urb); else status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); if (unlikely(status)) { usbmon_urb_submit_error(&hcd->self, urb, status); unmap_urb_for_dma(hcd, urb); error: urb->hcpriv = NULL; INIT_LIST_HEAD(&urb->urb_list); atomic_dec(&urb->use_count); atomic_dec(&urb->dev->urbnum); if (urb->reject) wake_up(&usb_kill_urb_queue); usb_put_urb(urb); } return status; } /*-------------------------------------------------------------------------*/ /* this makes the hcd giveback() the urb more quickly, by kicking it * off hardware queues (which may take a while) and returning it as * soon as practical. we've already set up the urb's return status, * but we can't know if the callback completed already. */ static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) { int value; if (is_root_hub(urb->dev)) value = usb_rh_urb_dequeue(hcd, urb, status); else { /* The only reason an HCD might fail this call is if * it has not yet fully queued the urb to begin with. * Such failures should be harmless. */ value = hcd->driver->urb_dequeue(hcd, urb, status); } return value; } /* * called in any context * * caller guarantees urb won't be recycled till both unlink() * and the urb's completion function return */ int usb_hcd_unlink_urb (struct urb *urb, int status) { struct usb_hcd *hcd; int retval = -EIDRM; unsigned long flags; /* Prevent the device and bus from going away while * the unlink is carried out. If they are already gone * then urb->use_count must be 0, since disconnected * devices can't have any active URBs. */ spin_lock_irqsave(&hcd_urb_unlink_lock, flags); if (atomic_read(&urb->use_count) > 0) { retval = 0; usb_get_dev(urb->dev); } spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); if (retval == 0) { hcd = bus_to_hcd(urb->dev->bus); retval = unlink1(hcd, urb, status); usb_put_dev(urb->dev); } if (retval == 0) retval = -EINPROGRESS; else if (retval != -EIDRM && retval != -EBUSY) dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", urb, retval); return retval; } /*-------------------------------------------------------------------------*/ /** * usb_hcd_giveback_urb - return URB from HCD to device driver * @hcd: host controller returning the URB * @urb: urb being returned to the USB device driver. * @status: completion status code for the URB. * Context: in_interrupt() * * This hands the URB from HCD to its USB device driver, using its * completion function. The HCD has freed all per-urb resources * (and is done using urb->hcpriv). It also released all HCD locks; * the device driver won't cause problems if it frees, modifies, * or resubmits this URB. * * If @urb was unlinked, the value of @status will be overridden by * @urb->unlinked. Erroneous short transfers are detected in case * the HCD hasn't checked for them. */ void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) { urb->hcpriv = NULL; if (unlikely(urb->unlinked)) status = urb->unlinked; else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && urb->actual_length < urb->transfer_buffer_length && !status)) status = -EREMOTEIO; unmap_urb_for_dma(hcd, urb); usbmon_urb_complete(&hcd->self, urb, status); usb_unanchor_urb(urb); /* pass ownership to the completion handler */ urb->status = status; urb->complete (urb); atomic_dec (&urb->use_count); if (unlikely (urb->reject)) wake_up (&usb_kill_urb_queue); usb_put_urb (urb); } EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); /*-------------------------------------------------------------------------*/ /* Cancel all URBs pending on this endpoint and wait for the endpoint's * queue to drain completely. The caller must first insure that no more * URBs can be submitted for this endpoint. */ void usb_hcd_flush_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep) { struct usb_hcd *hcd; struct urb *urb; if (!ep) return; might_sleep(); hcd = bus_to_hcd(udev->bus); /* No more submits can occur */ spin_lock_irq(&hcd_urb_list_lock); rescan: