/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright © 2001-2007 Red Hat, Inc. * * Created by Arjan van de Ven <arjanv@redhat.com> * * For licensing information, see the file 'LICENCE' in this directory. * */ #include <linux/string.h> #include <linux/types.h> #include <linux/jffs2.h> #include <linux/errno.h> #include "compr.h" #define RUBIN_REG_SIZE 16 #define UPPER_BIT_RUBIN (((long) 1)<<(RUBIN_REG_SIZE-1)) #define LOWER_BITS_RUBIN ((((long) 1)<<(RUBIN_REG_SIZE-1))-1) #define BIT_DIVIDER_MIPS 1043 static int bits_mips[8] = { 277,249,290,267,229,341,212,241}; /* mips32 */ #include <linux/errno.h> struct pushpull { unsigned char *buf; unsigned int buflen; unsigned int ofs; unsigned int reserve; }; struct rubin_state { unsigned long p; unsigned long q; unsigned long rec_q; long bit_number; struct pushpull pp; int bit_divider; int bits[8]; }; static inline void init_pushpull(struct pushpull *pp, char *buf, unsigned buflen, unsigned ofs, unsigned reserve) { pp->buf = buf; pp->buflen = buflen; pp->ofs = ofs; pp->reserve = reserve; } static inline int pushbit(struct pushpull *pp, int bit, int use_reserved) { if (pp->ofs >= pp->buflen - (use_reserved?0:pp->reserve)) { return -ENOSPC; } if (bit) { pp->buf[pp->ofs >> 3] |= (1<<(7-(pp->ofs &7))); } else { pp->buf[pp->ofs >> 3] &= ~(1<<(7-(pp->ofs &7))); } pp->ofs++; return 0; } static inline int pushedbits(struct pushpull *pp) { return pp->ofs; } static inline int pullbit(struct pushpull *pp) { int bit; bit = (pp->buf[pp->ofs >> 3] >> (7-(pp->ofs & 7))) & 1; pp->ofs++; return bit; } static inline int pulledbits(struct pushpull *pp) { return pp->ofs; } static void init_rubin(struct rubin_state *rs, int div, int *bits) { int c; rs->q = 0; rs->p = (long) (2 * UPPER_BIT_RUBIN); rs->bit_number = (long) 0; rs->bit_divider = div; for (c=0; c<8; c++) rs->bits[c] = bits[c]; } static int encode(struct rubin_state *rs, long A, long B, int symbol) { long i0, i1; int ret; while ((rs->q >= UPPER_BIT_RUBIN) || ((rs->p + rs->q) <= UPPER_BIT_RUBIN)) { rs->bit_number++; ret = pushbit(&rs->pp, (rs->q & UPPER_BIT_RUBIN) ? 1 : 0, 0); if (ret) return ret; rs->q &= LOWER_BITS_RUBIN; rs->q <<= 1; rs->p <<= 1; } i0 = A * rs->p / (A + B); if (i0 <= 0) { i0 = 1; } if (i0 >= rs->p) { i0 = rs->p - 1; } i1 = rs->p - i0; if (symbol == 0) rs->p = i0; else { rs->p = i1; rs->q += i0; } return 0; } static void end_rubin(struct rubin_state *rs) { int i; for (i = 0; i < RUBIN_REG_SIZE; i++) { pushbit(&rs->pp, (UPPER_BIT_RUBIN & rs->q) ? 1 : 0, 1); rs->q &= LOWER_BITS_RUBIN; rs->q <<= 1; } } static void init_decode(struct rubin_state *rs, int div, int *bits) { init_rubin(rs, div, bits); /* behalve lower */ rs->rec_q = 0; for (rs->bit_number = 0; rs->bit_number++ < RUBIN_REG_SIZE; rs->rec_q = rs->rec_q * 2 + (long) (pullbit(&rs->pp))) ; } static void __do_decode(struct rubin_state *rs, unsigned long p, unsigned long q) { register unsigned long lower_bits_rubin = LOWER_BITS_RUBIN; unsigned long rec_q; int c, bits = 0; /* * First, work out how many bits we need from the input stream. * Note that we have already done the initial check on this * loop prior to calling this function. */ do { bits++; q &= lower_bits_rubin; q <<= 1; p <<= 1; } while ((q >= UPPER_BIT_RUBIN) || ((p + q) <= UPPER_BIT_RUBIN)); rs->p = p; rs->q = q; rs->bit_number += bits; /* * Now get the bits. We really want this to be "get n bits". */ rec_q = rs->rec_q; do { c = pullbit(&rs->pp); rec_q &= lower_bits_rubin; rec_q <<= 1; rec_q += c; } while (--bits); rs->rec_q = rec_q; } static int decode(struct rubin_state *rs, long A, long B) { unsigned long p = rs->p, q = rs->q; long i0, threshold; int symbol; if (q >= UPPER_BIT_RUBIN || ((p + q) <= UPPER_BIT_RUBIN)) __do_decode(rs, p, q); i0 = A * rs->p / (A + B); if (i0 <= 0) { i0 = 1; } if (i0 >= rs->p) { i0 = rs->p - 1; } threshold = rs->q + i0; symbol = rs->rec_q >= threshold; if (rs->rec_q >= threshold) { rs->q += i0; i0 = rs->p - i0; } rs->p = i0; return symbol; } static int out_byte(struct rubin_state *rs, unsigned char byte) { int i, ret; struct rubin_state rs_copy; rs_copy = *rs; for (i=0;i<8;i++) { ret = encode(rs, rs->bit_divider-rs->bits[i],rs->bits[i],byte&1); if (ret) { /* Failed. Restore