/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * super.c * * load/unload driver, mount/dismount volumes * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MLOG_MASK_PREFIX ML_SUPER #include #include "ocfs2.h" /* this should be the only file to include a version 1 header */ #include "ocfs1_fs_compat.h" #include "alloc.h" #include "dlmglue.h" #include "export.h" #include "extent_map.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "namei.h" #include "slot_map.h" #include "super.h" #include "sysfile.h" #include "uptodate.h" #include "ver.h" #include "xattr.h" #include "quota.h" #include "buffer_head_io.h" static struct kmem_cache *ocfs2_inode_cachep = NULL; struct kmem_cache *ocfs2_dquot_cachep; struct kmem_cache *ocfs2_qf_chunk_cachep; /* OCFS2 needs to schedule several differnt types of work which * require cluster locking, disk I/O, recovery waits, etc. Since these * types of work tend to be heavy we avoid using the kernel events * workqueue and schedule on our own. */ struct workqueue_struct *ocfs2_wq = NULL; static struct dentry *ocfs2_debugfs_root = NULL; MODULE_AUTHOR("Oracle"); MODULE_LICENSE("GPL"); struct mount_options { unsigned long commit_interval; unsigned long mount_opt; unsigned int atime_quantum; signed short slot; unsigned int localalloc_opt; char cluster_stack[OCFS2_STACK_LABEL_LEN + 1]; }; static int ocfs2_parse_options(struct super_block *sb, char *options, struct mount_options *mopt, int is_remount); static int ocfs2_show_options(struct seq_file *s, struct vfsmount *mnt); static void ocfs2_put_super(struct super_block *sb); static int ocfs2_mount_volume(struct super_block *sb); static int ocfs2_remount(struct super_block *sb, int *flags, char *data); static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err); static int ocfs2_initialize_mem_caches(void); static void ocfs2_free_mem_caches(void); static void ocfs2_delete_osb(struct ocfs2_super *osb); static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf); static int ocfs2_sync_fs(struct super_block *sb, int wait); static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb); static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb); static void ocfs2_release_system_inodes(struct ocfs2_super *osb); static int ocfs2_check_volume(struct ocfs2_super *osb); static int ocfs2_verify_volume(struct ocfs2_dinode *di, struct buffer_head *bh, u32 sectsize); static int ocfs2_initialize_super(struct super_block *sb, struct buffer_head *bh, int sector_size); static int ocfs2_get_sector(struct super_block *sb, struct buffer_head **bh, int block, int sect_size); static void ocfs2_write_super(struct super_block *sb); static struct inode *ocfs2_alloc_inode(struct super_block *sb); static void ocfs2_destroy_inode(struct inode *inode); static const struct super_operations ocfs2_sops = { .statfs = ocfs2_statfs, .alloc_inode = ocfs2_alloc_inode, .destroy_inode = ocfs2_destroy_inode, .drop_inode = ocfs2_drop_inode, .clear_inode = ocfs2_clear_inode, .delete_inode = ocfs2_delete_inode, .sync_fs = ocfs2_sync_fs, .write_super = ocfs2_write_super, .put_super = ocfs2_put_super, .remount_fs = ocfs2_remount, .show_options = ocfs2_show_options, .quota_read = ocfs2_quota_read, .quota_write = ocfs2_quota_write, }; enum { Opt_barrier, Opt_err_panic, Opt_err_ro, Opt_intr, Opt_nointr, Opt_hb_none, Opt_hb_local, Opt_data_ordered, Opt_data_writeback, Opt_atime_quantum, Opt_slot, Opt_commit, Opt_localalloc, Opt_localflocks, Opt_stack, Opt_user_xattr, Opt_nouser_xattr, Opt_inode64, Opt_acl, Opt_noacl, Opt_err, }; static const match_table_t tokens = { {Opt_barrier, "barrier=%u"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_intr, "intr"}, {Opt_nointr, "nointr"}, {Opt_hb_none, OCFS2_HB_NONE}, {Opt_hb_local, OCFS2_HB_LOCAL}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_atime_quantum, "atime_quantum=%u"}, {Opt_slot, "preferred_slot=%u"}, {Opt_commit, "commit=%u"}, {Opt_localalloc, "localalloc=%d"}, {Opt_localflocks, "localflocks"}, {Opt_stack, "cluster_stack=%s"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_inode64, "inode64"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_err, NULL} }; /* * write_super and sync_fs ripped right out of ext3. */ static void ocfs2_write_super(struct super_block *sb) { if (mutex_trylock(&sb->s_lock) != 0) BUG(); sb->s_dirt = 0; } static int ocfs2_sync_fs(struct super_block *sb, int wait) { int status; tid_t target; struct ocfs2_super *osb = OCFS2_SB(sb); sb->s_dirt = 0; if (ocfs2_is_hard_readonly(osb)) return -EROFS; if (wait) { status = ocfs2_flush_truncate_log(osb); if (status < 0) mlog_errno(status); } else { ocfs2_schedule_truncate_log_flush(osb, 0); } if (jbd2_journal_start_commit(OCFS2_SB(sb)->journal->j_journal, &target)) { if (wait) jbd2_log_wait_commit(OCFS2_SB(sb)->journal->j_journal, target); } return 0; } static int ocfs2_need_system_inode(struct ocfs2_super *osb, int ino) { if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA) && (ino == USER_QUOTA_SYSTEM_INODE || ino == LOCAL_USER_QUOTA_SYSTEM_INODE)) return 0; if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA) && (ino == GROUP_QUOTA_SYSTEM_INODE || ino == LOCAL_GROUP_QUOTA_SYSTEM_INODE)) return 0; return 1; } static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb) { struct inode *new = NULL; int status = 0; int i; mlog_entry_void(); new = ocfs2_iget(osb, osb->root_blkno, OCFS2_FI_FLAG_SYSFILE, 0); if (IS_ERR(new)) { status = PTR_ERR(new); mlog_errno(status); goto bail; } osb->root_inode = new; new = ocfs2_iget(osb, osb->system_dir_blkno, OCFS2_FI_FLAG_SYSFILE, 0); if (IS_ERR(new)) { status = PTR_ERR(new); mlog_errno(status); goto bail; } osb->sys_root_inode = new; for (i = OCFS2_FIRST_ONLINE_SYSTEM_INODE; i <= OCFS2_LAST_GLOBAL_SYSTEM_INODE; i++) { if (!ocfs2_need_system_inode(osb, i)) continue; new = ocfs2_get_system_file_inode(osb, i, osb->slot_num); if (!new) { ocfs2_release_system_inodes(osb); status = -EINVAL; mlog_errno(status); /* FIXME: Should ERROR_RO_FS */ mlog(ML_ERROR, "Unable to load system inode %d, " "possibly corrupt fs?", i); goto bail; } // the array now has one ref, so drop this one iput(new); } bail: mlog_exit(status); return status; } static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb) { struct inode *new = NULL; int status = 0; int i; mlog_entry_void(); for (i = OCFS2_LAST_GLOBAL_SYSTEM_INODE + 1; i < NUM_SYSTEM_INODES; i++) { if (!ocfs2_need_system_inode(osb, i)) continue; new = ocfs2_get_system_file_inode(osb, i, osb->slot_num); if (!new) { ocfs2_release_system_inodes(osb); status = -EINVAL; mlog(ML_ERROR, "status=%d, sysfile=%d, slot=%d\n", status, i, osb->slot_num); goto bail; } /* the array now has one ref, so drop this one */ iput(new); } bail: mlog_exit(status); return status; } static void ocfs2_release_system_inodes(struct ocfs2_super *osb) { int i; struct inode *inode; mlog_entry_void(); for (i = 0; i < NUM_SYSTEM_INODES; i++) { inode = osb->system_inodes[i]; if (inode) { iput(inode); osb->system_inodes[i] = NULL; } } inode = osb->sys_root_inode; if (inode) { iput(inode); osb->sys_root_inode = NULL; } inode = osb->root_inode; if (inode) { iput(inode); osb->root_inode = NULL; } mlog_exit(0); } /* We're allocating fs objects, use GFP_NOFS */ static struct inode *ocfs2_alloc_inode(struct super_block *sb) { struct ocfs2_inode_info *oi; oi = kmem_cache_alloc(ocfs2_inode_cachep, GFP_NOFS); if (!oi) return NULL; jbd2_journal_init_jbd_inode(&oi->ip_jinode, &oi->vfs_inode); return &oi->vfs_inode; } static void ocfs2_destroy_inode(struct inode *inode) { kmem_cache_free(ocfs2_inode_cachep, OCFS2_I(inode)); } static unsigned long long ocfs2_max_file_offset(unsigned int bbits, unsigned int cbits) { unsigned int bytes = 1 << cbits; unsigned int trim = bytes; unsigned int bitshift = 32; /* * i_size and all block offsets in ocfs2 are always 64 bits * wide. i_clusters is 32 bits, in cluster-sized units. So on * 64 bit platforms, cluster size will be the limiting factor. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBD) BUILD_BUG_ON(sizeof(sector_t) != 8); /* * We might be limited by page cache size. */ if (bytes > PAGE_CACHE_SIZE) { bytes = PAGE_CACHE_SIZE; trim = 1; /* * Shift by 31 here so that we don't get larger than * MAX_LFS_FILESIZE */ bitshift = 31; } # else /* * We are limited by the size of sector_t. Use block size, as * that's what we expose to the VFS. */ bytes = 1 << bbits; trim = 1; bitshift = 31; # endif #endif /* * Trim by a whole cluster when we can actually approach the * on-disk limits. Otherwise we can overflow i_clusters when * an extent start is at the max offset. */ return (((unsigned long long)bytes) << bitshift) - trim; } static int ocfs2_remount(struct super_block *sb, int *flags, char *data) { int incompat_features; int ret = 0; struct mount_options parsed_options; struct ocfs2_super *osb = OCFS2_SB(sb); if (!ocfs2_parse_options(sb, data, &parsed_options, 1)) { ret = -EINVAL; goto out; } if ((osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) != (parsed_options.mount_opt & OCFS2_MOUNT_HB_LOCAL)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot change heartbeat mode on remount\n"); goto out; } if ((osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK) != (parsed_options.mount_opt & OCFS2_MOUNT_DATA_WRITEBACK)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot change data mode on remount\n"); goto out; } /* Probably don't want this on remount; it might * mess with other nodes */ if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64) && (parsed_options.mount_opt & OCFS2_MOUNT_INODE64)) { ret = -EINVAL; mlog(ML_ERROR, "Cannot enable inode64 on remount\n"); goto out; } /* We're going to/from readonly mode. */ if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { /* Lock here so the check of HARD_RO and the potential * setting of SOFT_RO is atomic. */ spin_lock(&osb->osb_lock); if (osb->osb_flags & OCFS2_OSB_HARD_RO) { mlog(ML_ERROR, "Remount on readonly device is forbidden.\n"); ret = -EROFS; goto unlock_osb; } if (*flags & MS_RDONLY) { mlog(0, "Going to ro mode.\n"); sb->s_flags |= MS_RDONLY; osb->osb_flags |= OCFS2_OSB_SOFT_RO; } else { mlog(0, "Making ro filesystem writeable.\n"); if (osb->osb_flags & OCFS2_OSB_ERROR_FS) { mlog(ML_ERROR, "Cannot remount RDWR " "filesystem due to previous errors.\n"); ret = -EROFS; goto unlock_osb; } incompat_features = OCFS2_HAS_RO_COMPAT_FEATURE(sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP); if (incompat_features) { mlog(ML_ERROR, "Cannot remount RDWR because " "of unsupported optional features " "(%x).\n", incompat_features); ret = -EINVAL; goto unlock_osb; } sb->s_flags &= ~MS_RDONLY; osb->osb_flags &= ~OCFS2_OSB_SOFT_RO; } unlock_osb: spin_unlock(&osb->osb_lock); } if (!ret) { /* Only save off the new mount options in case of a successful * remount. */ if (!(osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_XATTR)) parsed_options.mount_opt &= ~OCFS2_MOUNT_POSIX_ACL; osb->s_mount_opt = parsed_options.mount_opt; osb->s_atime_quantum = parsed_options.atime_quantum; osb->preferred_slot = parsed_options.slot; if (parsed_options.commit_interval) osb->osb_commit_interval = parsed_options.commit_interval; if (!ocfs2_is_hard_readonly(osb)) ocfs2_set_journal_params(osb); } out: return ret; } static int ocfs2_sb_probe(struct super_block *sb, struct buffer_head **bh, int *sector_size) { int status, tmpstat; struct ocfs1_vol_disk_hdr *hdr; struct ocfs2_dinode *di; int blksize; *bh = NULL; /* may be > 512 */ *sector_size = bdev_hardsect_size(sb->s_bdev); if (*sector_size > OCFS2_MAX_BLOCKSIZE) { mlog(ML_ERROR, "Hardware sector size too large: %d (max=%d)\n", *sector_size, OCFS2_MAX_BLOCKSIZE); status = -EINVAL; goto bail; } /* Can this really happen? */ if (*sector_size < OCFS2_MIN_BLOCKSIZE) *sector_size = OCFS2_MIN_BLOCKSIZE; /* check block zero for old format */ status = ocfs2_get_sector(sb, bh, 0, *sector_size); if (status < 0) { mlog_errno(status); goto bail; } hdr = (struct ocfs1_vol_disk_hdr *) (*bh)->b_data; if (hdr->major_version == OCFS1_MAJOR_VERSION) { mlog(ML_ERROR, "incompatible version: %u.