/* * OMAP1 internal LCD controller * * Copyright (C) 2004 Nokia Corporation * Author: Imre Deak <imre.deak@nokia.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/module.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/err.h> #include <linux/mm.h> #include <linux/fb.h> #include <linux/dma-mapping.h> #include <linux/vmalloc.h> #include <linux/clk.h> #include <mach/dma.h> #include <mach/omapfb.h> #include <asm/mach-types.h> #include "lcdc.h" #define MODULE_NAME "lcdc" #define OMAP_LCDC_BASE 0xfffec000 #define OMAP_LCDC_SIZE 256 #define OMAP_LCDC_IRQ INT_LCD_CTRL #define OMAP_LCDC_CONTROL (OMAP_LCDC_BASE + 0x00) #define OMAP_LCDC_TIMING0 (OMAP_LCDC_BASE + 0x04) #define OMAP_LCDC_TIMING1 (OMAP_LCDC_BASE + 0x08) #define OMAP_LCDC_TIMING2 (OMAP_LCDC_BASE + 0x0c) #define OMAP_LCDC_STATUS (OMAP_LCDC_BASE + 0x10) #define OMAP_LCDC_SUBPANEL (OMAP_LCDC_BASE + 0x14) #define OMAP_LCDC_LINE_INT (OMAP_LCDC_BASE + 0x18) #define OMAP_LCDC_DISPLAY_STATUS (OMAP_LCDC_BASE + 0x1c) #define OMAP_LCDC_STAT_DONE (1 << 0) #define OMAP_LCDC_STAT_VSYNC (1 << 1) #define OMAP_LCDC_STAT_SYNC_LOST (1 << 2) #define OMAP_LCDC_STAT_ABC (1 << 3) #define OMAP_LCDC_STAT_LINE_INT (1 << 4) #define OMAP_LCDC_STAT_FUF (1 << 5) #define OMAP_LCDC_STAT_LOADED_PALETTE (1 << 6) #define OMAP_LCDC_CTRL_LCD_EN (1 << 0) #define OMAP_LCDC_CTRL_LCD_TFT (1 << 7) #define OMAP_LCDC_CTRL_LINE_IRQ_CLR_SEL (1 << 10) #define OMAP_LCDC_IRQ_VSYNC (1 << 2) #define OMAP_LCDC_IRQ_DONE (1 << 3) #define OMAP_LCDC_IRQ_LOADED_PALETTE (1 << 4) #define OMAP_LCDC_IRQ_LINE_NIRQ (1 << 5) #define OMAP_LCDC_IRQ_LINE (1 << 6) #define OMAP_LCDC_IRQ_MASK (((1 << 5) - 1) << 2) #define MAX_PALETTE_SIZE PAGE_SIZE enum lcdc_load_mode { OMAP_LCDC_LOAD_PALETTE, OMAP_LCDC_LOAD_FRAME, OMAP_LCDC_LOAD_PALETTE_AND_FRAME }; static struct omap_lcd_controller { enum omapfb_update_mode update_mode; int ext_mode; unsigned long frame_offset; int screen_width; int xres; int yres; enum omapfb_color_format color_mode; int bpp; void *palette_virt; dma_addr_t palette_phys; int palette_code; int palette_size; unsigned int irq_mask; struct completion last_frame_complete; struct completion palette_load_complete; struct clk *lcd_ck; struct omapfb_device *fbdev; void (*dma_callback)(void *data); void *dma_callback_data; int fbmem_allocated; dma_addr_t vram_phys; void *vram_virt; unsigned long vram_size; } lcdc; static void inline enable_irqs(int mask) { lcdc.irq_mask |= mask; } static void inline disable_irqs(int mask) { lcdc.irq_mask &= ~mask; } static void set_load_mode(enum lcdc_load_mode mode) { u32 l; l = omap_readl(OMAP_LCDC_CONTROL); l &= ~(3 << 20); switch (mode) { case OMAP_LCDC_LOAD_PALETTE: l |= 1 << 20; break; case OMAP_LCDC_LOAD_FRAME: l |= 2 << 20; break; case OMAP_LCDC_LOAD_PALETTE_AND_FRAME: break; default: BUG(); } omap_writel(l, OMAP_LCDC_CONTROL); } static void enable_controller(void) { u32 l; l = omap_readl(OMAP_LCDC_CONTROL); l |= OMAP_LCDC_CTRL_LCD_EN; l &= ~OMAP_LCDC_IRQ_MASK; l |= lcdc.irq_mask | OMAP_LCDC_IRQ_DONE; /* enabled IRQs */ omap_writel(l, OMAP_LCDC_CONTROL); } static void disable_controller_async(void) { u32 l; u32 mask; l = omap_readl(OMAP_LCDC_CONTROL); mask = OMAP_LCDC_CTRL_LCD_EN | OMAP_LCDC_IRQ_MASK; /* * Preserve