old state */ *rs = rs_copy; return ret; } byte=byte>>1; } return 0; } static int in_byte(struct rubin_state *rs) { int i, result = 0, bit_divider = rs->bit_divider; for (i = 0; i < 8; i++) result |= decode(rs, bit_divider - rs->bits[i], rs->bits[i]) << i; return result; } static int rubin_do_compress(int bit_divider, int *bits, unsigned char *data_in, unsigned char *cpage_out, uint32_t *sourcelen, uint32_t *dstlen) { int outpos = 0; int pos=0; struct rubin_state rs; init_pushpull(&rs.pp, cpage_out, *dstlen * 8, 0, 32); init_rubin(&rs, bit_divider, bits); while (pos < (*sourcelen) && !out_byte(&rs, data_in[pos])) pos++; end_rubin(&rs); if (outpos > pos) { /* We failed */ return -1; } /* Tell the caller how much we managed to compress, * and how much space it took */ outpos = (pushedbits(&rs.pp)+7)/8; if (outpos >= pos) return -1; /* We didn't actually compress */ *sourcelen = pos; *dstlen = outpos; return 0; } #if 0 /* _compress returns the compressed size, -1 if bigger */ int jffs2_rubinmips_compress(unsigned char *data_in, unsigned char *cpage_out, uint32_t *sourcelen, uint32_t *dstlen, void *model) { return rubin_do_compress(BIT_DIVIDER_MIPS, bits_mips, data_in, cpage_out, sourcelen, dstlen); } #endif static int jffs2_dynrubin_compress(unsigned char *data_in, unsigned char *cpage_out, uint32_t *sourcelen, uint32_t *dstlen, void *model) { int bits[8]; unsigned char histo[256]; int i; int ret; uint32_t mysrclen, mydstlen; mysrclen = *sourcelen; mydstlen = *dstlen - 8; if (*dstlen <= 12) return -1; memset(histo, 0, 256); for (i=0; i<mysrclen; i++) { histo[data_in[i]]++; } memset(bits, 0, sizeof(int)*8); for (i=0; i<256; i++) { if (i&128) bits[7] += histo[i]; if (i&64) bits[6] += histo[i]; if (i&32) bits[5] += histo[i]; if (i&16) bits[4] += histo[i]; if (i&8) bits[3] += histo[i]; if (i&4) bits[2] += histo[i]; if (i&2) bits[1] += histo[i]; if (i&1) bits[0] += histo[i]; } for (i=0; i<8; i++) { bits[i] = (bits[i] * 256) / mysrclen; if (!bits[i]) bits[i] = 1; if (bits[i] > 255) bits[i] = 255; cpage_out[i] = bits[i]; } ret = rubin_do_compress(256, bits, data_in, cpage_out+8, &mysrclen, &mydstlen); if (ret) return ret; /* Add back the 8 bytes we took for the probabilities */ mydstlen += 8; if (mysrclen <= mydstlen) { /* We compressed */ return -1; } *sourcelen = mysrclen; *dstlen = mydstlen; return 0; } static void rubin_do_decompress(int bit_divider, int *bits, unsigned char *cdata_in, unsigned char *page_out, uint32_t srclen, uint32_t destlen) { int outpos = 0; struct rubin_state rs; init_pushpull(&rs.pp, cdata_in, srclen, 0, 0); init_decode(&rs, bit_divider, bits); while (outpos < destlen) { page_out[outpos++] = in_byte(&rs); } } static int jffs2_rubinmips_decompress(unsigned char *data_in, unsigned char *cpage_out, uint32_t sourcelen, uint32_t dstlen, void *model) { rubin_do_decompress(BIT_DIVIDER_MIPS, bits_mips, data_in, cpage_out, sourcelen, dstlen); return 0; } static int jffs2_dynrubin_decompress(unsigned char *data_in, unsigned char *cpage_out, uint32_t sourcelen, uint32_t dstlen, void *model) { int bits[8]; int c; for (c=0; c<8; c++) bits[c] = data_in[c]; rubin_do_decompress(256, bits, data_in+8, cpage_out, sourcelen-8, dstlen); return 0; } static struct jffs2_compressor jffs2_rubinmips_comp = { .priority = JFFS2_RUBINMIPS_PRIORITY, .name = "rubinmips", .compr = JFFS2_COMPR_DYNRUBIN, .compress = NULL, /*&jffs2_rubinmips_compress,*/ .decompress = &jffs2_rubinmips_decompress, #ifdef JFFS2_RUBINMIPS_DISABLED .disabled = 1, #else .disabled = 0, #endif }; int jffs2_rubinmips_init(void) { return jffs2_register_compressor(&jffs2_rubinmips_comp); } void jffs2_rubinmips_exit(void) { jffs2_unregister_compressor(&jffs2_rubinmips_comp); } static struct jffs2_compressor jffs2_dynrubin_comp = { .priority = JFFS2_DYNRUBIN_PRIORITY, .name = "dynrubin", .compr = JFFS2_COMPR_RUBINMIPS, .compress = jffs2_dynrubin_compress, .decompress = &jffs2_dynrubin_decompress, #ifdef JFFS2_DYNRUBIN_DISABLED .disabled = 1, #else .disabled = 0, #endif }; int jffs2_dynrubin_init(void) { return jffs2_register_compressor(&jffs2_dynrubin_comp); } void jffs2_dynrubin_exit(void) { jffs2_unregister_compressor(&jffs2_dynrubin_comp); }