%u\n", hdr->major_version, hdr->minor_version); status = -EINVAL; } if (memcmp(hdr->signature, OCFS1_VOLUME_SIGNATURE, strlen(OCFS1_VOLUME_SIGNATURE)) == 0) { mlog(ML_ERROR, "incompatible volume signature: %8s\n", hdr->signature); status = -EINVAL; } brelse(*bh); *bh = NULL; if (status < 0) { mlog(ML_ERROR, "This is an ocfs v1 filesystem which must be " "upgraded before mounting with ocfs v2\n"); goto bail; } /* * Now check at magic offset for 512, 1024, 2048, 4096 * blocksizes. 4096 is the maximum blocksize because it is * the minimum clustersize. */ status = -EINVAL; for (blksize = *sector_size; blksize <= OCFS2_MAX_BLOCKSIZE; blksize <<= 1) { tmpstat = ocfs2_get_sector(sb, bh, OCFS2_SUPER_BLOCK_BLKNO, blksize); if (tmpstat < 0) { status = tmpstat; mlog_errno(status); goto bail; } di = (struct ocfs2_dinode *) (*bh)->b_data; status = ocfs2_verify_volume(di, *bh, blksize); if (status >= 0) goto bail; brelse(*bh); *bh = NULL; if (status != -EAGAIN) break; } bail: return status; } static int ocfs2_verify_heartbeat(struct ocfs2_super *osb) { if (ocfs2_mount_local(osb)) { if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) { mlog(ML_ERROR, "Cannot heartbeat on a locally " "mounted device.\n"); return -EINVAL; } } if (ocfs2_userspace_stack(osb)) { if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) { mlog(ML_ERROR, "Userspace stack expected, but " "o2cb heartbeat arguments passed to mount\n"); return -EINVAL; } } if (!(osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL)) { if (!ocfs2_mount_local(osb) && !ocfs2_is_hard_readonly(osb) && !ocfs2_userspace_stack(osb)) { mlog(ML_ERROR, "Heartbeat has to be started to mount " "a read-write clustered device.\n"); return -EINVAL; } } return 0; } /* * If we're using a userspace stack, mount should have passed * a name that matches the disk. If not, mount should not * have passed a stack. */ static int ocfs2_verify_userspace_stack(struct ocfs2_super *osb, struct mount_options *mopt) { if (!ocfs2_userspace_stack(osb) && mopt->cluster_stack[0]) { mlog(ML_ERROR, "cluster stack passed to mount, but this filesystem " "does not support it\n"); return -EINVAL; } if (ocfs2_userspace_stack(osb) && strncmp(osb->osb_cluster_stack, mopt->cluster_stack, OCFS2_STACK_LABEL_LEN)) { mlog(ML_ERROR, "cluster stack passed to mount (\"%s\") does not " "match the filesystem (\"%s\")\n", mopt->cluster_stack, osb->osb_cluster_stack); return -EINVAL; } return 0; } static int ocfs2_fill_super(struct super_block *sb, void *data, int silent) { struct dentry *root; int status, sector_size; struct mount_options parsed_options; struct inode *inode = NULL; struct ocfs2_super *osb = NULL; struct buffer_head *bh = NULL; char nodestr[8]; mlog_entry("%p, %p, %i", sb, data, silent); if (!ocfs2_parse_options(sb, data, &parsed_options, 0)) { status = -EINVAL; goto read_super_error; } /* probe for superblock */ status = ocfs2_sb_probe(sb, &bh, §or_size); if (status < 0) { mlog(ML_ERROR, "superblock probe failed!\n"); goto read_super_error; } status = ocfs2_initialize_super(sb, bh, sector_size); osb = OCFS2_SB(sb); if (status < 0) { mlog_errno(status); goto read_super_error; } brelse(bh); bh = NULL; if (!(osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_XATTR)) parsed_options.mount_opt &= ~OCFS2_MOUNT_POSIX_ACL; osb->s_mount_opt = parsed_options.mount_opt; osb->s_atime_quantum = parsed_options.atime_quantum; osb->preferred_slot = parsed_options.slot; osb->osb_commit_interval = parsed_options.commit_interval; osb->local_alloc_default_bits = ocfs2_megabytes_to_clusters(sb, parsed_options.localalloc_opt); osb->local_alloc_bits = osb->local_alloc_default_bits; status = ocfs2_verify_userspace_stack(osb, &parsed_options); if (status) goto read_super_error; sb->s_magic = OCFS2_SUPER_MAGIC; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | ((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); /* Hard readonly mode only if: bdev_read_only, MS_RDONLY, * heartbeat=none */ if (bdev_read_only(sb->s_bdev)) { if (!(sb->s_flags & MS_RDONLY)) { status = -EACCES; mlog(ML_ERROR, "Readonly device detected but readonly " "mount was not specified.\n"); goto read_super_error; } /* You should not be able to start a local heartbeat * on a readonly device. */ if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) { status = -EROFS; mlog(ML_ERROR, "Local heartbeat specified on readonly " "device.\n"); goto read_super_error; } status = ocfs2_check_journals_nolocks(osb); if (status < 0) { if (status == -EROFS) mlog(ML_ERROR, "Recovery required on readonly " "file system, but write access is " "unavailable.\n"); else mlog_errno(status); goto read_super_error; } ocfs2_set_ro_flag(osb, 1); printk(KERN_NOTICE "Readonly device detected. No cluster " "services will be utilized for this mount. Recovery " "will be skipped.\n"); } if (!ocfs2_is_hard_readonly(osb)) { if (sb->s_flags & MS_RDONLY) ocfs2_set_ro_flag(osb, 0); } status = ocfs2_verify_heartbeat(osb); if (status < 0) { mlog_errno(status); goto read_super_error; } osb->osb_debug_root = debugfs_create_dir(osb->uuid_str, ocfs2_debugfs_root); if (!osb->osb_debug_root) { status = -EINVAL; mlog(ML_ERROR, "Unable to create per-mount debugfs root.