/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/time.h> #include <linux/init.h> #include <linux/string.h> #include <linux/backing-dev.h> #include <linux/mpage.h> #include <linux/swap.h> #include <linux/writeback.h> #include <linux/statfs.h> #include <linux/compat.h> #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ioctl.h" #include "print-tree.h" #include "tree-log.h" #include "locking.h" #include "compat.h" /* simple helper to fault in pages and copy. This should go away * and be replaced with calls into generic code. */ static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, int write_bytes, struct page **prepared_pages, const char __user *buf) { long page_fault = 0; int i; int offset = pos & (PAGE_CACHE_SIZE - 1); for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) { size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); struct page *page = prepared_pages[i]; fault_in_pages_readable(buf, count); /* Copy data from userspace to the current page */ kmap(page); page_fault = __copy_from_user(page_address(page) + offset, buf, count); /* Flush processor's dcache for this page */ flush_dcache_page(page); kunmap(page); buf += count; write_bytes -= count; if (page_fault) break; } return page_fault ? -EFAULT : 0; } /* * unlocks pages after btrfs_file_write is done with them */ static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages) { size_t i; for (i = 0; i < num_pages; i++) { if (!pages[i]) break; /* page checked is some magic around finding pages that * have been modified without going through btrfs_set_page_dirty * clear it here */ ClearPageChecked(pages[i]); unlock_page(pages[i]); mark_page_accessed(pages[i]); page_cache_release(pages[i]); } } /* * after copy_from_user, pages need to be dirtied and we need to make * sure holes are created between the current EOF and the start of * any next extents (if required). * * this also makes the decision about creating an inline extent vs * doing real data extents, marking pages dirty and delalloc as required. */ static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, size_t write_bytes) { int err = 0; int i; struct inode *inode = fdentry(file)->d_inode; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; u64 hint_byte; u64 num_bytes; u64 start_pos; u64 end_of_last_block; u64 end_pos = pos + write_bytes; loff_t isize = i_size_read(inode); start_pos = pos & ~((u64)root->sectorsize - 1); num_bytes = (write_bytes + pos - start_pos + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); end_of_last_block = start_pos + num_bytes - 1; lock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS); trans = btrfs_join_transaction(root, 1); if (!trans) { err = -ENOMEM; goto out_unlock; } btrfs_set_trans_block_group(trans, inode); hint_byte = 0; set_extent_uptodate(io_tree, start_pos, end_of_last_block, GFP_NOFS); /* check for reserved extents on each page, we don't want * to reset the delalloc bit on things that already have * extents reserved. */ btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block); for (i = 0; i < num_pages; i++) { struct page *p = pages[i]; SetPageUptodate(p); ClearPageChecked(p); set_page_dirty(p); } if (end_pos > isize) { i_size_write(inode, end_pos); /* we've only changed i_size in ram, and we haven't updated * the disk i_size. There is no need to log the inode * at this time. */ } err = btrfs_end_transaction(trans, root); out_unlock: unlock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS); return err; } /* * this drops all the extents in the cache that intersect the range * [start, end]. Existing extents are split as required. */ int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, int skip_pinned) { struct extent_map *em; struct extent_map *split = NULL; struct extent_map *split2 = NULL; struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; u64 len = end - start + 1; int ret; int testend = 1; unsigned long flags; int compressed = 0; WARN_ON(end < start); if (end == (u64)-1) { len = (u64)-1; testend = 0; } while (1) { if (!split) split = alloc_extent_map(GFP_NOFS); if (!split2) split2 = alloc_extent_map(GFP_NOFS); spin_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (!em) { spin_unlock(&em_tree->lock); break; } flags = em->flags; if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { spin_unlock(&em_tree->lock); if (em->start <= start && (!testend || em->start + em->len >= start + len)) { free_extent_map(em); break; } if (start < em->start) { len = em->start - start; } else { len = start + len - (em->start + em->len); start = em->start + em->len; } free_extent_map(em); continue; } compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); clear_bit(EXTENT_FLAG_PINNED, &em->flags); remove_extent_mapping(em_tree, em); if (em->block_start < EXTENT_MAP_LAST_BYTE && em->start < start) { split->start = em->start; split->len = start - em->start; split->orig_start = em->orig_start; split->block_start = em->block_start; if (compressed) split->block_len = em->block_len; else split->block_len = split->len; split->bdev = em->bdev; split->flags = flags; ret = add_extent_mapping(em_tree, split); BUG_ON(ret); free_extent_map(split); split = split2; split2 = NULL; } if (em->block_start < EXTENT_MAP_LAST_BYTE && testend && em->start + em->len > start + len) { u64 diff = start + len - em->start; split->start = start + len; split->len = em->start + em->len - (start + len); split->bdev = em->bdev; split->flags = flags; if (compressed) { split->block_len = em->block_len; split->block_start = em->block_start; split->orig_start = em->orig_start; } else { split->block_len = split->len; split->block_start = em->block_start + diff; split->orig_start = split->start; } ret = add_extent_mapping(em_tree, split); BUG_ON(ret); free_extent_map(split); split = NULL; } spin_unlock(&em_tree->lock); /* once for us */ free_extent_map(em); /* once for the tree*/ free_extent_map(em); } if (split) free_extent_map(split); if (split2) free_extent_map(split2); return 0; } /* * this is very complex, but the basic idea is to drop all extents * in the range start - end. hint_block is filled in with a block number * that would be a good hint to the block allocator for this file. * * If an extent intersects the range but is not entirely inside the range * it is either truncated or split. Anything entirely inside the range * is deleted from the tree. * * inline_limit is used to tell this code which offsets in the file to keep * if they contain inline extents. */ noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end, u64 locked_end, u64 inline_limit, u64 *hint_byte) { u64 extent_end = 0; u64 search_start = start; u64 ram_bytes = 0; u64 disk_bytenr = 0; u64 orig_locked_end = locked_end; u8 compression; u8 encryption; u16 other_encoding = 0; struct extent_buffer *leaf; struct btrfs_file_extent_item *extent; struct btrfs_path *path; struct btrfs_key key; struct btrfs_file_extent_item old; int keep; int slot; int bookend; int found_type = 0; int found_extent; int found_inline; int recow; int ret; inline_limit = 0; btrfs_drop_extent_cache(inode, start, end - 1, 0); path = btrfs_alloc_path(); if (!path) return -ENOMEM; while (1) { recow = 0; btrfs_release_path(root, path); ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, search_start, -1); if (ret < 0) goto out; if (ret > 0) { if (path->slots[0] == 0) { ret = 0; goto out; } path->slots[0]--; } next_slot: keep = 0; bookend = 0; found_extent = 0; found_inline = 0; compression = 0; encryption = 0; extent = NULL; leaf = path->nodes[0]; slot = path->slots[0]; ret = 0; btrfs_item_key_to_cpu(leaf, &key, slot); if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY && key.offset >= end) { goto out; } if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || key.objectid != inode->i_ino) { goto out; } if (recow) { search_start = max(key.offset, start); continue; } if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(leaf, extent); compression = btrfs_file_extent_compression(leaf, extent); encryption = btrfs_file_extent_encryption(leaf, extent); other_encoding = btrfs_file_extent_other_encoding(leaf, extent); if (found_type == BTRFS_FILE_EXTENT_REG || found_type == BTRFS_FILE_EXTENT_PREALLOC) { extent_end = btrfs_file_extent_disk_bytenr(leaf, extent); if (extent_end) *hint_byte = extent_end; extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, extent); ram_bytes = btrfs_file_extent_ram_bytes(leaf, extent); found_extent = 1; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { found_inline = 1; extent_end = key.offset + btrfs_file_extent_inline_len(leaf, extent); } } else { extent_end = search_start; } /* we found nothing we can drop */ if ((!found_extent && !found_inline) || search_start >= extent_end) { int nextret; u32 nritems; nritems = btrfs_header_nritems(leaf); if (slot >= nritems - 1) { nextret = btrfs_next_leaf(root, path); if (nextret) goto out; recow = 1; } else { path->slots[0]++; } goto next_slot; } if (end <= extent_end && start >= key.offset && found_inline) *hint_byte = EXTENT_MAP_INLINE; if (found_extent) { read_extent_buffer(leaf, &old, (unsigned long)extent, sizeof(old)); } if (end < extent_end && end >= key.offset) { bookend = 1; if (found_inline && start <= key.offset) keep = 1; } if (bookend && found_extent) { if (locked_end < extent_end) { ret = try_lock_extent(&BTRFS_I(inode)->io_tree, locked_end, extent_end - 1, GFP_NOFS); if (!ret) { btrfs_release_path(root, path); lock_extent(&BTRFS_I(inode)->io_tree, locked_end, extent_end - 1, GFP_NOFS); locked_end = extent_end; continue; } locked_end = extent_end; } disk_bytenr = le64_to_cpu(old.disk_bytenr); if (disk_bytenr != 0) { ret = btrfs_inc_extent_ref(trans, root, disk_bytenr, le64_to_cpu(old.disk_num_bytes), 0, root->root_key.objectid, key.objectid, key.offset - le64_to_cpu(old.offset)); BUG_ON(ret); } } if (found_inline) { u64 mask = root->sectorsize - 1; search_start = (extent_end + mask) & ~mask; } else search_start = extent_end; /* truncate existing extent */ if (start > key.offset) { u64 new_num; u64 old_num; keep = 1; WARN_ON(start & (root->sectorsize - 1)); if (found_extent) { new_num = start - key.offset; old_num = btrfs_file_extent_num_bytes(leaf, extent); *hint_byte = btrfs_file_extent_disk_bytenr(leaf, extent); if (btrfs_file_extent_disk_bytenr(leaf, extent)) { inode_sub_bytes(inode, old_num - new_num); } btrfs_set_file_extent_num_bytes(leaf, extent, new_num); btrfs_mark_buffer_dirty(leaf); } else if (key.offset < inline_limit && (end > extent_end) && (inline_limit < extent_end)) { u32 new_size; new_size = btrfs_file_extent_calc_inline_size( inline_limit - key.offset); inode_sub_bytes(inode, extent_end - inline_limit); btrfs_set_file_extent_ram_bytes(leaf, extent, new_size); if (!compression && !encryption) { btrfs_truncate_item(trans, root, path, new_size, 1); } } } /* delete the entire extent */ if (!keep) { if (found_inline) inode_sub_bytes(inode, extent_end - key.offset); ret = btrfs_del_item(trans, root, path); /* TODO update progress marker and return */ BUG_ON(ret); extent = NULL; btrfs_release_path(root, path); /* the extent will be freed later */ } if (bookend && found_inline && start <= key.offset) { u32 new_size; new_size = btrfs_file_extent_calc_inline_size( extent_end - end); inode_sub_bytes(inode, end - key.offset); btrfs_set_file_extent_ram_bytes(leaf, extent, new_size); if (!compression && !encryption) ret = btrfs_truncate_item(trans, root, path, new_size, 0); BUG_ON(ret); } /* create bookend, splitting the extent in two */ if (bookend && found_extent) { struct btrfs_key ins; ins.objectid = inode->i_ino; ins.offset = end; btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY); btrfs_release_path(root, path); path->leave_spinning = 1; ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*extent)); BUG_ON(ret); leaf = path->nodes[0]; extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); write_extent_buffer(leaf, &old, (unsigned long)extent, sizeof(old)); btrfs_set_file_extent_compression(leaf, extent, compression); btrfs_set_file_extent_encryption(leaf, extent, encryption); btrfs_set_file_extent_other_encoding(leaf, extent, other_encoding); btrfs_set_file_extent_offset(leaf, extent, le64_to_cpu(old.offset) + end - key.offset); WARN_ON(le64_to_cpu(old.num_bytes) < (extent_end - end)); btrfs_set_file_extent_num_bytes(leaf, extent, extent_end - end); /* * set the ram bytes to the size of the full extent * before splitting. This is a worst case flag, * but its the best we can do because we don't know * how splitting affects compression */ btrfs_set_file_extent_ram_bytes(leaf, extent, ram_bytes); btrfs_set_file_extent_type(leaf, extent, found_type); btrfs_unlock_up_safe(path, 1); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_set_lock_blocking(path->nodes[0]); path->leave_spinning = 0; btrfs_release_path(root, path); if (disk_bytenr != 0) inode_add_bytes(inode, extent_end - end); } if (found_extent && !keep) { u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr); if (old_disk_bytenr != 0) { inode_sub_bytes(inode, le64_to_cpu(old.num_bytes)); ret = btrfs_free_extent(trans, root, old_disk_bytenr, le64_to_cpu(old.disk_num_bytes), 0, root->root_key.objectid, key.objectid, key.offset - le64_to_cpu(old.offset)); BUG_ON(ret); *hint_byte = old_disk_bytenr; } } if (search_start >= end) { ret = 0; goto out; } } out: btrfs_free_path(path); if (locked_end > orig_locked_end) { unlock_extent(&BTRFS_I(inode)->io_tree, orig_locked_end, locked_end - 1, GFP_NOFS); } return ret; } static int extent_mergeable(struct extent_buffer *leaf, int slot, u64 objectid, u64 bytenr, u64 *start, u64 *end) { struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 extent_end; if (slot < 0 || slot >= btrfs_header_nritems(leaf)) return 0; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) return 0; fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || btrfs_file_extent_compression(leaf, fi) || btrfs_file_extent_encryption(leaf, fi) || btrfs_file_extent_other_encoding(leaf, fi)) return 0; extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); if ((*start && *start != key.offset) || (*end && *end != extent_end)) return 0; *start = key.offset; *end = extent_end; return 1; } /* * Mark extent in the range start - end as written. * * This changes extent type from 'pre-allocated' to 'regular'. If only * part of extent is marked as written, the extent will be split into * two or three. */ int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end) { struct extent_buffer *leaf; struct btrfs_path *path; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 bytenr; u64 num_bytes; u64 extent_end; u64 orig_offset; u64 other_start; u64 other_end; u64 split = start; u64 locked_end = end; int extent_type; int split_end = 1; int ret; btrfs_drop_extent_cache(inode, start, end - 1, 0); path = btrfs_alloc_path(); BUG_ON(!path); again: key.objectid = inode->i_ino; key.type = BTRFS_EXTENT_DATA_KEY; if (split == start) key.offset = split; else key.offset = split - 1; ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret > 0 && path->slots[0] > 0) path->slots[0]--; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); BUG_ON(key.objectid != inode->i_ino || key.type != BTRFS_EXTENT_DATA_KEY); fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(leaf, fi); BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC); extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); BUG_ON(key.offset > start || extent_end < end); bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); if (key.offset == start) split = end; if (key.offset == start && extent_end == end) { int del_nr = 0; int del_slot = 0; other_start = end; other_end = 0; if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino, bytenr, &other_start, &other_end)) { extent_end = other_end; del_slot = path->slots[0] + 1; del_nr++; ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 0, root->root_key.objectid, inode->i_ino, orig_offset); BUG_ON(ret); } other_start = 0; other_end = start; if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino, bytenr, &other_start, &other_end)) { key.offset = other_start; del_slot = path->slots[0]; del_nr++; ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 0, root->root_key.objectid, inode->i_ino, orig_offset); BUG_ON(ret); } split_end = 0; if (del_nr == 0) { btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG); goto done; } fi = btrfs_item_ptr(leaf, del_slot - 1, struct btrfs_file_extent_item); btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG); btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset); btrfs_mark_buffer_dirty(leaf); ret = btrfs_del_items(trans, root, path, del_slot, del_nr); BUG_ON(ret); goto release; } else if (split == start) { if (locked_end < extent_end) { ret = try_lock_extent(&BTRFS_I(inode)->io_tree, locked_end, extent_end - 1, GFP_NOFS); if (!ret) { btrfs_release_path(root, path); lock_extent(&BTRFS_I(inode)->io_tree, locked_end, extent_end - 1, GFP_NOFS); locked_end = extent_end; goto again; } locked_end = extent_end; } btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset); } else { BUG_ON(key.offset != start); key.offset = split; btrfs_set_file_extent_offset(leaf, fi, key.offset - orig_offset); btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split); btrfs_set_item_key_safe(trans, root, path, &key); extent_end = split; } if (extent_end == end) { split_end = 0; extent_type = BTRFS_FILE_EXTENT_REG; } if (extent_end == end && split == start) { other_start = end; other_end = 0; if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino, bytenr, &other_start, &other_end)) { path->slots[0]++; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); key.offset = split; btrfs_set_item_key_safe(trans, root, path, &key); btrfs_set_file_extent_offset(leaf, fi, key.offset - orig_offset); btrfs_set_file_extent_num_bytes(leaf, fi, other_end - split); goto done; } } if (extent_end == end && split == end) { other_start = 0; other_end = start; if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino, bytenr, &other_start, &other_end)) { path->slots[0]--; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - other_start); goto done; } } btrfs_mark_buffer_dirty(leaf); ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, root->root_key.objectid, inode->i_ino, orig_offset); BUG_ON(ret); btrfs_release_path(root, path); key.offset = start; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi)); BUG_ON(ret); leaf = path->nodes[0]; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(leaf, fi, trans->transid); btrfs_set_file_extent_type(leaf, fi, extent_type); btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr); btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes); btrfs_set_file_extent_offset(leaf, fi, key.offset - orig_offset); btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset); btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); btrfs_set_file_extent_compression(leaf, fi, 0); btrfs_set_file_extent_encryption(leaf, fi, 0); btrfs_set_file_extent_other_encoding(leaf, fi, 0); done: btrfs_mark_buffer_dirty(leaf); release: btrfs_release_path(root, path); if (split_end && split == start) { split = end; goto again; } if (locked_end > end) { unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1, GFP_NOFS); } btrfs_free_path(path); return 0; } /* * this gets pages into the page cache and locks them down, it also properly * waits for data=ordered extents to finish before allowing the pages to be * modified. */ static noinline int prepare_pages(struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, unsigned long first_index, unsigned long last_index, size_t write_bytes) { int i; unsigned long index = pos >> PAGE_CACHE_SHIFT; struct inode *inode = fdentry(file)->d_inode; int err = 0; u64 start_pos; u64 last_pos; start_pos = pos & ~((u64)root->sectorsize - 1); last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; if (start_pos > inode->i_size) { err = btrfs_cont_expand(inode, start_pos); if (err) return err; } memset(pages, 0, num_pages * sizeof(struct page *)); again: for (i = 0; i < num_pages; i++) { pages[i] = grab_cache_page(inode->i_mapping, index + i); if (!pages[i]) { err = -ENOMEM; BUG_ON(1); } wait_on_page_writeback(pages[i]); } if (start_pos < inode->i_size) { struct btrfs_ordered_extent *ordered; lock_extent(&BTRFS_I(inode)->io_tree, start_pos, last_pos - 1, GFP_NOFS); ordered = btrfs_lookup_first_ordered_extent(inode, last_pos - 1); if (ordered && ordered->file_offset + ordered->len > start_pos && ordered->file_offset < last_pos) { btrfs_put_ordered_extent(ordered); unlock_extent(&BTRFS_I(inode)->io_tree, start_pos, last_pos - 1, GFP_NOFS); for (i = 0; i < num_pages; i++) { unlock_page(pages[i]); page_cache_release(pages[i]); } btrfs_wait_ordered_range(inode, start_pos, last_pos - start_pos); goto again; } if (ordered) btrfs_put_ordered_extent(ordered); clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos, last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC, GFP_NOFS); unlock_extent(&BTRFS_I(inode)->io_tree, start_pos, last_pos - 1, GFP_NOFS); } for (i = 0; i < num_pages; i++) { clear_page_dirty_for_io(pages[i]); set_page_extent_mapped(pages[i]); WARN_ON(!PageLocked(pages[i])); } return 0; } static ssize_t btrfs_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { loff_t pos; loff_t start_pos; ssize_t num_written = 0; ssize_t err = 0; int ret = 0; struct inode *inode = fdentry(file)->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct page **pages = NULL; int nrptrs; struct page *pinned[2]; unsigned long first_index; unsigned long last_index; int will_write; will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) || (file->f_flags & O_DIRECT)); nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / (sizeof(struct page *))); pinned[0] = NULL; pinned[1] = NULL; pos = *ppos; start_pos = pos; vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); current->backing_dev_info = inode->i_mapping->backing_dev_info; err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); if (err) goto out_nolock; if (count == 0) goto out_nolock; err = file_remove_suid(file); if (err) goto out_nolock; file_update_time(file); pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); mutex_lock(&inode->i_mutex); BTRFS_I(inode)->sequence++; first_index = pos >> PAGE_CACHE_SHIFT; last_index = (pos + count) >> PAGE_CACHE_SHIFT; /* * there are lots of better ways to do this, but this code * makes sure the first and last page in the file range are * up to date and ready for cow */ if ((pos & (PAGE_CACHE_SIZE - 1))) { pinned[0] = grab_cache_page(inode->i_mapping, first_index); if (!PageUptodate(pinned[0])) { ret = btrfs_readpage(NULL, pinned[0]); BUG_ON(ret); wait_on_page_locked(pinned[0]); } else { unlock_page(pinned[0]); } } if ((pos + count) & (PAGE_CACHE_SIZE - 1)) { pinned[1] = grab_cache_page(inode->i_mapping, last_index); if (!PageUptodate(pinned[1])) { ret = btrfs_readpage(NULL, pinned[1]); BUG_ON(ret); wait_on_page_locked(pinned[1]); } else { unlock_page(pinned[1]); } } while (count > 0) { size_t offset = pos & (PAGE_CACHE_SIZE - 1); size_t write_bytes = min(count, nrptrs * (size_t)PAGE_CACHE_SIZE - offset); size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; WARN_ON(num_pages > nrptrs); memset(pages, 0, sizeof(struct page *) * nrptrs); ret = btrfs_check_data_free_space(root, inode, write_bytes); if (ret) goto out; ret = prepare_pages(root, file, pages, num_pages, pos, first_index, last_index, write_bytes); if (ret) { btrfs_free_reserved_data_space(root, inode, write_bytes); goto out; } ret = btrfs_copy_from_user(pos, num_pages, write_bytes, pages, buf); if (ret) { btrfs_free_reserved_data_space(root, inode, write_bytes); btrfs_drop_pages(pages, num_pages); goto out; } ret = dirty_and_release_pages(NULL, root, file, pages, num_pages, pos, write_bytes); btrfs_drop_pages(pages, num_pages); if (ret) { btrfs_free_reserved_data_space(root, inode, write_bytes); goto out; } if (will_write) { btrfs_fdatawrite_range(inode->i_mapping, pos, pos + write_bytes - 1, WB_SYNC_ALL); } else { balance_dirty_pages_ratelimited_nr(inode->i_mapping, num_pages); if (num_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) btrfs_btree_balance_dirty(root, 1); btrfs_throttle(root); } buf += write_bytes; count -= write_bytes; pos += write_bytes; num_written += write_bytes; cond_resched(); } out: mutex_unlock(&inode->i_mutex); if (ret) err = ret; out_nolock: kfree(pages); if (pinned[0]) page_cache_release(pinned[0]); if (pinned[1]) page_cache_release(pinned[1]); *ppos = pos; /* * we want to make sure fsync finds this change * but we haven't joined a transaction running right now. * * Later on, someone is sure to update the inode and get the * real transid recorded. * * We set last_trans now to the fs_info generation + 1, * this will either be one more than the running transaction * or the generation used for the next transaction if there isn't * one running right now. */ BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; if (num_written > 0 && will_write) { struct btrfs_trans_handle *trans; err = btrfs_wait_ordered_range(inode, start_pos, num_written); if (err) num_written = err; if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) { trans = btrfs_start_transaction(root, 1); ret = btrfs_log_dentry_safe(trans, root, file->f_dentry); if (ret == 0) { ret = btrfs_sync_log(trans, root); if (ret == 0) btrfs_end_transaction(trans, root); else btrfs_commit_transaction(trans, root); } else { btrfs_commit_transaction(trans, root); } } if (file->f_flags & O_DIRECT) { invalidate_mapping_pages(inode->i_mapping, start_pos >> PAGE_CACHE_SHIFT, (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT); } } current->backing_dev_info = NULL; return num_written ? num_written : err; } int btrfs_release_file(struct inode *inode, struct file *filp) { /* * ordered_data_close is set by settattr when we are about to truncate * a file from a non-zero size to a zero size. This tries to * flush down new bytes that may have been written if the * application were using truncate to replace a file in place. */ if (BTRFS_I(inode)->ordered_data_close) { BTRFS_I(inode)->ordered_data_close = 0; btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode); if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) filemap_flush(inode->i_mapping); } if (filp->private_data) btrfs_ioctl_trans_end(filp); return 0; } /* * fsync call for both files and directories. This logs the inode into * the tree log instead of forcing full commits whenever possible. * * It needs to call filemap_fdatawait so that all ordered extent updates are * in the metadata btree are up to date for copying to the log. * * It drops the inode mutex before doing the tree log commit. This is an * important optimization for directories because holding the mutex prevents * new operations on the dir while we write to disk. */ int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync) { struct inode *inode = dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; struct btrfs_trans_handle *trans; /* * check the transaction that last modified this inode * and see if its already been committed */ if (!BTRFS_I(inode)->last_trans) goto out; mutex_lock(&root->fs_info->trans_mutex); if (BTRFS_I(inode)->last_trans <= root->fs_info->last_trans_committed) { BTRFS_I(inode)->last_trans = 0; mutex_unlock(&root->fs_info->trans_mutex); goto out; } mutex_unlock(&root->fs_info->trans_mutex); root->log_batch++; filemap_fdatawrite(inode->i_mapping); btrfs_wait_ordered_range(inode, 0, (u64)-1); root->log_batch++; if (datasync && !(inode->i_state & I_DIRTY_PAGES)) goto out; /* * ok we haven't committed the transaction yet, lets do a commit */ if (file && file->private_data) btrfs_ioctl_trans_end(file); trans = btrfs_start_transaction(root, 1); if (!trans) { ret = -ENOMEM; goto out; } ret = btrfs_log_dentry_safe(trans, root, dentry); if (ret < 0) goto out; /* we've logged all the items and now have a consistent * version of the file in the log. It is possible that * someone will come in and modify the file, but that's * fine because the log is consistent on disk, and we * have references to all of the file's extents * * It is possible that someone will come in and log the * file again, but that will end up using the synchronization * inside btrfs_sync_log to keep things safe. */ mutex_unlock(&dentry->d_inode->i_mutex); if (ret > 0) { ret = btrfs_commit_transaction(trans, root); } else { ret = btrfs_sync_log(trans, root); if (ret == 0) ret = btrfs_end_transaction(trans, root); else ret = btrfs_commit_transaction(trans, root); } mutex_lock(&dentry->d_inode->i_mutex); out: return ret > 0 ? EIO : ret; } static struct vm_operations_struct btrfs_file_vm_ops = { .fault = filemap_fault, .page_mkwrite = btrfs_page_mkwrite, }; static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) { vma->vm_ops = &btrfs_file_vm_ops; file_accessed(filp); return 0; } struct file_operations btrfs_file_operations = { .llseek = generic_file_llseek, .read = do_sync_read, .aio_read = generic_file_aio_read, .splice_read = generic_file_splice_read, .write = btrfs_file_write, .mmap = btrfs_file_mmap, .open = generic_file_open, .release = btrfs_release_file, .fsync = btrfs_sync_file, .unlocked_ioctl = btrfs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = btrfs_ioctl, #endif };