/* * keyspan_remote: USB driver for the Keyspan DMR * * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. * * This driver has been put together with the support of Innosys, Inc. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/input.h> #include <linux/usb.h> #define DRIVER_VERSION "v0.1" #define DRIVER_AUTHOR "Michael Downey <downey@zymeta.com>" #define DRIVER_DESC "Driver for the USB Keyspan remote control." #define DRIVER_LICENSE "GPL" /* Parameters that can be passed to the driver. */ static int debug; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Enable extra debug messages and information"); /* Vendor and product ids */ #define USB_KEYSPAN_VENDOR_ID 0x06CD #define USB_KEYSPAN_PRODUCT_UIA11 0x0202 /* Defines for converting the data from the remote. */ #define ZERO 0x18 #define ZERO_MASK 0x1F /* 5 bits for a 0 */ #define ONE 0x3C #define ONE_MASK 0x3F /* 6 bits for a 1 */ #define SYNC 0x3F80 #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */ #define STOP 0x00 #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */ #define GAP 0xFF #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */ /* table of devices that work with this driver */ static struct usb_device_id keyspan_table[] = { { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) }, { } /* Terminating entry */ }; /* Structure to store all the real stuff that a remote sends to us. */ struct keyspan_message { u16 system; u8 button; u8 toggle; }; /* Structure used for all the bit testing magic needed to be done. */ struct bit_tester { u32 tester; int len; int pos; int bits_left; u8 buffer[32]; }; /* Structure to hold all of our driver specific stuff */ struct usb_keyspan { char name[128]; char phys[64]; struct usb_device* udev; struct input_dev input; struct usb_interface* interface; struct usb_endpoint_descriptor* in_endpoint; struct urb* irq_urb; int open; dma_addr_t in_dma; unsigned char* in_buffer; /* variables used to parse messages from remote. */ struct bit_tester data; int stage; int toggle; }; /* * Table that maps the 31 possible keycodes to input keys. * Currently there are 15 and 17 button models so RESERVED codes * are blank areas in the mapping. */ static int keyspan_key_table[] = { KEY_RESERVED, /* 0 is just a place holder. */ KEY_RESERVED, KEY_STOP, KEY_PLAYCD, KEY_RESERVED, KEY_PREVIOUSSONG, KEY_REWIND, KEY_FORWARD, KEY_NEXTSONG, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_PAUSE, KEY_VOLUMEUP, KEY_RESERVED, KEY_RESERVED, KEY_RESERVED, KEY_VOLUMEDOWN, KEY_RESERVED, KEY_UP, KEY_RESERVED, KEY_MUTE, KEY_LEFT, KEY_ENTER, KEY_RIGHT, KEY_RESERVED, KEY_RESERVED, KEY_DOWN, KEY_RESERVED, KEY_KPASTERISK, KEY_RESERVED, KEY_MENU }; static struct usb_driver keyspan_driver; /* * Debug routine that prints out what we've received from the remote. */ static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/ { char codes[4*RECV_SIZE]; int i; for (i = 0; i < RECV_SIZE; i++) { snprintf(codes+i*3, 4, "%02x ", dev->in_buffer[i]); } dev_info(&dev->udev->dev, "%s\n", codes); } /* * Routine that manages the bit_tester structure. It makes sure that there are * at least bits_needed bits loaded into the tester. */ static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed) { if (dev->data.bits_left >= bits_needed) return(0); /* * Somehow we've missed the last message. The message will be repeated * though so it's not too big a deal */ if (dev->data.pos >= dev->data.len) { dev_dbg(&dev->udev, "%s - Error ran out of data. pos: %d, len: %d\n", __FUNCTION__, dev->data.pos, dev->data.len); return(-1); } /* Load as much as we can into the tester. */ while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) && (dev->data.pos < dev->data.len)) { dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left); dev->data.bits_left += 8; } return(0); } /* * Routine that handles all the logic needed to parse out the message from the remote. */ static void keyspan_check_data(struct usb_keyspan *remote, struct pt_regs *regs) { int i; int found = 0; struct keyspan_message message; switch(remote->stage) { case 0: /* * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler. * So the first byte that isn't a FF should be the start of a new message. */ for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i); if (i < RECV_SIZE) { memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE); remote->data.len = RECV_SIZE; remote->data.pos = 0; remote->data.tester = 0; remote->data.bits_left = 0; remote->stage = 1; } break; case 1: /* * Stage 1 we should have 16 bytes and should be able to detect a * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's. */ memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE); remote->data.len += RECV_SIZE; found = 0; while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) { for (i = 0; i < 8; ++i) { if (keyspan_load_tester(remote, 14) != 0) { remote->stage = 0; return; } if ((remote->data.tester & SYNC_MASK) == SYNC) { remote->data.tester = remote->data.tester >> 14; remote->data.bits_left -= 14; found = 1; break; } else { remote->data.tester = remote->data.tester >> 1; --remote->data.bits_left; } } } if (!found) { remote->stage = 0; remote->data.len = 0; } else { remote->stage = 2; } break; case 2: /* * Stage 2 we should have 24 bytes which will be enough for a full * message. We need to parse out the system code, button code, * toggle code, and stop. */ memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE); remote->data.len += RECV_SIZE; message.system = 0; for (i = 0; i < 9; i++) { keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.system = message.system << 1; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.system = (message.system << 1) + 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { err("%s - Unknown sequence found in system data.\n", __FUNCTION__); remote->stage = 0; return; } } message.button = 0; for (i = 0; i < 5; i++) { keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.button = message.button << 1; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.button = (message.button << 1) + 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { err("%s - Unknown sequence found in button data.\n", __FUNCTION__); remote->stage = 0; return; } } keyspan_load_tester(remote, 6); if ((remote->data.tester & ZERO_MASK) == ZERO) { message.toggle = 0; remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else if ((remote->data.tester & ONE_MASK) == ONE) { message.toggle = 1; remote->data.tester = remote->data.tester >> 6; remote->data.bits_left -= 6; } else { err("%s - Error in message, invalid toggle.\n", __FUNCTION__); } keyspan_load_tester(remote, 5); if ((remote->data.tester & STOP_MASK) == STOP) { remote->data.tester = remote->data.tester >> 5; remote->data.bits_left -= 5; } else { err("Bad message recieved, no stop bit found.\n"); } dev_dbg(&remote->udev, "%s found valid message: system: %d, button: %d, toggle: %d\n", __FUNCTION__, message.system, message.button, message.toggle); if (message.toggle != remote->toggle) { input_regs(&remote->input, regs); input_report_key(&remote->input, keyspan_key_table[message.button], 1); input_report_key(&remote->input, keyspan_key_table[message.button], 0); input_sync(&remote->input); remote->toggle = message.toggle; } remote->stage = 0; break; } } /* * Routine for sending all the initialization messages to the remote. */ static int keyspan_setup(struct usb_device* dev) { int retval = 0; retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0); if (retval) { dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n", __FUNCTION__, retval); return(retval); } retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x44, 0x40, 0x0, 0x0, NULL, 0, 0); if (retval) { dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n", __FUNCTION__, retval); return(retval); } retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 0x22, 0x40, 0x0, 0x0, NULL, 0, 0); if (retval) { dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n", __FUNCTION__, retval); return(retval); } dev_dbg(&dev->dev, "%s - Setup complete.\n", __FUNCTION__); return(retval); } /* * Routine used to handle a new message that has come in. */ static void keyspan_irq_recv(struct urb *urb, struct pt_regs *regs) { struct usb_keyspan *dev = urb->context; int retval; /* Check our status in case we need to bail out early. */ switch (urb->status) { case 0: break; /* Device went away so don't keep trying to read from it. */ case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: return; default: goto resubmit; break; } if (debug) keyspan_print(dev); keyspan_check_data(dev, regs); resubmit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval) err ("%s - usb_submit_urb failed with result: %d", __FUNCTION__, retval); } static int keyspan_open(struct input_dev *dev) { struct usb_keyspan *remote = dev->private; if (remote->open++) return 0; remote->irq_urb->dev = remote->udev; if (usb_submit_urb(remote->irq_urb, GFP_KERNEL)) { remote->open--; return -EIO; } return 0; } static void keyspan_close(struct input_dev *dev) { struct usb_keyspan *remote = dev->private; if (!