\n"); goto read_super_error; } status = ocfs2_mount_volume(sb); if (osb->root_inode) inode = igrab(osb->root_inode); if (status < 0) goto read_super_error; if (!inode) { status = -EIO; mlog_errno(status); goto read_super_error; } root = d_alloc_root(inode); if (!root) { status = -ENOMEM; mlog_errno(status); goto read_super_error; } sb->s_root = root; ocfs2_complete_mount_recovery(osb); if (ocfs2_mount_local(osb)) snprintf(nodestr, sizeof(nodestr), "local"); else snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num); printk(KERN_INFO "ocfs2: Mounting device (%s) on (node %s, slot %d) " "with %s data mode.\n", osb->dev_str, nodestr, osb->slot_num, osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK ? "writeback" : "ordered"); atomic_set(&osb->vol_state, VOLUME_MOUNTED); wake_up(&osb->osb_mount_event); mlog_exit(status); return status; read_super_error: brelse(bh); if (inode) iput(inode); if (osb) { atomic_set(&osb->vol_state, VOLUME_DISABLED); wake_up(&osb->osb_mount_event); ocfs2_dismount_volume(sb, 1); } mlog_exit(status); return status; } static int ocfs2_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, ocfs2_fill_super, mnt); } static struct file_system_type ocfs2_fs_type = { .owner = THIS_MODULE, .name = "ocfs2", .get_sb = ocfs2_get_sb, /* is this called when we mount * the fs? */ .kill_sb = kill_block_super, /* set to the generic one * right now, but do we * need to change that? */ .fs_flags = FS_REQUIRES_DEV|FS_RENAME_DOES_D_MOVE, .next = NULL }; static int ocfs2_parse_options(struct super_block *sb, char *options, struct mount_options *mopt, int is_remount) { int status; char *p; mlog_entry("remount: %d, options: \"%s\"\n", is_remount, options ? options : "(none)"); mopt->commit_interval = 0; mopt->mount_opt = 0; mopt->atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM; mopt->slot = OCFS2_INVALID_SLOT; mopt->localalloc_opt = OCFS2_DEFAULT_LOCAL_ALLOC_SIZE; mopt->cluster_stack[0] = '\0'; if (!options) { status = 1; goto bail; } while ((p = strsep(&options, ",")) != NULL) { int token, option; substring_t args[MAX_OPT_ARGS]; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_hb_local: mopt->mount_opt |= OCFS2_MOUNT_HB_LOCAL; break; case Opt_hb_none: mopt->mount_opt &= ~OCFS2_MOUNT_HB_LOCAL; break; case Opt_barrier: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option) mopt->mount_opt |= OCFS2_MOUNT_BARRIER; else mopt->mount_opt &= ~OCFS2_MOUNT_BARRIER; break; case Opt_intr: mopt->mount_opt &= ~OCFS2_MOUNT_NOINTR; break; case Opt_nointr: mopt->mount_opt |= OCFS2_MOUNT_NOINTR; break; case Opt_err_panic: mopt->mount_opt |= OCFS2_MOUNT_ERRORS_PANIC; break; case Opt_err_ro: mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_PANIC; break; case Opt_data_ordered: mopt->mount_opt &= ~OCFS2_MOUNT_DATA_WRITEBACK; break; case Opt_data_writeback: mopt->mount_opt |= OCFS2_MOUNT_DATA_WRITEBACK; break; case Opt_user_xattr: mopt->mount_opt &= ~OCFS2_MOUNT_NOUSERXATTR; break; case Opt_nouser_xattr: mopt->mount_opt |= OCFS2_MOUNT_NOUSERXATTR; break; case Opt_atime_quantum: if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option >= 0) mopt->atime_quantum = option; break; case Opt_slot: option = 0; if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option) mopt->slot = (s16)option; break; case Opt_commit: option = 0; if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option < 0) return 0; if (option == 0) option = JBD2_DEFAULT_MAX_COMMIT_AGE; mopt->commit_interval = HZ * option; break; case Opt_localalloc: option = 0; if (match_int(&args[0], &option)) { status = 0; goto bail; } if (option >= 0 && (option <= ocfs2_local_alloc_size(sb) * 8)) mopt->localalloc_opt = option; break; case Opt_localflocks: /* * Changing this during remount could race * flock() requests, or "unbalance" existing * ones (e.g., a lock is taken in one mode but * dropped in the other). If users care enough * to flip locking modes during remount, we * could add a "local" flag to individual * flock structures for proper tracking of * state. */ if (!is_remount) mopt->mount_opt |= OCFS2_MOUNT_LOCALFLOCKS; break; case Opt_stack: /* Check both that the option we were passed * is of the right length and that it is a proper * string of the right length. */ if (((args[0].to - args[0].from) != OCFS2_STACK_LABEL_LEN) || (strnlen(args[0].from, OCFS2_STACK_LABEL_LEN) != OCFS2_STACK_LABEL_LEN)) { mlog(ML_ERROR, "Invalid cluster_stack option\n"); status = 0; goto bail; } memcpy(mopt->cluster_stack, args[0].from, OCFS2_STACK_LABEL_LEN); mopt->cluster_stack[OCFS2_STACK_LABEL_LEN] = '\0'; break; case Opt_inode64: mopt->mount_opt |= OCFS2_MOUNT_INODE64; break; #ifdef CONFIG_OCFS2_FS_POSIX_ACL case Opt_acl: mopt->mount_opt |= OCFS2_MOUNT_POSIX_ACL; break; case Opt_noacl: mopt->mount_opt &= ~OCFS2_MOUNT_POSIX_ACL; break; #else case Opt_acl: case Opt_noacl: printk(KERN_INFO "ocfs2 (no)acl options not supported\n"); break; #endif default: mlog(ML_ERROR, "Unrecognized mount option \"%s\" " "or missing value\n", p); status = 0; goto bail; } } status = 1; bail: mlog_exit(status); return status; } static int ocfs2_show_options(struct seq_file *s, struct vfsmount *mnt) { struct ocfs2_super *osb = OCFS2_SB(mnt->mnt_sb); unsigned long opts = osb->s_mount_opt; unsigned int local_alloc_megs; if (opts & OCFS2_MOUNT_HB_LOCAL) seq_printf(s, ",_netdev,heartbeat=local"); else seq_printf(s, ",heartbeat=none"); if (opts & OCFS2_MOUNT_NOINTR) seq_printf(s, ",nointr"); if (opts & OCFS2_MOUNT_DATA_WRITEBACK) seq_printf(s, ",data=writeback"); else seq_printf(s, ",data=ordered"); if (opts & OCFS2_MOUNT_BARRIER) seq_printf(s, ",barrier=1"); if (opts & OCFS2_MOUNT_ERRORS_PANIC) seq_printf(s, ",errors=panic"); else seq_printf(s, ",errors=remount-ro"); if (osb->preferred_slot != OCFS2_INVALID_SLOT) seq_printf(s, ",preferred_slot=%d", osb->preferred_slot); if (osb->s_atime_quantum != OCFS2_DEFAULT_ATIME_QUANTUM) seq_printf(s, ",atime_quantum=%u", osb->s_atime_quantum); if (osb->osb_commit_interval) seq_printf(s, ",commit=%u", (unsigned) (osb->osb_commit_interval / HZ)); local_alloc_megs = osb->local_alloc_bits >> (20 - osb->s_clustersize_bits); if (local_alloc_megs != OCFS2_DEFAULT_LOCAL_ALLOC_SIZE) seq_printf(s, ",localalloc=%d", local_alloc_megs); if (opts & OCFS2_MOUNT_LOCALFLOCKS) seq_printf(s, ",localflocks,"); if (osb->osb_cluster_stack[0]) seq_printf(s, ",cluster_stack=%.