/* * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef __ASM_AVR32_PGTABLE_H #define __ASM_AVR32_PGTABLE_H #include <asm/addrspace.h> #ifndef __ASSEMBLY__ #include <linux/sched.h> #endif /* !__ASSEMBLY__ */ /* * Use two-level page tables just as the i386 (without PAE) */ #include <asm/pgtable-2level.h> /* * The following code might need some cleanup when the values are * final... */ #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) #define FIRST_USER_ADDRESS 0 #ifndef __ASSEMBLY__ extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern void paging_init(void); /* * ZERO_PAGE is a global shared page that is always zero: used for * zero-mapped memory areas etc. */ extern struct page *empty_zero_page; #define ZERO_PAGE(vaddr) (empty_zero_page) /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 8 MiB value just means that there will be a 8 MiB "hole" * after the uncached physical memory (P2 segment) until the vmalloc * area starts. That means that any out-of-bounds memory accesses will * hopefully be caught; we don't know if the end of the P1/P2 segments * are actually used for anything, but it is anyway safer to let the * MMU catch these kinds of errors than to rely on the memory bus. * * A "hole" of the same size is added to the end of the P3 segment as * well. It might seem wasteful to use 16 MiB of virtual address space * on this, but we do have 512 MiB of it... * * The vmalloc() routines leave a hole of 4 KiB between each vmalloced * area for the same reason. */ #define VMALLOC_OFFSET (8 * 1024 * 1024) #define VMALLOC_START (P3SEG + VMALLOC_OFFSET) #define VMALLOC_END (P4SEG - VMALLOC_OFFSET) #endif /* !__ASSEMBLY__ */ /* * Page flags. Some of these flags are not directly supported by * hardware, so we have to emulate them. */ #define _TLBEHI_BIT_VALID 9 #define _TLBEHI_VALID (1 << _TLBEHI_BIT_VALID) #define _PAGE_BIT_WT 0 /* W-bit : write-through */ #define _PAGE_BIT_DIRTY 1 /* D-bit : page changed */ #define _PAGE_BIT_SZ0 2 /* SZ0-bit : Size of page */ #define _PAGE_BIT_SZ1 3 /* SZ1-bit : Size of page */ #define _PAGE_BIT_EXECUTE 4 /* X-bit : execute access allowed */ #define _PAGE_BIT_RW 5 /* AP0-bit : write access allowed */ #define _PAGE_BIT_USER 6 /* AP1-bit : user space access allowed */ #define _PAGE_BIT_BUFFER 7 /* B-bit : bufferable */ #define _PAGE_BIT_GLOBAL 8 /* G-bit : global (ignore ASID) */ #define _PAGE_BIT_CACHABLE 9 /* C-bit : cachable */ /* If we drop support for 1K pages, we get two extra bits */ #define _PAGE_BIT_PRESENT 10 #define _PAGE_BIT_ACCESSED 11 /* software: page was accessed */ /* The following flags are only valid when !PRESENT */ #define _PAGE_BIT_FILE 0 /* software: pagecache or swap? */ #define _PAGE_WT (1 << _PAGE_BIT_WT) #define _PAGE_DIRTY (1 << _PAGE_BIT_DIRTY) #define _PAGE_EXECUTE (1 << _PAGE_BIT_EXECUTE) #define _PAGE_RW (1 << _PAGE_BIT_RW) #define _PAGE_USER (1 << _PAGE_BIT_USER) #define _PAGE_BUFFER (1 << _PAGE_BIT_BUFFER) #define _PAGE_GLOBAL (1 << _PAGE_BIT_GLOBAL) #define _PAGE_CACHABLE (1 << _PAGE_BIT_CACHABLE) /* Software flags */ #define _PAGE_ACCESSED (1 << _PAGE_BIT_ACCESSED) #define _PAGE_PRESENT (1 << _PAGE_BIT_PRESENT) #define _PAGE_FILE (1 << _PAGE_BIT_FILE) /* * Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is * usually called _PAGE_PROTNONE on other architectures. * * XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If * so, we can encode all possible page sizes (although we can't really * support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED * bits) * */ #define _PAGE_TYPE_MASK ((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1)) #define _PAGE_TYPE_NONE (0 << _PAGE_BIT_SZ0) #define _PAGE_TYPE_SMALL (1 << _PAGE_BIT_SZ0) #define _PAGE_TYPE_MEDIUM (2 << _PAGE_BIT_SZ0) #define _PAGE_TYPE_LARGE (3 << _PAGE_BIT_SZ0) /* * Mask which drop software flags. We currently can't handle more than * 512 MiB of physical memory, so we can use bits 29-31 for other * stuff. With a fixed 4K page size, we can use bits 10-11 as well as * bits 2-3 (SZ) */ #define _PAGE_FLAGS_HARDWARE_MASK 0xfffff3ff #define _PAGE_FLAGS_CACHE_MASK (_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT) /* TODO: Check for saneness */ /* User-mode page table flags (to be set in a pgd or pmd entry) */ #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \ | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) /* Kernel-mode page table flags */ #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \ | _PAGE_ACCESSED | _PAGE_DIRTY) /* Flags that may be modified by software */ #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \ | _PAGE_FLAGS_CACHE_MASK) #define _PAGE_FLAGS_READ (_PAGE_CACHABLE | _PAGE_BUFFER) #define _PAGE_FLAGS_WRITE (_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY) #define _PAGE_NORMAL(x) __pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL \ | _PAGE_ACCESSED) #define PAGE_NONE (_PAGE_ACCESSED | _PAGE_TYPE_NONE) #define PAGE_READ (_PAGE_FLAGS_READ | _PAGE_USER) #define PAGE_EXEC (_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER) #define PAGE_WRITE (_PAGE_FLAGS_WRITE | _PAGE_USER) #define PAGE_KERNEL _PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL) #define PAGE_KERNEL_RO _PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL) #define _PAGE_P(x) _PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY)) #define _PAGE_S(x) _PAGE_NORMAL(x) #define PAGE_COPY _PAGE_P(PAGE_WRITE | PAGE_READ) #define PAGE_SHARED _PAGE_S(PAGE_WRITE | PAGE_READ) #ifndef __ASSEMBLY__ /* * The hardware supports flags for write- and execute access. Read is * always allowed if the page is loaded into the TLB, so the "-w-", * "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx", * respectively. * * The "---" case is handled by software; the page will simply not be * loaded into the TLB if the page type is _PAGE_TYPE_NONE. */ #define __P000 __pgprot(PAGE_NONE) #define __P001 _PAGE_P(PAGE_READ) #define __P010 _PAGE_P(PAGE_WRITE) #define __P011 _PAGE_P(PAGE_WRITE | PAGE_READ) #define __P100 _PAGE_P(PAGE_EXEC) #define __P101 _PAGE_P(PAGE_EXEC | PAGE_READ) #define __P110 _PAGE_P(PAGE_EXEC | PAGE_WRITE) #define __P111 _PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ) #define __S000 __pgprot(PAGE_NONE) #define __S001 _PAGE_S(PAGE_READ) #define __S010 _PAGE_S(PAGE_WRITE) #define __S011 _PAGE_S(PAGE_WRITE | PAGE_READ) #define __S100 _PAGE_S(PAGE_EXEC) #define __S101 _PAGE_S(PAGE_EXEC | PAGE_READ) #define __S110 _PAGE_S(PAGE_EXEC | PAGE_WRITE) #define __S111 _PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ) #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(mm,addr,xp) \ do { \ set_pte_at(mm, addr, xp, __pte(0)); \ } while (0) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_special(pte_t pte) { return 0; } /* * The following only work if pte_present() is not true. */ static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } /* Mutator functions for PTE bits */ static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; } static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; } static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } #define pmd_none(x) (!pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) \ != _KERNPG_TABLE) /* * Permanent address of a page. We don't support highmem, so this is * trivial. */ #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) #define pte_page(x) (pfn_to_page(pte_pfn(x))) /* * Mark the prot value as uncacheable and unbufferable */ #define pgprot_noncached(prot) \ __pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE)) /* * Mark the prot value as uncacheable but bufferable */ #define pgprot_writecombine(prot) \ __pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } #define page_pte(page) page_pte_prot(page, __pgprot(0)) #define pmd_page_vaddr(pmd) \ ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #define pmd_page(pmd) (phys_to_page(pmd_val(pmd))) /* to find an entry in a page-table-directory. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) #define pgd_offset_current(address) \ ((pgd_t *)__mfsr(SYSREG_PTBR) + pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the third-level page table.. */ #define pte_index(address) \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) #define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) struct vm_area_struct; extern void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte); /* * Encode and decode a swap entry * * Constraints: * _PAGE_FILE at bit 0 * _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE) * _PAGE_PRESENT at bit 10 * * We encode the type into bits 4-9 and offset into bits 11-31. This * gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per * device, and 64 possible types. * * NOTE: We should set ZEROs at the position of _PAGE_PRESENT * and _PAGE_PROTNONE bits */ #define __swp_type(x) (((x).val >> 4) & 0x3f) #define __swp_offset(x) ((x).val >> 11) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* * Encode and decode a nonlinear file mapping entry. We have to * preserve _PAGE_FILE and _PAGE_PRESENT here. _PAGE_TYPE_* isn't * necessary, since _PAGE_FILE implies !_PAGE_PROTNONE (?) */ #define PTE_FILE_MAX_BITS 30 #define pte_to_pgoff(pte) (((pte_val(pte) >> 1) & 0x1ff) \ | ((pte_val(pte) >> 11) << 9)) #define pgoff_to_pte(off) ((pte_t) { ((((off) & 0x1ff) << 1) \ | (((off) >> 9) << 11) \ | _PAGE_FILE) }) typedef pte_t *pte_addr_t; #define kern_addr_valid(addr) (1) #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) /* No page table caches to initialize (?) */ #define pgtable_cache_init() do { } while(0) #include <asm-generic/pgtable.h> #endif /* !__ASSEMBLY__ */ #endif /* __ASM_AVR32_PGTABLE_H */