the DONE mask, since we still want to get the * final DONE irq. It will be disabled in the IRQ handler. */ mask &= ~OMAP_LCDC_IRQ_DONE; l &= ~mask; omap_writel(l, OMAP_LCDC_CONTROL); } static void disable_controller(void) { init_completion(&lcdc.last_frame_complete); disable_controller_async(); if (!wait_for_completion_timeout(&lcdc.last_frame_complete, msecs_to_jiffies(500))) dev_err(lcdc.fbdev->dev, "timeout waiting for FRAME DONE\n"); } static void reset_controller(u32 status) { static unsigned long reset_count; static unsigned long last_jiffies; disable_controller_async(); reset_count++; if (reset_count == 1 || time_after(jiffies, last_jiffies + HZ)) { dev_err(lcdc.fbdev->dev, "resetting (status %#010x,reset count %lu)\n", status, reset_count); last_jiffies = jiffies; } if (reset_count < 100) { enable_controller(); } else { reset_count = 0; dev_err(lcdc.fbdev->dev, "too many reset attempts, giving up.\n"); } } /* * Configure the LCD DMA according to the current mode specified by parameters * in lcdc.fbdev and fbdev->var. */ static void setup_lcd_dma(void) { static const int dma_elem_type[] = { 0, OMAP_DMA_DATA_TYPE_S8, OMAP_DMA_DATA_TYPE_S16, 0, OMAP_DMA_DATA_TYPE_S32, }; struct omapfb_plane_struct *plane = lcdc.fbdev->fb_info[0]->par; struct fb_var_screeninfo *var = &lcdc.fbdev->fb_info[0]->var; unsigned long src; int esize, xelem, yelem; src = lcdc.vram_phys + lcdc.frame_offset; switch (var->rotate) { case 0: if (plane->info.mirror || (src & 3) || lcdc.color_mode == OMAPFB_COLOR_YUV420 || (lcdc.xres & 1)) esize = 2; else esize = 4; xelem = lcdc.xres * lcdc.bpp / 8 / esize; yelem = lcdc.yres; break; case 90: case 180: case 270: if (cpu_is_omap15xx()) { BUG(); } esize = 2; xelem = lcdc.yres * lcdc.bpp / 16; yelem = lcdc.xres; break; default: BUG(); return; } #ifdef VERBOSE dev_dbg(lcdc.fbdev->dev, "setup_dma: src %#010lx esize %d xelem %d yelem %d\n", src, esize, xelem, yelem); #endif omap_set_lcd_dma_b1(src, xelem, yelem, dma_elem_type[esize]); if (!cpu_is_omap15xx()) { int bpp = lcdc.bpp; /* * YUV support is only for external mode when we have the * YUV window embedded in a 16bpp frame buffer. */ if (lcdc.color_mode == OMAPFB_COLOR_YUV420) bpp = 16; /* Set virtual xres elem size */ omap_set_lcd_dma_b1_vxres( lcdc.screen_width * bpp / 8 / esize); /* Setup transformations */ omap_set_lcd_dma_b1_rotation(var->rotate); omap_set_lcd_dma_b1_mirror(plane->info.mirror); } omap_setup_lcd_dma(); } static irqreturn_t lcdc_irq_handler(int irq, void *dev_id) { u32 status; status = omap_readl(OMAP_LCDC_STATUS); if (status & (OMAP_LCDC_STAT_FUF | OMAP_LCDC_STAT_SYNC_LOST)) reset_controller(status); else { if (status & OMAP_LCDC_STAT_DONE) { u32 l; /* * Disable IRQ_DONE. The status bit will be cleared * only when the controller is reenabled and we don't * want to get more interrupts. */ l = omap_readl(OMAP_LCDC_CONTROL); l &= ~OMAP_LCDC_IRQ_DONE; omap_writel(l, OMAP_LCDC_CONTROL); complete(&lcdc.last_frame_complete); } if (status & OMAP_LCDC_STAT_LOADED_PALETTE) { disable_controller_async(); complete(&lcdc.palette_load_complete); } } /* * Clear these interrupt status bits. * Sync_lost, FUF bits were cleared by disabling the LCD controller * LOADED_PALETTE