*s", OCFS2_STACK_LABEL_LEN, osb->osb_cluster_stack); if (opts & OCFS2_MOUNT_NOUSERXATTR) seq_printf(s, ",nouser_xattr"); else seq_printf(s, ",user_xattr"); if (opts & OCFS2_MOUNT_INODE64) seq_printf(s, ",inode64"); #ifdef CONFIG_OCFS2_FS_POSIX_ACL if (opts & OCFS2_MOUNT_POSIX_ACL) seq_printf(s, ",acl"); else seq_printf(s, ",noacl"); #endif return 0; } static int __init ocfs2_init(void) { int status; mlog_entry_void(); ocfs2_print_version(); status = init_ocfs2_uptodate_cache(); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_initialize_mem_caches(); if (status < 0) { mlog_errno(status); goto leave; } ocfs2_wq = create_singlethread_workqueue("ocfs2_wq"); if (!ocfs2_wq) { status = -ENOMEM; goto leave; } ocfs2_debugfs_root = debugfs_create_dir("ocfs2", NULL); if (!ocfs2_debugfs_root) { status = -EFAULT; mlog(ML_ERROR, "Unable to create ocfs2 debugfs root.\n"); } status = ocfs2_quota_setup(); if (status) goto leave; ocfs2_set_locking_protocol(); status = register_quota_format(&ocfs2_quota_format); leave: if (status < 0) { ocfs2_quota_shutdown(); ocfs2_free_mem_caches(); exit_ocfs2_uptodate_cache(); } mlog_exit(status); if (status >= 0) { return register_filesystem(&ocfs2_fs_type); } else return -1; } static void __exit ocfs2_exit(void) { mlog_entry_void(); ocfs2_quota_shutdown(); if (ocfs2_wq) { flush_workqueue(ocfs2_wq); destroy_workqueue(ocfs2_wq); } unregister_quota_format(&ocfs2_quota_format); debugfs_remove(ocfs2_debugfs_root); ocfs2_free_mem_caches(); unregister_filesystem(&ocfs2_fs_type); exit_ocfs2_uptodate_cache(); mlog_exit_void(); } static void ocfs2_put_super(struct super_block *sb) { mlog_entry("(0x%p)\n", sb); ocfs2_sync_blockdev(sb); ocfs2_dismount_volume(sb, 0); mlog_exit_void(); } static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf) { struct ocfs2_super *osb; u32 numbits, freebits; int status; struct ocfs2_dinode *bm_lock; struct buffer_head *bh = NULL; struct inode *inode = NULL; mlog_entry("(%p, %p)\n", dentry->d_sb, buf); osb = OCFS2_SB(dentry->d_sb); inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { mlog(ML_ERROR, "failed to get bitmap inode\n"); status = -EIO; goto bail; } status = ocfs2_inode_lock(inode, &bh, 0); if (status < 0) { mlog_errno(status); goto bail; } bm_lock = (struct ocfs2_dinode *) bh->b_data; numbits = le32_to_cpu(bm_lock->id1.bitmap1.i_total); freebits = numbits - le32_to_cpu(bm_lock->id1.bitmap1.i_used); buf->f_type = OCFS2_SUPER_MAGIC; buf->f_bsize = dentry->d_sb->s_blocksize; buf->f_namelen = OCFS2_MAX_FILENAME_LEN; buf->f_blocks = ((sector_t) numbits) * (osb->s_clustersize >> osb->sb->s_blocksize_bits); buf->f_bfree = ((sector_t) freebits) * (osb->s_clustersize >> osb->sb->s_blocksize_bits); buf->f_bavail = buf->f_bfree; buf->f_files = numbits; buf->f_ffree = freebits; brelse(bh); ocfs2_inode_unlock(inode, 0); status = 0; bail: if (inode) iput(inode); mlog_exit(status); return status; } static void ocfs2_inode_init_once(void *data) { struct ocfs2_inode_info *oi = data; oi->ip_flags = 0; oi->ip_open_count = 0; spin_lock_init(&oi->ip_lock); ocfs2_extent_map_init(&oi->vfs_inode); INIT_LIST_HEAD(&oi->ip_io_markers); oi->ip_created_trans = 0; oi->ip_last_trans = 0; oi->ip_dir_start_lookup = 0; init_rwsem(&oi->ip_alloc_sem); init_rwsem(&oi->ip_xattr_sem); mutex_init(&oi->ip_io_mutex); oi->ip_blkno = 0ULL; oi->ip_clusters = 0; ocfs2_lock_res_init_once(&oi->ip_rw_lockres); ocfs2_lock_res_init_once(&oi->ip_inode_lockres); ocfs2_lock_res_init_once(&oi->ip_open_lockres); ocfs2_metadata_cache_init(&oi->vfs_inode); inode_init_once(&oi->vfs_inode); } static int ocfs2_initialize_mem_caches(void) { ocfs2_inode_cachep = kmem_cache_create("ocfs2_inode_cache", sizeof(struct ocfs2_inode_info), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), ocfs2_inode_init_once); ocfs2_dquot_cachep = kmem_cache_create("ocfs2_dquot_cache", sizeof(struct ocfs2_dquot), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), NULL); ocfs2_qf_chunk_cachep = kmem_cache_create("ocfs2_qf_chunk_cache", sizeof(struct ocfs2_quota_chunk), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD), NULL); if (!ocfs2_inode_cachep || !ocfs2_dquot_cachep || !ocfs2_qf_chunk_cachep) { if (ocfs2_inode_cachep) kmem_cache_destroy(ocfs2_inode_cachep); if (ocfs2_dquot_cachep) kmem_cache_destroy(ocfs2_dquot_cachep); if (ocfs2_qf_chunk_cachep) kmem_cache_destroy(ocfs2_qf_chunk_cachep); return -ENOMEM; } return 0; } static void ocfs2_free_mem_caches(void) { if (ocfs2_inode_cachep) kmem_cache_destroy(ocfs2_inode_cachep); ocfs2_inode_cachep = NULL; if (ocfs2_dquot_cachep) kmem_cache_destroy(ocfs2_dquot_cachep); ocfs2_dquot_cachep = NULL; if (ocfs2_qf_chunk_cachep) kmem_cache_destroy(ocfs2_qf_chunk_cachep); ocfs2_qf_chunk_cachep = NULL; } static int ocfs2_get_sector(struct super_block *sb, struct buffer_head **bh, int block, int sect_size) { if (!sb_set_blocksize(sb, sect_size)) { mlog(ML_ERROR, "unable to set blocksize\n"); return -EIO; } *bh = sb_getblk(sb, block); if (!