list_for_each_entry (urb, &ep->urb_list, urb_list) { int is_in; if (urb->unlinked) continue; usb_get_urb (urb); is_in = usb_urb_dir_in(urb); spin_unlock(&hcd_urb_list_lock); /* kick hcd */ unlink1(hcd, urb, -ESHUTDOWN); dev_dbg (hcd->self.controller, "shutdown urb %p ep%d%s%s\n", urb, usb_endpoint_num(&ep->desc), is_in ? "in" : "out", ({ char *s; switch (usb_endpoint_type(&ep->desc)) { case USB_ENDPOINT_XFER_CONTROL: s = ""; break; case USB_ENDPOINT_XFER_BULK: s = "-bulk"; break; case USB_ENDPOINT_XFER_INT: s = "-intr"; break; default: s = "-iso"; break; }; s; })); usb_put_urb (urb); /* list contents may have changed */ spin_lock(&hcd_urb_list_lock); goto rescan; } spin_unlock_irq(&hcd_urb_list_lock); /* Wait until the endpoint queue is completely empty */ while (!list_empty (&ep->urb_list)) { spin_lock_irq(&hcd_urb_list_lock); /* The list may have changed while we acquired the spinlock */ urb = NULL; if (!list_empty (&ep->urb_list)) { urb = list_entry (ep->urb_list.prev, struct urb, urb_list); usb_get_urb (urb); } spin_unlock_irq(&hcd_urb_list_lock); if (urb) { usb_kill_urb (urb); usb_put_urb (urb); } } } /* Disables the endpoint: synchronizes with the hcd to make sure all * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must * have been called previously. Use for set_configuration, set_interface, * driver removal, physical disconnect. * * example: a qh stored in ep->hcpriv, holding state related to endpoint * type, maxpacket size, toggle, halt status, and scheduling. */ void usb_hcd_disable_endpoint(struct usb_device *udev, struct usb_host_endpoint *ep) { struct usb_hcd *hcd; might_sleep(); hcd = bus_to_hcd(udev->bus); if (hcd->driver->endpoint_disable) hcd->driver->endpoint_disable(hcd, ep); } /* Protect against drivers that try to unlink URBs after the device * is gone, by waiting until all unlinks for @udev are finished. * Since we don't currently track URBs by device, simply wait until * nothing is running in the locked region of usb_hcd_unlink_urb(). */ void usb_hcd_synchronize_unlinks(struct usb_device *udev) { spin_lock_irq(&hcd_urb_unlink_lock); spin_unlock_irq(&hcd_urb_unlink_lock); } /*-------------------------------------------------------------------------*/ /* called in any context */ int usb_hcd_get_frame_number (struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (!HC_IS_RUNNING (hcd->state)) return -ESHUTDOWN; return hcd->driver->get_frame_number (hcd); } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_PM int hcd_bus_suspend(struct usb_device *rhdev) { struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); int status; int old_state = hcd->state; dev_dbg(&rhdev->dev, "bus %s%s\n", rhdev->auto_pm ? "auto-" : "", "suspend"); if (!hcd->driver->bus_suspend) { status = -ENOENT; } else { hcd->state = HC_STATE_QUIESCING; status = hcd->driver->bus_suspend(hcd); } if (status == 0) { usb_set_device_state(rhdev, USB_STATE_SUSPENDED); hcd->state = HC_STATE_SUSPENDED; } else { hcd->state = old_state; dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", "suspend", status); } return status; } int hcd_bus_resume(struct usb_device *rhdev) { struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); int status; int old_state = hcd->state; dev_dbg(&rhdev->dev, "usb %s%s\n", rhdev->auto_pm ? "auto-" : "", "resume"); if (!hcd->driver->bus_resume) return -ENOENT; if (hcd->state == HC_STATE_RUNNING) return 0; hcd->state = HC_STATE_RESUMING; status = hcd->driver->bus_resume(hcd); if (status == 0) { /* TRSMRCY = 10 msec */ msleep(10); usb_set_device_state(rhdev, rhdev->actconfig ? USB_STATE_CONFIGURED : USB_STATE_ADDRESS); hcd->state = HC_STATE_RUNNING; } else { hcd->state = old_state; dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", "resume", status); if (status != -ESHUTDOWN) usb_hc_died(hcd); } return status; } /* Workqueue routine for root-hub remote wakeup */ static void hcd_resume_work(struct