can be cleared this way only in palette only * load mode. In other load modes it's cleared by disabling the * controller. */ status &= ~(OMAP_LCDC_STAT_VSYNC | OMAP_LCDC_STAT_LOADED_PALETTE | OMAP_LCDC_STAT_ABC | OMAP_LCDC_STAT_LINE_INT); omap_writel(status, OMAP_LCDC_STATUS); return IRQ_HANDLED; } /* * Change to a new video mode. We defer this to a later time to avoid any * flicker and not to mess up the current LCD DMA context. For this we disable * the LCD controller, which will generate a DONE irq after the last frame has * been transferred. Then it'll be safe to reconfigure both the LCD controller * as well as the LCD DMA. */ static int omap_lcdc_setup_plane(int plane, int channel_out, unsigned long offset, int screen_width, int pos_x, int pos_y, int width, int height, int color_mode) { struct fb_var_screeninfo *var = &lcdc.fbdev->fb_info[0]->var; struct lcd_panel *panel = lcdc.fbdev->panel; int rot_x, rot_y; if (var->rotate == 0) { rot_x = panel->x_res; rot_y = panel->y_res; } else { rot_x = panel->y_res; rot_y = panel->x_res; } if (plane != 0 || channel_out != 0 || pos_x != 0 || pos_y != 0 || width > rot_x || height > rot_y) { #ifdef VERBOSE dev_dbg(lcdc.fbdev->dev, "invalid plane params plane %d pos_x %d pos_y %d " "w %d h %d\n", plane, pos_x, pos_y, width, height); #endif return -EINVAL; } lcdc.frame_offset = offset; lcdc.xres = width; lcdc.yres = height; lcdc.screen_width = screen_width; lcdc.color_mode = color_mode; switch (color_mode) { case OMAPFB_COLOR_CLUT_8BPP: lcdc.bpp = 8; lcdc.palette_code = 0x3000; lcdc.palette_size = 512; break; case OMAPFB_COLOR_RGB565: lcdc.bpp = 16; lcdc.palette_code = 0x4000; lcdc.palette_size = 32; break; case OMAPFB_COLOR_RGB444: lcdc.bpp = 16; lcdc.palette_code = 0x4000; lcdc.palette_size = 32; break; case OMAPFB_COLOR_YUV420: if (lcdc.ext_mode) { lcdc.bpp = 12; break; } /* fallthrough */ case OMAPFB_COLOR_YUV422: if (lcdc.ext_mode) { lcdc.bpp = 16; break; } /* fallthrough */ default: /* FIXME: other BPPs. * bpp1: code 0, size 256 * bpp2: code 0x1000 size 256 * bpp4: code 0x2000 size 256 * bpp12: code 0x4000 size 32 */ dev_dbg(lcdc.fbdev->dev, "invalid color mode %d\n", color_mode); BUG(); return -1; } if (lcdc.ext_mode) { setup_lcd_dma(); return 0; } if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) { disable_controller(); omap_stop_lcd_dma(); setup_lcd_dma(); enable_controller(); } return 0; } static int omap_lcdc_enable_plane(int plane, int enable) { dev_dbg(lcdc.fbdev->dev, "plane %d enable %d update_mode %d ext_mode %d\n", plane, enable, lcdc.update_mode, lcdc.ext_mode); if (plane != OMAPFB_PLANE_GFX) return -EINVAL; return 0; } /* * Configure the LCD DMA for a palette load operation and do the palette * downloading synchronously. We don't use the frame+palette load mode of * the controller, since the palette can always be downloaded seperately. */ static void load_palette(void) { u16 *palette; palette = (u16 *)lcdc.palette_virt; *(u16 *)palette &= 0x0fff; *(u16 *)palette |= lcdc.palette_code; omap_set_lcd_dma_b1(lcdc.palette_phys, lcdc.palette_size / 4 + 1, 1, OMAP_DMA_DATA_TYPE_S32); omap_set_lcd_dma_single_transfer(1); omap_setup_lcd_dma(); init_completion(&lcdc.palette_load_complete); enable_irqs(OMAP_LCDC_IRQ_LOADED_PALETTE); set_load_mode(OMAP_LCDC_LOAD_PALETTE); enable_controller(); if (!wait_for_completion_timeout(&lcdc.palette_load_complete, msecs_to_jiffies(500))) dev_err(lcdc.fbdev->dev, "timeout waiting for FRAME DONE\n"); /* The controller gets disabled in the irq handler */ disable_irqs(OMAP_LCDC_IRQ_LOADED_PALETTE); omap_stop_lcd_dma(); omap_set_lcd_dma_single_transfer(lcdc.ext_mode); } /* Used only in internal controller mode */ static int omap_lcdc_setcolreg(u_int regno, u16 red, u16 green, u16 blue, u16 transp, int update_hw_pal) { u16 *palette; if (lcdc.color_mode != OMAPFB_COLOR_CLUT_8BPP || regno > 255) return -EINVAL; palette = (u16 *)lcdc.palette_virt; palette[regno] &= ~0x0fff; palette[regno] |= ((red >> 12) << 8) | ((green >> 12) << 4 ) | (blue >> 12); if (update_hw_pal) { disable_controller(); omap_stop_lcd_dma(); load_palette(); setup_lcd_dma(); set_load_mode(OMAP_LCDC_LOAD_FRAME); enable_controller(); } return 0; } static void calc_ck_div(int is_tft, int pck, int *pck_div) { unsigned long lck; pck = max(1, pck); lck = clk_get_rate(lcdc.lcd_ck); *pck_div = (lck + pck - 1) / pck; if (is_tft) *pck_div = max(2, *pck_div); else *pck_div = max(3, *pck_div); if (*pck_div > 255) { /* FIXME: try to adjust logic clock divider as well */ *pck_div = 255; dev_warn(lcdc.fbdev->dev, "pixclock %d kHz too low.\n", pck / 1000); } } static void inline setup_regs(void) { u32 l; struct lcd_panel *panel = lcdc.fbdev->panel; int is_tft = panel->config & OMAP_LCDC_PANEL_TFT; unsigned long lck; int pcd; l = omap_readl(OMAP_LCDC_CONTROL); l &= ~OMAP_LCDC_CTRL_LCD_TFT; l |= is_tft ? OMAP_LCDC_CTRL_LCD_TFT : 0; #ifdef CONFIG_MACH_OMAP_PALMTE /* FIXME:if (machine_is_omap_palmte()) { */ /* PalmTE uses alternate TFT setting in 8BPP mode */ l |= (is_tft && panel->bpp == 8) ? 0x810000 : 0; /* } */ #endif omap_writel(l, OMAP_LCDC_CONTROL); l = omap_readl(OMAP_LCDC_TIMING2); l &= ~(((1 << 6) - 1) << 20); l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 20; omap_writel(l, OMAP_LCDC_TIMING2); l = panel->x_res - 1; l |= (panel->hsw - 1) << 10; l |= (panel->hfp - 1) << 16; l |= (panel->hbp - 1) << 24; omap_writel(l, OMAP_LCDC_TIMING0); l = panel->y_res - 1; l |= (panel->vsw - 1) << 10; l |= panel->vfp << 16; l |= panel->vbp << 24; omap_writel(l, OMAP_LCDC_TIMING1); l = omap_readl(OMAP_LCDC_TIMING2); l &= ~0xff; lck = clk_get_rate(lcdc.lcd_ck); if (!panel->pcd) calc_ck_div(is_tft, panel->pixel_clock * 1000, &pcd); else { dev_warn(lcdc.fbdev->dev, "Pixel clock divider value is obsolete.\n" "Try to set pixel_clock to %lu and pcd to 0 " "in drivers/video/omap/lcd_%s.c and submit a patch.\n", lck / panel->pcd / 1000, panel->name); pcd = panel->pcd; } l |= pcd & 0xff; l |= panel->acb << 8; omap_writel(l, OMAP_LCDC_TIMING2); /* update panel info with the exact clock */ panel->pixel_clock = lck / pcd / 1000; } /* * Configure the LCD controller, download the color palette and start a looped * DMA transfer of the frame image data. Called only in internal * controller mode. */ static int omap_lcdc_set_update_mode(enum omapfb_update_mode mode) { int r = 0; if (mode != lcdc.update_mode) { switch (mode) { case OMAPFB_AUTO_UPDATE: setup_regs(); load_palette(); /* Setup