*bh) { mlog_errno(-EIO); return -EIO; } lock_buffer(*bh); if (!buffer_dirty(*bh)) clear_buffer_uptodate(*bh); unlock_buffer(*bh); ll_rw_block(READ, 1, bh); wait_on_buffer(*bh); return 0; } static int ocfs2_mount_volume(struct super_block *sb) { int status = 0; int unlock_super = 0; struct ocfs2_super *osb = OCFS2_SB(sb); mlog_entry_void(); if (ocfs2_is_hard_readonly(osb)) goto leave; status = ocfs2_dlm_init(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_super_lock(osb, 1); if (status < 0) { mlog_errno(status); goto leave; } unlock_super = 1; /* This will load up the node map and add ourselves to it. */ status = ocfs2_find_slot(osb); if (status < 0) { mlog_errno(status); goto leave; } /* load all node-local system inodes */ status = ocfs2_init_local_system_inodes(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_check_volume(osb); if (status < 0) { mlog_errno(status); goto leave; } status = ocfs2_truncate_log_init(osb); if (status < 0) { mlog_errno(status); goto leave; } if (ocfs2_mount_local(osb)) goto leave; leave: if (unlock_super) ocfs2_super_unlock(osb, 1); mlog_exit(status); return status; } static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err) { int tmp, hangup_needed = 0; struct ocfs2_super *osb = NULL; char nodestr[8]; mlog_entry("(0x%p)\n", sb); BUG_ON(!sb); osb = OCFS2_SB(sb); BUG_ON(!osb); ocfs2_shutdown_local_alloc(osb); ocfs2_truncate_log_shutdown(osb); /* This will disable recovery and flush any recovery work. */ ocfs2_recovery_exit(osb); ocfs2_journal_shutdown(osb); ocfs2_sync_blockdev(sb); /* No cluster connection means we've failed during mount, so skip * all the steps which depended on that to complete. */ if (osb->cconn) { tmp = ocfs2_super_lock(osb, 1); if (tmp < 0) { mlog_errno(tmp); return; } } if (osb->slot_num != OCFS2_INVALID_SLOT) ocfs2_put_slot(osb); if (osb->cconn) ocfs2_super_unlock(osb, 1); ocfs2_release_system_inodes(osb); /* * If we're dismounting due to mount error, mount.ocfs2 will clean * up heartbeat. If we're a local mount, there is no heartbeat. * If we failed before we got a uuid_str yet, we can't stop * heartbeat. Otherwise, do it. */ if (!mnt_err && !ocfs2_mount_local(osb) && osb->uuid_str) hangup_needed = 1; if (osb->cconn) ocfs2_dlm_shutdown(osb, hangup_needed); debugfs_remove(osb->osb_debug_root); if (hangup_needed) ocfs2_cluster_hangup(osb->uuid_str, strlen(osb->uuid_str)); atomic_set(&osb->vol_state, VOLUME_DISMOUNTED); if (ocfs2_mount_local(osb)) snprintf(nodestr, sizeof(nodestr), "local"); else snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num); printk(KERN_INFO "ocfs2: Unmounting device (%s) on (node %s)\n", osb->dev_str, nodestr); ocfs2_delete_osb(osb); kfree(osb); sb->s_dev = 0; sb->s_fs_info = NULL; } static int ocfs2_setup_osb_uuid(struct ocfs2_super *osb, const unsigned char *uuid, unsigned uuid_bytes) { int i, ret; char *ptr; BUG_ON(uuid_bytes != OCFS2_VOL_UUID_LEN); osb->uuid_str = kzalloc(OCFS2_VOL_UUID_LEN * 2 + 1, GFP_KERNEL); if (osb->uuid_str == NULL) return -ENOMEM; for (i = 0, ptr = osb->uuid_str; i < OCFS2_VOL_UUID_LEN; i++) { /* print with null */ ret = snprintf(ptr, 3, "%02X", uuid[i]); if (ret != 2) /* drop super cleans up */ return -EINVAL; /* then only advance past the last char */ ptr += 2; } return 0; } static int ocfs2_initialize_super(struct super_block *sb, struct buffer_head *bh, int sector_size) { int status; int i, cbits, bbits; struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; struct inode *inode = NULL; struct ocfs2_journal *journal; __le32 uuid_net_key; struct ocfs2_super *osb; mlog_entry_void(); osb = kzalloc(sizeof(struct ocfs2_super), GFP_KERNEL); if (!osb) { status = -ENOMEM; mlog_errno(status); goto bail; } sb->s_fs_info = osb; sb->s_op = &ocfs2_sops; sb->s_export_op = &ocfs2_export_ops; sb->s_xattr = ocfs2_xattr_handlers; sb->s_time_gran = 1; sb->s_flags |= MS_NOATIME; /* this is needed to support O_LARGEFILE */ cbits = le32_to_cpu(di->id2.i_super.s_clustersize_bits); bbits = le32_to_cpu(di->id2.i_super.s_blocksize_bits); sb->s_maxbytes = ocfs2_max_file_offset(bbits, cbits); osb->sb = sb; /* Save off for ocfs2_rw_direct */ osb->s_sectsize_bits = blksize_bits(sector_size); BUG_ON(!osb->s_sectsize_bits); spin_lock_init(&osb->dc_task_lock); init_waitqueue_head(&osb->dc_event); osb->dc_work_sequence = 0; osb->dc_wake_sequence = 0; INIT_LIST_HEAD(&osb->blocked_lock_list); osb->blocked_lock_count = 0; spin_lock_init(&osb->osb_lock); ocfs2_init_inode_steal_slot(osb); atomic_set(&osb->alloc_stats.moves, 0); atomic_set(&osb->alloc_stats.local_data, 0); atomic_set(&osb->alloc_stats.bitmap_data, 0); atomic_set(&osb->alloc_stats.bg_allocs, 0); atomic_set(&osb->alloc_stats.bg_extends, 0); ocfs2_init_node_maps(osb); snprintf(osb->dev_str, sizeof(osb->dev_str), "%u,%u", MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); status = ocfs2_recovery_init(osb); if (status) { mlog(ML_ERROR, "Unable to initialize recovery state\n"); mlog_errno(status); goto bail; } init_waitqueue_head(&osb->checkpoint_event); atomic_set(&osb->needs_checkpoint, 0); osb->s_atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM; osb->slot_num = OCFS2_INVALID_SLOT; osb->s_xattr_inline_size = le16_to_cpu( di->id2.i_super.s_xattr_inline_size); osb->local_alloc_state = OCFS2_LA_UNUSED; osb->local_alloc_bh = NULL; INIT_DELAYED_WORK(&osb->la_enable_wq, ocfs2_la_enable_worker); init_waitqueue_head(&osb->osb_mount_event); osb->vol_label = kmalloc(OCFS2_MAX_VOL_LABEL_LEN, GFP_KERNEL); if (!osb->vol_label) { mlog(ML_ERROR, "unable to alloc vol label\n"); status = -ENOMEM; goto bail; } osb->max_slots = le16_to_cpu(di->id2.i_super.s_max_slots); if (osb->max_slots > OCFS2_MAX_SLOTS || osb->max_slots == 0) { mlog(ML_ERROR, "Invalid number of node slots (%u)\n", osb->max_slots); status = -EINVAL; goto bail; } mlog(0, "max_slots for this device: %u\n", osb->max_slots); osb->slot_recovery_generations = kcalloc(osb->max_slots, sizeof(*osb->slot_recovery_generations), GFP_KERNEL); if (!osb->slot_recovery_generations) { status = -ENOMEM; mlog_errno(status); goto bail; } init_waitqueue_head(&osb->osb_wipe_event); osb->osb_orphan_wipes = kcalloc(osb->max_slots, sizeof(*osb->osb_orphan_wipes), GFP_KERNEL); if (!osb->osb_orphan_wipes) { status = -ENOMEM; mlog_errno(status); goto bail; } osb->s_feature_compat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_compat); osb->s_feature_ro_compat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_ro_compat); osb->s_feature_incompat = le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_incompat); if ((i = OCFS2_HAS_INCOMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_INCOMPAT_SUPP))) { mlog(ML_ERROR, "couldn't mount because of unsupported " "optional features (%x).\n", i); status = -EINVAL; goto bail; } if (!(osb->sb->s_flags & MS_RDONLY) && (i = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP))) { mlog(ML_ERROR, "couldn't mount RDWR because of " "unsupported optional features (%x).\n", i); status = -EINVAL; goto bail; } if (ocfs2_userspace_stack(osb)) { memcpy(osb->osb_cluster_stack, OCFS2_RAW_SB(di)->s_cluster_info.ci_stack, OCFS2_STACK_LABEL_LEN); osb->osb_cluster_stack[OCFS2_STACK_LABEL_LEN] = '\0'; if (strlen(osb->osb_cluster_stack) != OCFS2_STACK_LABEL_LEN) { mlog(ML_ERROR, "couldn't mount because of an invalid " "cluster stack label (%s) \n", osb->osb_cluster_stack); status = -EINVAL; goto bail; } } else { /* The empty string is identical with classic tools that * don't know about s_cluster_info. */ osb->osb_cluster_stack[0] = '\0'; } get_random_bytes(&osb->s_next_generation, sizeof(u32)); /* FIXME * This should be done in ocfs2_journal_init(), but unknown * ordering issues will cause the filesystem to crash. * If anyone wants to figure out what part of the code * refers to osb->journal before ocfs2_journal_init() is run, * be my guest. */ /* initialize our journal structure */ journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); if (!journal) { mlog(ML_ERROR, "unable to alloc journal\n"); status = -ENOMEM; goto bail; } osb->journal = journal; journal->j_osb = osb; atomic_set(&journal->j_num_trans, 0); init_rwsem(&journal->j_trans_barrier); init_waitqueue_head(&journal->j_checkpointed); spin_lock_init(&journal->j_lock); journal->j_trans_id = (unsigned long) 1; INIT_LIST_HEAD(&journal->j_la_cleanups); INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); journal->j_state = OCFS2_JOURNAL_FREE; /* get some pseudo constants for clustersize bits */ osb->s_clustersize_bits = le32_to_cpu(di->id2.i_super.s_clustersize_bits); osb->s_clustersize = 1 << osb->s_clustersize_bits; mlog(0, "clusterbits=%d\n", osb->s_clustersize_bits); if (osb->s_clustersize < OCFS2_MIN_CLUSTERSIZE || osb->s_clustersize > OCFS2_MAX_CLUSTERSIZE) { mlog(ML_ERROR, "Volume has invalid cluster size (%d)\n", osb->s_clustersize); status = -EINVAL; goto bail; } if (ocfs2_clusters_to_blocks(osb->sb, le32_to_cpu(di->i_clusters) - 1) > (u32)~0UL) { mlog(ML_ERROR, "Volume might try to write to blocks beyond " "what jbd can address in 32 bits.\n"); status = -EINVAL; goto bail; } if (ocfs2_setup_osb_uuid(osb, di->id2.i_super.s_uuid, sizeof(di->id2.i_super.s_uuid))) { mlog(ML_ERROR, "Out of memory trying to setup our uuid.\n"); status = -ENOMEM; goto bail; } memcpy(&uuid_net_key, di->id2.i_super.s_uuid, sizeof(uuid_net_key)); strncpy(osb->vol_label, di->id2.i_super.s_label, 63); osb->vol_label[63] = '\0'; osb->root_blkno = le64_to_cpu(di->id2.i_super.s_root_blkno); osb->system_dir_blkno = le64_to_cpu(di->id2.i_super.s_system_dir_blkno); osb->first_cluster_group_blkno = le64_to_cpu(di->id2.i_super.s_first_cluster_group); osb->fs_generation = le32_to_cpu(di->i_fs_generation); osb->uuid_hash = le32_to_cpu(di->id2.i_super.s_uuid_hash); mlog(0, "vol_label: %s\n", osb->vol_label); mlog(0, "uuid: %s\n", osb->uuid_str); mlog(0, "root_blkno=%llu, system_dir_blkno=%llu\n", (unsigned long long)osb->root_blkno, (unsigned long long)osb->system_dir_blkno); osb->osb_dlm_debug = ocfs2_new_dlm_debug(); if (!osb->osb_dlm_debug) { status = -ENOMEM; mlog_errno(status); goto bail; } atomic_set(&osb->vol_state, VOLUME_INIT); /* load root, system_dir, and all global system inodes */ status = ocfs2_init_global_system_inodes(osb); if (status < 0) { mlog_errno(status); goto bail; } /* * global bitmap */ inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE, OCFS2_INVALID_SLOT); if (!inode) { status = -EINVAL; mlog_errno(status); goto bail; } osb->bitmap_blkno = OCFS2_I(inode)->ip_blkno; iput(inode); osb->bitmap_cpg = ocfs2_group_bitmap_size(sb) * 8; status = ocfs2_init_slot_info(osb); if (status < 0) { mlog_errno(status); goto bail; } bail: mlog_exit(status); return status; } /* * will return: -EAGAIN if it is ok to keep searching for superblocks * -EINVAL if there is a bad superblock * 0 on success */ static int ocfs2_verify_volume(struct ocfs2_dinode *di, struct buffer_head *bh, u32 blksz) { int status = -EAGAIN; mlog_entry_void(); if (memcmp(di->i_signature, OCFS2_SUPER_BLOCK_SIGNATURE, strlen(OCFS2_SUPER_BLOCK_SIGNATURE)) == 0) { status = -EINVAL; if ((1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits)) != blksz) { mlog(ML_ERROR, "found superblock with incorrect block " "size: found %u, should be %u\n", 1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits), blksz); } else if (le16_to_cpu(di->id2.i_super.s_major_rev_level) != OCFS2_MAJOR_REV_LEVEL || le16_to_cpu(di->id2.i_super.s_minor_rev_level) != OCFS2_MINOR_REV_LEVEL) { mlog(ML_ERROR, "found superblock with bad version: " "found %u.%u, should be %u.