work_struct *work) { struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); struct usb_device *udev = hcd->self.root_hub; usb_lock_device(udev); usb_mark_last_busy(udev); usb_external_resume_device(udev); usb_unlock_device(udev); } /** * usb_hcd_resume_root_hub - called by HCD to resume its root hub * @hcd: host controller for this root hub * * The USB host controller calls this function when its root hub is * suspended (with the remote wakeup feature enabled) and a remote * wakeup request is received. The routine submits a workqueue request * to resume the root hub (that is, manage its downstream ports again). */ void usb_hcd_resume_root_hub (struct usb_hcd *hcd) { unsigned long flags; spin_lock_irqsave (&hcd_root_hub_lock, flags); if (hcd->rh_registered) queue_work(ksuspend_usb_wq, &hcd->wakeup_work); spin_unlock_irqrestore (&hcd_root_hub_lock, flags); } EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); #endif /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_OTG /** * usb_bus_start_enum - start immediate enumeration (for OTG) * @bus: the bus (must use hcd framework) * @port_num: 1-based number of port; usually bus->otg_port * Context: in_interrupt() * * Starts enumeration, with an immediate reset followed later by * khubd identifying and possibly configuring the device. * This is needed by OTG controller drivers, where it helps meet * HNP protocol timing requirements for starting a port reset. */ int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) { struct usb_hcd *hcd; int status = -EOPNOTSUPP; /* NOTE: since HNP can't start by grabbing the bus's address0_sem, * boards with root hubs hooked up to internal devices (instead of * just the OTG port) may need more attention to resetting... */ hcd = container_of (bus, struct usb_hcd, self); if (port_num && hcd->driver->start_port_reset) status = hcd->driver->start_port_reset(hcd, port_num); /* run khubd shortly after (first) root port reset finishes; * it may issue others, until at least 50 msecs have passed. */ if (status == 0) mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); return status; } EXPORT_SYMBOL_GPL(usb_bus_start_enum); #endif /*-------------------------------------------------------------------------*/ /** * usb_hcd_irq - hook IRQs to HCD framework (bus glue) * @irq: the IRQ being raised * @__hcd: pointer to the HCD whose IRQ is being signaled * * If the controller isn't HALTed, calls the driver's irq handler. * Checks whether the controller is now dead. */ irqreturn_t usb_hcd_irq (int irq, void *__hcd) { struct usb_hcd *hcd = __hcd; unsigned long flags; irqreturn_t rc; /* IRQF_DISABLED doesn't work correctly with shared IRQs * when the first handler doesn't use it. So let's just * assume it's never used. */ local_irq_save(flags); if (unlikely(hcd->state == HC_STATE_HALT || !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { rc = IRQ_NONE; } else if (hcd->driver->irq(hcd) == IRQ_NONE) { rc = IRQ_NONE; } else { set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); if (unlikely(hcd->state == HC_STATE_HALT)) usb_hc_died(hcd); rc = IRQ_HANDLED; } local_irq_restore(flags); return rc; } /*-------------------------------------------------------------------------*/ /** * usb_hc_died - report abnormal shutdown of a host controller (bus glue) * @hcd: pointer to the HCD representing the controller * * This is called by bus glue to report a USB host controller that died * while operations may still have been pending. It's called automatically * by the PCI glue, so only glue for non-PCI busses should need to call it. */ void usb_hc_died (struct usb_hcd *hcd) { unsigned long flags; dev_err (hcd->self.controller, "HC died; cleaning up\n"); spin_lock_irqsave (&hcd_root_hub_lock, flags); if (hcd->rh_registered) { hcd->poll_rh = 0; /* make khubd clean up old urbs and devices */ usb_set_device_state (hcd->self.root_hub, USB_STATE_NOTATTACHED); usb_kick_khubd (hcd->self.root_hub); } spin_unlock_irqrestore (&hcd_root_hub_lock, flags); } EXPORT_SYMBOL_GPL (usb_hc_died); /*-------------------------------------------------------------------------*/ /** * usb_create_hcd - create and initialize an HCD structure * @driver: HC driver that will use this hcd * @dev: device for this HC, stored in hcd->self.controller * @bus_name: value to store in hcd->self.bus_name * Context: !in_interrupt() * * Allocate a struct usb_hcd, with extra space at the end for the * HC driver's private data. Initialize the generic members of the * hcd structure. * * If memory is unavailable, returns NULL. */ struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, struct device *dev, const char *bus_name) { struct usb_hcd *hcd; hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); if (!hcd) { dev_dbg (dev, "hcd alloc failed\n"); return NULL; } dev_set_drvdata(dev, hcd); kref_init(&hcd->kref); usb_bus_init(&hcd->self); hcd->self.controller = dev; hcd->self.bus_name = bus_name; hcd->self.uses_dma = (dev->dma_mask != NULL); init_timer(&hcd->rh_timer); hcd->rh_timer.function = rh_timer_func; hcd->rh_timer.data = (unsigned long) hcd; #ifdef CONFIG_PM INIT_WORK(&hcd->wakeup_work, hcd_resume_work); #endif hcd->driver = driver; hcd->product_desc = (driver->product_desc) ? driver->product_desc : "USB Host Controller"; return hcd; } EXPORT_SYMBOL_GPL(usb_create_hcd); static void hcd_release (struct kref *kref) { struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); kfree(hcd); } struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) { if (hcd) kref_get (&hcd->kref); return hcd; } EXPORT_SYMBOL_GPL(usb_get_hcd); void usb_put_hcd (struct usb_hcd *hcd) { if (hcd) kref_put (&hcd->kref, hcd_release); } EXPORT_SYMBOL_GPL(usb_put_hcd); /** * usb_add_hcd - finish generic HCD structure initialization and register * @hcd: the usb_hcd structure to initialize * @irqnum: Interrupt line to allocate * @irqflags: Interrupt type flags * * Finish the remaining parts of generic HCD initialization: allocate the * buffers of consistent memory, register the bus, request the IRQ line, * and call the driver's reset() and start() routines. */ int usb_add_hcd(struct usb_hcd *hcd, unsigned int irqnum, unsigned long irqflags) { int retval; struct usb_device *rhdev; dev_info(hcd->self.controller, "%s\n", hcd->product_desc); hcd->authorized_default = hcd->wireless? 0 : 1; set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); /* HC is in reset state, but accessible. Now do the one-time init, * bottom up so that hcds can customize the root hubs before khubd * starts talking to them. (Note, bus id is assigned early too.) */ if ((retval = hcd_buffer_create(hcd)) != 0) { dev_dbg(hcd->self.controller, "pool alloc failed\n"); return retval; } if ((retval = usb_register_bus(&hcd->self)) < 0) goto err_register_bus; if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { dev_err(hcd->self.controller, "unable to allocate root hub\n"); retval = -ENOMEM; goto err_allocate_root_hub; } rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH : USB_SPEED_FULL; hcd->self.root_hub = rhdev; /* wakeup flag init defaults to "everything works" for root hubs, * but drivers can override it in reset() if needed, along with * recording the overall controller's system wakeup capability. */ device_init_wakeup(&rhdev->dev, 1); /* "reset" is misnamed; its role is now one-time init. the controller * should already have been reset (and boot firmware kicked off etc). */ if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { dev_err(hcd->self.controller, "can't setup\n"); goto err_hcd_driver_setup; } /* NOTE: root hub and controller capabilities may not be the same */ if (device_can_wakeup(hcd->self.controller) && device_can_wakeup(&hcd->self.root_hub->dev)) dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); /* enable irqs just before we start the controller */ if (hcd->driver->irq) { /* IRQF_DISABLED doesn't work as advertised when used together * with IRQF_SHARED. As usb_hcd_irq() will always disable * interrupts we can remove it here. */ if (irqflags & IRQF_SHARED) irqflags &= ~IRQF_DISABLED; snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", hcd->driver->description, hcd->self.busnum); if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, hcd->irq_descr, hcd)) != 0) { dev_err(hcd->self.controller, "request interrupt %d failed\n", irqnum); goto err_request_irq; } hcd->irq = irqnum; dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, (hcd->driver->flags & HCD_MEMORY) ? "io mem" : "io base", (unsigned long long)hcd->rsrc_start); } else { hcd->irq = -1; if (hcd->rsrc_start) dev_info(hcd->self.controller, "%s 0x%08llx\n", (hcd->driver->flags & HCD_MEMORY) ? "io mem" : "io base", (unsigned long long)hcd->rsrc_start); } if ((retval = hcd->driver->start(hcd)) < 0) { dev_err(hcd->self.controller, "startup error %d\n", retval); goto err_hcd_driver_start; } /* starting here, usbcore will pay attention to this root hub */ rhdev->bus_mA = min(500u, hcd->power_budget); if ((retval = register_root_hub(hcd)) != 0) goto err_register_root_hub; retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); if (retval < 0) { printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", retval); goto error_create_attr_group; } if (hcd->uses_new_polling && hcd->poll_rh) usb_hcd_poll_rh_status(hcd); return retval; error_create_attr_group: mutex_lock(&usb_bus_list_lock); usb_disconnect(&hcd->self.root_hub); mutex_unlock(&usb_bus_list_lock); err_register_root_hub: hcd->driver->stop(hcd); err_hcd_driver_start: if (hcd->irq >= 0) free_irq(irqnum, hcd); err_request_irq: err_hcd_driver_setup: hcd->self.root_hub = NULL; usb_put_dev(rhdev); err_allocate_root_hub: usb_deregister_bus(&hcd->self); err_register_bus: hcd_buffer_destroy(hcd); return retval; } EXPORT_SYMBOL_GPL(usb_add_hcd); /** * usb_remove_hcd - shutdown processing for generic HCDs * @hcd: the usb_hcd structure to remove * Context: !in_interrupt() * * Disconnects the root hub, then reverses the effects of usb_add_hcd(), * invoking the HCD's stop() method. */ void usb_remove_hcd(struct usb_hcd *hcd) { dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); if (HC_IS_RUNNING (hcd->state)) hcd->state = HC_STATE_QUIESCING; dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); spin_lock_irq (&hcd_root_hub_lock); hcd->rh_registered = 0; spin_unlock_irq (&hcd_root_hub_lock); #ifdef CONFIG_PM cancel_work_sync(&hcd->wakeup_work); #endif sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); mutex_lock(&usb_bus_list_lock); usb_disconnect(&hcd->self.root_hub); mutex_unlock(&usb_bus_list_lock); hcd->driver->stop(hcd); hcd->state = HC_STATE_HALT; hcd->poll_rh = 0; del_timer_sync(&hcd->rh_timer); if (hcd->irq >= 0) free_irq(hcd->irq, hcd); usb_deregister_bus(&hcd->self); hcd_buffer_destroy(hcd); } EXPORT_SYMBOL_GPL(usb_remove_hcd); void usb_hcd_platform_shutdown(struct platform_device* dev) { struct usb_hcd *hcd = platform_get_drvdata(dev); if (hcd->driver->shutdown) hcd->driver->shutdown(hcd); } EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); /*-------------------------------------------------------------------------*/ #if defined(CONFIG_USB_MON) struct usb_mon_operations *mon_ops; /* * The registration is unlocked. * We do it this way because we do not want to lock in hot paths. * * Notice that the code is minimally error-proof. Because usbmon needs * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. */ int usb_mon_register (struct usb_mon_operations *ops) { if (mon_ops) return -EBUSY; mon_ops = ops; mb(); return 0; } EXPORT_SYMBOL_GPL (usb_mon_register); void usb_mon_deregister (void) { if (mon_ops == NULL) { printk(KERN_ERR "USB: monitor was not registered\n"); return; } mon_ops = NULL; mb(); } EXPORT_SYMBOL_GPL (usb_mon_deregister); #endif /* CONFIG_USB_MON */