--remote->open) usb_kill_urb(remote->irq_urb); } /* * Routine that sets up the driver to handle a specific USB device detected on the bus. */ static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id) { int i; int retval = -ENOMEM; char path[64]; char *buf; struct usb_keyspan *remote = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; struct usb_device *udev = usb_get_dev(interface_to_usbdev(interface)); /* See if the offered device matches what we can accept */ if ((udev->descriptor.idVendor != USB_KEYSPAN_VENDOR_ID) || (udev->descriptor.idProduct != USB_KEYSPAN_PRODUCT_UIA11) ) return -ENODEV; /* allocate memory for our device state and initialize it */ remote = kmalloc(sizeof(*remote), GFP_KERNEL); if (remote == NULL) { err("Out of memory\n"); goto error; } memset(remote, 0x00, sizeof(*remote)); remote->udev = udev; remote->interface = interface; remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */ /* set up the endpoint information */ /* use only the first in interrupt endpoint */ iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (!remote->in_endpoint && (endpoint->bEndpointAddress & USB_DIR_IN) && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) { /* we found our interrupt in endpoint */ remote->in_endpoint = endpoint; remote->in_buffer = usb_buffer_alloc(remote->udev, RECV_SIZE, SLAB_ATOMIC, &remote->in_dma); if (!remote->in_buffer) { retval = -ENOMEM; goto error; } } } if (!remote->in_endpoint) { err("Could not find interrupt input endpoint.\n"); retval = -ENODEV; goto error; } remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL); if (!remote->irq_urb) { err("Failed to allocate urb.\n"); retval = -ENOMEM; goto error; } retval = keyspan_setup(remote->udev); if (retval) { err("Failed to setup device.\n"); retval = -ENODEV; goto error; } /* * Setup the input system with the bits we are going to be reporting */ remote->input.evbit[0] = BIT(EV_KEY); /* We will only report KEY events. */ for (i = 0; i < 32; ++i) { if (keyspan_key_table[i] != KEY_RESERVED) { set_bit(keyspan_key_table[i], remote->input.keybit); } } remote->input.private = remote; remote->input.open = keyspan_open; remote->input.close = keyspan_close; usb_make_path(remote->udev, path, 64); sprintf(remote->phys, "%s/input0", path); remote->input.name = remote->name; remote->input.phys = remote->phys; remote->input.id.bustype = BUS_USB; remote->input.id.vendor = le16_to_cpu(remote->udev->descriptor.idVendor); remote->input.id.product = le16_to_cpu(remote->udev->descriptor.idProduct); remote->input.id.version = le16_to_cpu(remote->udev->descriptor.bcdDevice); if (!(buf = kmalloc(63, GFP_KERNEL))) { usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma); kfree(remote); return -ENOMEM; } if (remote->udev->descriptor.iManufacturer && usb_string(remote->udev, remote->udev->descriptor.iManufacturer, buf, 63) > 0) strcat(remote->name, buf); if (remote->udev->descriptor.iProduct && usb_string(remote->udev, remote->udev->descriptor.iProduct, buf, 63) > 0) sprintf(remote->name, "%s %s", remote->name, buf); if (!strlen(remote->name)) sprintf(remote->name, "USB Keyspan Remote %04x:%04x", remote->input.id.vendor, remote->input.id.product); kfree(buf); /* * Initialize the URB to access the device. The urb gets sent to the device in keyspan_open() */ usb_fill_int_urb(remote->irq_urb, remote->udev, usb_rcvintpipe(remote->udev, remote->in_endpoint->bEndpointAddress), remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote, remote->in_endpoint->bInterval); remote->irq_urb->transfer_dma = remote->in_dma; remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* we can register the device now, as it is ready */ input_register_device(&remote->input); /* save our data pointer in this interface device */ usb_set_intfdata(interface, remote); /* let the user know what node this device is now attached to */ info("connected: %s on %s", remote->name, path); return 0; error: /* * In case of error we need to clean up any allocated buffers */ if (remote->irq_urb) usb_free_urb(remote->irq_urb); if (remote->in_buffer) usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma); if (remote) kfree(remote); return retval; } /* * Routine called when a device is disconnected from the USB. */ static void keyspan_disconnect(struct usb_interface *interface) { struct usb_keyspan *remote; /* prevent keyspan_open() from racing keyspan_disconnect() */ lock_kernel(); remote = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); if (remote) { /* We have a valid driver structure so clean up everything we allocated. */ input_unregister_device(&remote->input); usb_kill_urb(remote->irq_urb); usb_free_urb(remote->irq_urb); usb_buffer_free(interface_to_usbdev(interface), RECV_SIZE, remote->in_buffer, remote->in_dma); kfree(remote); } unlock_kernel(); info("USB Keyspan now disconnected"); } /* * Standard driver set up sections */ static struct usb_driver keyspan_driver = { .owner = THIS_MODULE, .name = "keyspan_remote", .probe = keyspan_probe, .disconnect = keyspan_disconnect, .id_table = keyspan_table }; static int __init usb_keyspan_init(void) { int result; /* register this driver with the USB subsystem */ result = usb_register(&keyspan_driver); if (result) err("usb_register failed. Error number %d\n", result); return result; } static void __exit usb_keyspan_exit(void) { /* deregister this driver with the USB subsystem */ usb_deregister(&keyspan_driver); } module_init(usb_keyspan_init); module_exit(usb_keyspan_exit); MODULE_DEVICE_TABLE(usb, keyspan_table); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE(DRIVER_LICENSE);