and start LCD DMA */ setup_lcd_dma(); set_load_mode(OMAP_LCDC_LOAD_FRAME); enable_irqs(OMAP_LCDC_IRQ_DONE); /* This will start the actual DMA transfer */ enable_controller(); lcdc.update_mode = mode; break; case OMAPFB_UPDATE_DISABLED: disable_controller(); omap_stop_lcd_dma(); lcdc.update_mode = mode; break; default: r = -EINVAL; } } return r; } static enum omapfb_update_mode omap_lcdc_get_update_mode(void) { return lcdc.update_mode; } /* PM code called only in internal controller mode */ static void omap_lcdc_suspend(void) { if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) { disable_controller(); omap_stop_lcd_dma(); } } static void omap_lcdc_resume(void) { if (lcdc.update_mode == OMAPFB_AUTO_UPDATE) { setup_regs(); load_palette(); setup_lcd_dma(); set_load_mode(OMAP_LCDC_LOAD_FRAME); enable_irqs(OMAP_LCDC_IRQ_DONE); enable_controller(); } } static void omap_lcdc_get_caps(int plane, struct omapfb_caps *caps) { return; } int omap_lcdc_set_dma_callback(void (*callback)(void *data), void *data) { BUG_ON(callback == NULL); if (lcdc.dma_callback) return -EBUSY; else { lcdc.dma_callback = callback; lcdc.dma_callback_data = data; } return 0; } EXPORT_SYMBOL(omap_lcdc_set_dma_callback); void omap_lcdc_free_dma_callback(void) { lcdc.dma_callback = NULL; } EXPORT_SYMBOL(omap_lcdc_free_dma_callback); static void lcdc_dma_handler(u16 status, void *data) { if (lcdc.dma_callback) lcdc.dma_callback(lcdc.dma_callback_data); } static int mmap_kern(void) { struct vm_struct *kvma; struct vm_area_struct vma; pgprot_t pgprot; unsigned long vaddr; kvma = get_vm_area(lcdc.vram_size, VM_IOREMAP); if (kvma == NULL) { dev_err(lcdc.fbdev->dev, "can't get kernel vm area\n"); return -ENOMEM; } vma.vm_mm = &init_mm; vaddr = (unsigned long)kvma->addr; vma.vm_start = vaddr; vma.vm_end = vaddr + lcdc.vram_size; pgprot = pgprot_writecombine(pgprot_kernel); if (io_remap_pfn_range(&vma, vaddr, lcdc.vram_phys >> PAGE_SHIFT, lcdc.vram_size, pgprot) < 0) { dev_err(lcdc.fbdev->dev, "kernel mmap for FB memory failed\n"); return -EAGAIN; } lcdc.vram_virt = (void *)vaddr; return 0; } static void unmap_kern(void) { vunmap(lcdc.vram_virt); } static int alloc_palette_ram(void) { lcdc.palette_virt = dma_alloc_writecombine(lcdc.fbdev->dev, MAX_PALETTE_SIZE, &lcdc.palette_phys, GFP_KERNEL); if (lcdc.palette_virt == NULL) { dev_err(lcdc.fbdev->dev, "failed to alloc palette memory\n"); return -ENOMEM; } memset(lcdc.palette_virt, 0, MAX_PALETTE_SIZE); return 0; } static void free_palette_ram(void) { dma_free_writecombine(lcdc.fbdev->dev, MAX_PALETTE_SIZE, lcdc.palette_virt, lcdc.palette_phys); } static int alloc_fbmem(struct omapfb_mem_region *region) { int bpp; int frame_size; struct lcd_panel *panel = lcdc.fbdev->panel; bpp = panel->bpp; if (bpp == 12) bpp = 16; frame_size = PAGE_ALIGN(panel->x_res * bpp / 8 * panel->y_res); if (region->size > frame_size) frame_size = region->size; lcdc.vram_size = frame_size; lcdc.vram_virt = dma_alloc_writecombine(lcdc.fbdev->dev, lcdc.vram_size, &lcdc.vram_phys, GFP_KERNEL); if (lcdc.vram_virt == NULL) { dev_err(lcdc.fbdev->dev, "unable to allocate FB DMA memory\n"); return -ENOMEM; } region->size = frame_size; region->paddr = lcdc.vram_phys; region->vaddr = lcdc.vram_virt; region->alloc = 1; memset(lcdc.vram_virt, 0, lcdc.vram_size); return 0; } static void free_fbmem(void) { dma_free_writecombine(lcdc.fbdev->dev, lcdc.vram_size, lcdc.vram_virt, lcdc.vram_phys); } static int setup_fbmem(struct omapfb_mem_desc *req_md) { int r; if (!req_md->region_cnt) { dev_err(lcdc.fbdev->dev, "no memory regions defined\n"); return -EINVAL; } if (req_md->region_cnt > 1) { dev_err(lcdc.fbdev->dev, "only one plane is supported\n"); req_md->region_cnt = 1; } if (req_md->region[0].paddr == 0) { lcdc.fbmem_allocated = 1; if ((r = alloc_fbmem(&req_md->region[0])) < 0) return r; return 0; } lcdc.vram_phys = req_md->region[0].paddr; lcdc.vram_size = req_md->region[0].size; if ((r = mmap_kern()) < 0) return r; dev_dbg(lcdc.fbdev->dev, "vram at %08x size %08lx mapped to 0x%p\n", lcdc.vram_phys, lcdc.vram_size, lcdc.vram_virt); return 0; } static void cleanup_fbmem(void) { if (lcdc.fbmem_allocated) free_fbmem(); else unmap_kern(); } static int omap_lcdc_init(struct omapfb_device *fbdev, int ext_mode, struct omapfb_mem_desc *req_vram) { int r; u32 l; int rate; struct clk *tc_ck; lcdc.irq_mask = 0; lcdc.fbdev = fbdev; lcdc.ext_mode = ext_mode; l = 0; omap_writel(l, OMAP_LCDC_CONTROL); /* FIXME: * According to errata some platforms have a clock rate limitiation */ lcdc.lcd_ck = clk_get(NULL, "lcd_ck"); if (IS_ERR(lcdc.lcd_ck)) { dev_err(fbdev->dev, "unable to access LCD clock\n"); r = PTR_ERR(lcdc.lcd_ck); goto fail0; } tc_ck = clk_get(NULL, "tc_ck"); if (IS_ERR(tc_ck)) { dev_err(fbdev->dev, "unable to access TC clock\n"); r = PTR_ERR(tc_ck); goto fail1; } rate = clk_get_rate(tc_ck); clk_put(tc_ck); if (machine_is_ams_delta()) rate /= 4; if (machine_is_omap_h3()) rate /= 3; r = clk_set_rate(lcdc.lcd_ck, rate); if (r) { dev_err(fbdev->dev, "failed to adjust LCD rate\n"); goto fail1; } clk_enable(lcdc.lcd_ck); r = request_irq(OMAP_LCDC_IRQ, lcdc_irq_handler, 0, MODULE_NAME, fbdev); if (r) { dev_err(fbdev->dev, "unable to get IRQ\n"); goto fail2; } r = omap_request_lcd_dma(lcdc_dma_handler, NULL); if (r) { dev_err(fbdev->dev, "unable to get LCD DMA\n"); goto fail3; } omap_set_lcd_dma_single_transfer(ext_mode); omap_set_lcd_dma_ext_controller(ext_mode); if (!ext_mode) if ((r = alloc_palette_ram()) < 0) goto fail4; if ((r = setup_fbmem(req_vram)) < 0) goto fail5; pr_info("omapfb: LCDC initialized\n"); return 0; fail5: if (!ext_mode) free_palette_ram(); fail4: omap_free_lcd_dma(); fail3: free_irq(OMAP_LCDC_IRQ, lcdc.fbdev); fail2: clk_disable(lcdc.lcd_ck); fail1: clk_put(lcdc.lcd_ck); fail0: return r; } static void omap_lcdc_cleanup(void) { if (!lcdc.ext_mode) free_palette_ram(); cleanup_fbmem(); omap_free_lcd_dma(); free_irq(OMAP_LCDC_IRQ, lcdc.fbdev); clk_disable(lcdc.lcd_ck); clk_put(lcdc.lcd_ck); } const struct lcd_ctrl omap1_int_ctrl = { .name = "internal", .init = omap_lcdc_init, .cleanup = omap_lcdc_cleanup, .get_caps = omap_lcdc_get_caps, .set_update_mode = omap_lcdc_set_update_mode, .get_update_mode = omap_lcdc_get_update_mode, .update_window = NULL, .suspend = omap_lcdc_suspend, .resume = omap_lcdc_resume, .setup_plane = omap_lcdc_setup_plane, .enable_plane = omap_lcdc_enable_plane, .setcolreg = omap_lcdc_setcolreg, };