/** * eCryptfs: Linux filesystem encryption layer * * Copyright (C) 2007 International Business Machines Corp. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include <linux/fs.h> #include <linux/pagemap.h> #include "ecryptfs_kernel.h" /** * ecryptfs_write_lower * @ecryptfs_inode: The eCryptfs inode * @data: Data to write * @offset: Byte offset in the lower file to which to write the data * @size: Number of bytes from @data to write at @offset in the lower * file * * Write data to the lower file. * * Returns zero on success; non-zero on error */ int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data, loff_t offset, size_t size) { struct ecryptfs_inode_info *inode_info; ssize_t octets_written; mm_segment_t fs_save; int rc = 0; inode_info = ecryptfs_inode_to_private(ecryptfs_inode); mutex_lock(&inode_info->lower_file_mutex); BUG_ON(!inode_info->lower_file); inode_info->lower_file->f_pos = offset; fs_save = get_fs(); set_fs(get_ds()); octets_written = vfs_write(inode_info->lower_file, data, size, &inode_info->lower_file->f_pos); set_fs(fs_save); if (octets_written < 0) { printk(KERN_ERR "%s: octets_written = [%td]; " "expected [%td]\n", __FUNCTION__, octets_written, size); rc = -EINVAL; } mutex_unlock(&inode_info->lower_file_mutex); mark_inode_dirty_sync(ecryptfs_inode); return rc; } /** * ecryptfs_write_lower_page_segment * @ecryptfs_inode: The eCryptfs inode * @page_for_lower: The page containing the data to be written to the * lower file * @offset_in_page: The offset in the @page_for_lower from which to * start writing the data * @size: The amount of data from @page_for_lower to write to the * lower file * * Determines the byte offset in the file for the given page and * offset within the page, maps the page, and makes the call to write * the contents of @page_for_lower to the lower inode. * * Returns zero on success; non-zero otherwise */ int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode, struct page *page_for_lower, size_t offset_in_page, size_t size) { char *virt; loff_t offset; int rc; offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT) + offset_in_page); virt = kmap(page_for_lower); rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size); kunmap(page_for_lower); return rc; } /** * ecryptfs_write * @ecryptfs_file: The eCryptfs file into which to write * @data: Virtual address where data to write is located * @offset: Offset in the eCryptfs file at which to begin writing the * data from @data * @size: The number of bytes to write from @data * * Write an arbitrary amount of data to an arbitrary location in the * eCryptfs inode page cache. This is done on a page-by-page, and then * by an extent-by-extent, basis; individual extents are encrypted and * written to the lower page cache (via VFS writes). This function * takes care of all the address translation to locations in the lower * filesystem; it also handles truncate events, writing out zeros * where necessary. * * Returns zero on success; non-zero otherwise */ int ecryptfs_write(struct file *ecryptfs_file, char *data, loff_t offset, size_t size) { struct page *ecryptfs_page; char *ecryptfs_page_virt; loff_t ecryptfs_file_size = i_size_read(ecryptfs_file->f_dentry->d_inode); loff_t data_offset = 0; loff_t pos; int rc = 0; /* * if we are writing beyond current size, then start pos * at the current size - we'll fill in zeros from there. */ if (offset > ecryptfs_file_size) pos = ecryptfs_file_size; else pos = offset; while (pos < (offset + size)) { pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT); size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK); size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page); size_t total_remaining_bytes = ((offset + size) - pos); if (num_bytes > total_remaining_bytes) num_bytes = total_remaining_bytes; if (pos < offset) { /* remaining zeros to write, up to destination offset */ size_t total_remaining_zeros = (offset - pos); if (num_bytes > total_remaining_zeros) num_bytes = total_remaining_zeros; } ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file, ecryptfs_page_idx); if (IS_ERR(ecryptfs_page)) { rc = PTR_ERR(ecryptfs_page); printk(KERN_ERR "%s: Error getting page at " "index [%ld] from eCryptfs inode " "mapping; rc = [%d]\n", __FUNCTION__, ecryptfs_page_idx, rc); goto out; } if (start_offset_in_page) { /* Read in the page from the lower * into the eCryptfs inode page cache, * decrypting */ rc = ecryptfs_decrypt_page(ecryptfs_page); if (rc) { printk(KERN_ERR "%s: Error decrypting " "page; rc = [%d]\n", __FUNCTION__, rc); ClearPageUptodate(ecryptfs_page); page_cache_release(ecryptfs_page); goto out; } } ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0); /* * pos: where we're now writing, offset: where the request was * If current pos is before request, we are filling zeros * If we are at or beyond request, we are writing the *data* * If we're in a fresh page beyond eof, zero it in either case */ if (pos < offset || !start_offset_in_page) { /* We are extending past the previous end of the file. * Fill in zero values to the end of the page */ memset(((char *)ecryptfs_page_virt + start_offset_in_page), 0, PAGE_CACHE_SIZE - start_offset_in_page); } /* pos >= offset, we are now writing the data request */ if (pos >= offset) { memcpy(((char *)ecryptfs_page_virt + start_offset_in_page), (data + data_offset), num_bytes); data_offset += num_bytes; } kunmap_atomic(ecryptfs_page_virt, KM_USER0); flush_dcache_page(ecryptfs_page); SetPageUptodate(ecryptfs_page); unlock_page(ecryptfs_page); rc = ecryptfs_encrypt_page(ecryptfs_page); page_cache_release(ecryptfs_page); if (rc) { printk(KERN_ERR "%s: Error encrypting " "page; rc = [%d]\n", __FUNCTION__, rc); goto out; } pos += num_bytes; } if ((offset + size) > ecryptfs_file_size) { i_size_write(ecryptfs_file->f_dentry->d_inode, (offset + size)); rc = ecryptfs_write_inode_size_to_metadata( ecryptfs_file->f_dentry->d_inode); if (rc) { printk(KERN_ERR "Problem with " "ecryptfs_write_inode_size_to_metadata; " "rc = [%d]\n", rc); goto out; } } out: return rc; } /** * ecryptfs_read_lower * @data: The read data is stored here by this function * @offset: Byte offset in the lower file from which to read the data * @size: Number of bytes to read from @offset of the lower file and * store into @data * @ecryptfs_inode: The eCryptfs inode * * Read @size bytes of data at byte offset @offset from the lower * inode into memory location @data. * * Returns zero on success; non-zero on error */ int ecryptfs_read_lower(char *data, loff_t offset, size_t size, struct inode *ecryptfs_inode) { struct ecryptfs_inode_info *inode_info = ecryptfs_inode_to_private(ecryptfs_inode); ssize_t octets_read; mm_segment_t fs_save; int rc = 0; mutex_lock(&inode_info->lower_file_mutex); BUG_ON(!inode_info->lower_file); inode_info->lower_file->f_pos = offset; fs_save = get_fs(); set_fs(get_ds()); octets_read = vfs_read(inode_info->lower_file, data, size, &inode_info->lower_file->f_pos); set_fs(fs_save); if (octets_read < 0) { printk(KERN_ERR "%s: octets_read = [%td]; " "expected [%td]\n", __FUNCTION__, octets_read, size); rc = -EINVAL; } mutex_unlock(&inode_info->lower_file_mutex); return rc; } /** * ecryptfs_read_lower_page_segment * @page_for_ecryptfs: The page into which data for eCryptfs will be * written * @offset_in_page: Offset in @page_for_ecryptfs from which to start * writing * @size: The number of bytes to write into @page_for_ecryptfs * @ecryptfs_inode: The eCryptfs inode * * Determines the byte offset in the file for the given page and * offset within the page, maps the page, and makes the call to read * the contents of @page_for_ecryptfs from the lower inode. * * Returns zero on success; non-zero otherwise */ int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs, pgoff_t page_index, size_t offset_in_page, size_t size, struct inode *ecryptfs_inode) { char *virt; loff_t offset; int rc; offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page); virt = kmap(page_for_ecryptfs); rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode); kunmap(page_for_ecryptfs); flush_dcache_page(page_for_ecryptfs); return rc; } #if 0 /** * ecryptfs_read * @data: The virtual address into which to write the data read (and * possibly decrypted) from the lower file * @offset: The offset in the decrypted view of the file from which to * read into @data * @size: The number of bytes to read into @data * @ecryptfs_file: The eCryptfs file from which to read * * Read an arbitrary amount of data from an arbitrary location in the * eCryptfs page cache. This is done on an extent-by-extent basis; * individual extents are decrypted and read from the lower page * cache (via VFS reads). This function takes care of all the * address translation to locations in the lower filesystem. * * Returns zero on success; non-zero otherwise */ int ecryptfs_read(char *data, loff_t offset, size_t size, struct file *ecryptfs_file) { struct page *ecryptfs_page; char *ecryptfs_page_virt; loff_t ecryptfs_file_size = i_size_read(ecryptfs_file->f_dentry->d_inode); loff_t data_offset = 0; loff_t pos; int rc = 0; if ((offset + size) > ecryptfs_file_size) { rc = -EINVAL; printk(KERN_ERR "%s: Attempt to read data past the end of the " "file; offset = [%lld]; size = [%td]; " "ecryptfs_file_size = [%lld]\n", __FUNCTION__, offset, size, ecryptfs_file_size); goto out; } pos = offset; while (pos < (offset + size)) { pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT); size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK); size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page); size_t total_remaining_bytes = ((offset + size) - pos); if (num_bytes > total_remaining_bytes) num_bytes = total_remaining_bytes; ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file, ecryptfs_page_idx); if (IS_ERR(ecryptfs_page)) { rc = PTR_ERR(ecryptfs_page); printk(KERN_ERR "%s: Error getting page at " "index [%ld] from eCryptfs inode " "mapping; rc = [%d]\n", __FUNCTION__, ecryptfs_page_idx, rc); goto out; } rc = ecryptfs_decrypt_page(ecryptfs_page); if (rc) { printk(KERN_ERR "%s: Error decrypting " "page; rc = [%d]\n", __FUNCTION__, rc); ClearPageUptodate(ecryptfs_page); page_cache_release(ecryptfs_page); goto out; } ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0); memcpy((data + data_offset), ((char *)ecryptfs_page_virt + start_offset_in_page), num_bytes); kunmap_atomic(ecryptfs_page_virt, KM_USER0); flush_dcache_page(ecryptfs_page); SetPageUptodate(ecryptfs_page); unlock_page(ecryptfs_page); page_cache_release(ecryptfs_page); pos += num_bytes; data_offset += num_bytes; } out: return rc; } #endif /* 0 */