%u\n", le16_to_cpu(di->id2.i_super.s_major_rev_level), le16_to_cpu(di->id2.i_super.s_minor_rev_level), OCFS2_MAJOR_REV_LEVEL, OCFS2_MINOR_REV_LEVEL); } else if (bh->b_blocknr != le64_to_cpu(di->i_blkno)) { mlog(ML_ERROR, "bad block number on superblock: " "found %llu, should be %llu\n", (unsigned long long)le64_to_cpu(di->i_blkno), (unsigned long long)bh->b_blocknr); } else if (le32_to_cpu(di->id2.i_super.s_clustersize_bits) < 12 || le32_to_cpu(di->id2.i_super.s_clustersize_bits) > 20) { mlog(ML_ERROR, "bad cluster size found: %u\n", 1 << le32_to_cpu(di->id2.i_super.s_clustersize_bits)); } else if (!le64_to_cpu(di->id2.i_super.s_root_blkno)) { mlog(ML_ERROR, "bad root_blkno: 0\n"); } else if (!le64_to_cpu(di->id2.i_super.s_system_dir_blkno)) { mlog(ML_ERROR, "bad system_dir_blkno: 0\n"); } else if (le16_to_cpu(di->id2.i_super.s_max_slots) > OCFS2_MAX_SLOTS) { mlog(ML_ERROR, "Superblock slots found greater than file system " "maximum: found %u, max %u\n", le16_to_cpu(di->id2.i_super.s_max_slots), OCFS2_MAX_SLOTS); } else { /* found it! */ status = 0; } } mlog_exit(status); return status; } static int ocfs2_check_volume(struct ocfs2_super *osb) { int status; int dirty; int local; struct ocfs2_dinode *local_alloc = NULL; /* only used if we * recover * ourselves. */ mlog_entry_void(); /* Init our journal object. */ status = ocfs2_journal_init(osb->journal, &dirty); if (status < 0) { mlog(ML_ERROR, "Could not initialize journal!\n"); goto finally; } /* If the journal was unmounted cleanly then we don't want to * recover anything. Otherwise, journal_load will do that * dirty work for us :) */ if (!dirty) { status = ocfs2_journal_wipe(osb->journal, 0); if (status < 0) { mlog_errno(status); goto finally; } } else { mlog(ML_NOTICE, "File system was not unmounted cleanly, " "recovering volume.\n"); } local = ocfs2_mount_local(osb); /* will play back anything left in the journal. */ status = ocfs2_journal_load(osb->journal, local, dirty); if (status < 0) { mlog(ML_ERROR, "ocfs2 journal load failed! %d\n", status); goto finally; } if (dirty) { /* recover my local alloc if we didn't unmount cleanly. */ status = ocfs2_begin_local_alloc_recovery(osb, osb->slot_num, &local_alloc); if (status < 0) { mlog_errno(status); goto finally; } /* we complete the recovery process after we've marked * ourselves as mounted. */ } mlog(0, "Journal loaded.\n"); status = ocfs2_load_local_alloc(osb); if (status < 0) { mlog_errno(status); goto finally; } if (dirty) { /* Recovery will be completed after we've mounted the * rest of the volume. */ osb->dirty = 1; osb->local_alloc_copy = local_alloc; local_alloc = NULL; } /* go through each journal, trylock it and if you get the * lock, and it's marked as dirty, set the bit in the recover * map and launch a recovery thread for it. */ status = ocfs2_mark_dead_nodes(osb); if (status < 0) mlog_errno(status); finally: if (local_alloc) kfree(local_alloc); mlog_exit(status); return status; } /* * The routine gets called from dismount or close whenever a dismount on * volume is requested and the osb open count becomes 1. * It will remove the osb from the global list and also free up all the * initialized resources and fileobject. */ static void ocfs2_delete_osb(struct ocfs2_super *osb) { mlog_entry_void(); /* This function assumes that the caller has the main osb resource */ ocfs2_free_slot_info(osb); kfree(osb->osb_orphan_wipes); kfree(osb->slot_recovery_generations); /* FIXME * This belongs in journal shutdown, but because we have to * allocate osb->journal at the start of ocfs2_initalize_osb(), * we free it here. */ kfree(osb->journal); if (osb->local_alloc_copy) kfree(osb->local_alloc_copy); kfree(osb->uuid_str); ocfs2_put_dlm_debug(osb->osb_dlm_debug); memset(osb, 0, sizeof(struct ocfs2_super)); mlog_exit_void(); } /* Put OCFS2 into a readonly state, or (if the user specifies it), * panic(). We do not support continue-on-error operation. */ static void ocfs2_handle_error(struct super_block *sb) { struct ocfs2_super *osb = OCFS2_SB(sb); if (osb->s_mount_opt & OCFS2_MOUNT_ERRORS_PANIC) panic("OCFS2: (device %s): panic forced after error\n", sb->s_id); ocfs2_set_osb_flag(osb, OCFS2_OSB_ERROR_FS); if (sb->s_flags & MS_RDONLY && (ocfs2_is_soft_readonly(osb) || ocfs2_is_hard_readonly(osb))) return; printk(KERN_CRIT "File system is now read-only due to the potential " "of on-disk corruption. Please run fsck.ocfs2 once the file " "system is unmounted.\n"); sb->s_flags |= MS_RDONLY; ocfs2_set_ro_flag(osb, 0); } static char error_buf[1024]; void __ocfs2_error(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); vsnprintf(error_buf, sizeof(error_buf), fmt, args); va_end(args); /* Not using mlog here because we want to show the actual * function the error came from. */ printk(KERN_CRIT "OCFS2: ERROR (device %s): %s: %s\n", sb->s_id, function, error_buf); ocfs2_handle_error(sb); } /* Handle critical errors. This is intentionally more drastic than * ocfs2_handle_error, so we only use for things like journal errors, * etc. */ void __ocfs2_abort(struct super_block* sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); vsnprintf(error_buf, sizeof(error_buf), fmt, args); va_end(args); printk(KERN_CRIT "OCFS2: abort (device %s): %s: %s\n", sb->s_id, function, error_buf); /* We don't have the cluster support yet to go straight to * hard readonly in here. Until then, we want to keep * ocfs2_abort() so that we can at least mark critical * errors. * * TODO: This should abort the journal and alert other nodes * that our slot needs recovery. */ /* Force a panic(). This stinks, but it's better than letting * things continue without having a proper hard readonly * here. */ OCFS2_SB(sb)->s_mount_opt |= OCFS2_MOUNT_ERRORS_PANIC; ocfs2_handle_error(sb); } module_init(ocfs2_init); module_exit(ocfs2_exit);