#ifndef _ASM_IA64_PGTABLE_H #define _ASM_IA64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the IA-64 page table tree. * * This hopefully works with any (fixed) IA-64 page-size, as defined * in <asm/page.h>. * * Copyright (C) 1998-2005 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> */ #include <linux/config.h> #include <asm/mman.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/system.h> #include <asm/types.h> #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ /* * First, define the various bits in a PTE. Note that the PTE format * matches the VHPT short format, the firt doubleword of the VHPD long * format, and the first doubleword of the TLB insertion format. */ #define _PAGE_P_BIT 0 #define _PAGE_A_BIT 5 #define _PAGE_D_BIT 6 #define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ #define _PAGE_MA_MASK (0x7 << 2) #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ #define _PAGE_PL_MASK (3 << 7) #define _PAGE_AR_R (0 << 9) /* read only */ #define _PAGE_AR_RX (1 << 9) /* read & execute */ #define _PAGE_AR_RW (2 << 9) /* read & write */ #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ #define _PAGE_AR_MASK (7 << 9) #define _PAGE_AR_SHIFT 9 #define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ #define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ #define _PAGE_PROTNONE (__IA64_UL(1) << 63) /* Valid only for a PTE with the present bit cleared: */ #define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ #define _PFN_MASK _PAGE_PPN_MASK /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ #define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) #define _PAGE_SIZE_4K 12 #define _PAGE_SIZE_8K 13 #define _PAGE_SIZE_16K 14 #define _PAGE_SIZE_64K 16 #define _PAGE_SIZE_256K 18 #define _PAGE_SIZE_1M 20 #define _PAGE_SIZE_4M 22 #define _PAGE_SIZE_16M 24 #define _PAGE_SIZE_64M 26 #define _PAGE_SIZE_256M 28 #define _PAGE_SIZE_1G 30 #define _PAGE_SIZE_4G 32 #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED /* * Definitions for first level: * * PGDIR_SHIFT determines what a first-level page table entry can map. */ #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) #define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ #define FIRST_USER_ADDRESS 0 /* * Definitions for second level: * * PMD_SHIFT determines the size of the area a second-level page table * can map. */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) /* * Definitions for third level: */ #define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3)) /* * All the normal masks have the "page accessed" bits on, as any time * they are used, the page is accessed. They are cleared only by the * page-out routines. */ #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) #define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) #define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) # ifndef __ASSEMBLY__ #include <asm/bitops.h> #include <asm/cacheflush.h> #include <asm/mmu_context.h> #include <asm/processor.h> /* * Next come the mappings that determine how mmap() protection bits * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The * _P version gets used for a private shared memory segment, the _S * version gets used for a shared memory segment with MAP_SHARED on. * In a private shared memory segment, we do a copy-on-write if a task * attempts to write to the page. */ /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ #define __P011 PAGE_READONLY /* ditto */ #define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) #define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ #define __S011 PAGE_SHARED #define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) #define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) #define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) #define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) /* * Some definitions to translate between mem_map, PTEs, and page addresses: */ /* Quick test to see if ADDR is a (potentially) valid physical address. */ static inline long ia64_phys_addr_valid (unsigned long addr) { return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; } /* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory. For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET. This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error. Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for IA-64. */ #define kern_addr_valid(addr) (1) /* * Now come the defines and routines to manage and access the three-level * page table. */ /* * On some architectures, special things need to be done when setting * the PTE in a page table. Nothing special needs to be on IA-64. */ #define set_pte(ptep, pteval) (*(ptep) = (pteval)) #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) #define RGN_SIZE (1UL << 61) #define RGN_KERNEL 7 #define VMALLOC_START 0xa000000200000000UL #ifdef CONFIG_VIRTUAL_MEM_MAP # define VMALLOC_END_INIT (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9))) # define VMALLOC_END vmalloc_end extern unsigned long vmalloc_end; #else # define VMALLOC_END (0xa000000000000000UL + (1UL << (4*PAGE_SHIFT - 9))) #endif /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) - 0xa000000000000000UL) #define kc_offset_to_vaddr(o) ((o) + 0xa000000000000000UL) /* * Conversion functions: convert page frame number (pfn) and a protection value to a page * table entry (pte). */ #define pfn_pte(pfn, pgprot) \ ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) /* Extract pfn from pte. */ #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) #define pte_modify(_pte, newprot) \ (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) #define page_pte_prot(page,prot) mk_pte(page, prot) #define page_pte(page) page_pte_prot(page, __pgprot(0)) #define pte_none(pte) (!pte_val(pte)) #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) /* pte_page() returns the "struct page *" corresponding to the PTE: */ #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) #define pmd_present(pmd) (pmd_val(pmd) != 0UL) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) #define pud_present(pud) (pud_val(pud) != 0UL) #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) #define pud_page(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) /* * The following have defined behavior only work if pte_present() is true. */ #define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3) #define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) #define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) /* * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the * access rights: */ #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) #define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX)) #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) #define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_P)) /* * Macro to a page protection value as "uncacheable". Note that "protection" is really a * misnomer here as the protection value contains the memory attribute bits, dirty bits, * and various other bits as well. */ #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) /* * Macro to make mark a page protection value as "write-combining". * Note that "protection" is really a misnomer here as the protection * value contains the memory attribute bits, dirty bits, and various * other bits as well. Accesses through a write-combining translation * works bypasses the caches, but does allow for consecutive writes to * be combined into single (but larger) write transactions. */ #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) static inline unsigned long pgd_index (unsigned long address) { unsigned long region = address >> 61; unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); return (region << (PAGE_SHIFT - 6)) | l1index; } /* The offset in the 1-level directory is given by the 3 region bits (61..63) and the level-1 bits. */ static inline pgd_t* pgd_offset (struct mm_struct *mm, unsigned long address) { return mm->pgd + pgd_index(address); } /* In the kernel's mapped region we completely ignore the region number (since we know it's in region number 5). */ #define pgd_offset_k(addr) \ (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) /* Look up a pgd entry in the gate area. On IA-64, the gate-area resides in the kernel-mapped segment, hence we use pgd_offset_k() here. */ #define pgd_offset_gate(mm, addr) pgd_offset_k(addr) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir,addr) \ ((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) /* * Find an entry in the third-level page table. This looks more complicated than it * should be because some platforms place page tables in high memory. */ #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) #define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* atomic versions of the some PTE manipulations: */ static inline int ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP if (!pte_young(*ptep)) return 0; return test_and_clear_bit(_PAGE_A_BIT, ptep); #else pte_t pte = *ptep; if (!pte_young(pte)) return 0; set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); return 1; #endif } static inline int ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP if (!pte_dirty(*ptep)) return 0; return test_and_clear_bit(_PAGE_D_BIT, ptep); #else pte_t pte = *ptep; if (!pte_dirty(pte)) return 0; set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); return 1; #endif } static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP return __pte(xchg((long *) ptep, 0)); #else pte_t pte = *ptep; pte_clear(mm, addr, ptep); return pte; #endif } static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP unsigned long new, old; do { old = pte_val(*ptep); new = pte_val(pte_wrprotect(__pte (old))); } while (cmpxchg((unsigned long *) ptep, old, new) != old); #else pte_t old_pte = *ptep; set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); #endif } static inline int pte_same (pte_t a, pte_t b) { return pte_val(a) == pte_val(b); } #define update_mmu_cache(vma, address, pte) do { } while (0) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern void paging_init (void); /* * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of * bits in the swap-type field of the swap pte. It would be nice to * enforce that, but we can't easily include <linux/swap.h> here. * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). * * Format of swap pte: * bit 0 : present bit (must be zero) * bit 1 : _PAGE_FILE (must be zero) * bits 2- 8: swap-type * bits 9-62: swap offset * bit 63 : _PAGE_PROTNONE bit * * Format of file pte: * bit 0 : present bit (must be zero) * bit 1 : _PAGE_FILE (must be one) * bits 2-62: file_offset/PAGE_SIZE * bit 63 : _PAGE_PROTNONE bit */ #define __swp_type(entry) (((entry).val >> 2) & 0x7f) #define __swp_offset(entry) (((entry).val << 1) >> 10) #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define PTE_FILE_MAX_BITS 61 #define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) #define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) /* XXX is this right? */ #define io_remap_page_range(vma, vaddr, paddr, size, prot) \ remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) #define MK_IOSPACE_PFN(space, pfn) (pfn) #define GET_IOSPACE(pfn) 0 #define GET_PFN(pfn) (pfn) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; extern struct page *zero_page_memmap_ptr; #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) /* We provide our own get_unmapped_area to cope with VA holes for userland */ #define HAVE_ARCH_UNMAPPED_AREA #ifdef CONFIG_HUGETLB_PAGE #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) struct mmu_gather; void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); #endif /* * IA-64 doesn't have any external MMU info: the page tables contain all the necessary * information. However, we use this routine to take care of any (delayed) i-cache * flushing that may be necessary. */ extern void lazy_mmu_prot_update (pte_t pte); #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* * Update PTEP with ENTRY, which is guaranteed to be a less * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and * WRITABLE bits turned on, when the value at PTEP did not. The * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. * * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without * having to worry about races. On SMP machines, there are only two * cases where this is true: * * (1) *PTEP has the PRESENT bit turned OFF * (2) ENTRY has the DIRTY bit turned ON * * On ia64, we could implement this routine with a cmpxchg()-loop * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. * However, like on x86, we can get a more streamlined version by * observing that it is OK to drop ACCESSED bit updates when * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is * result in an extra Access-bit fault, which would then turn on the * ACCESSED bit in the low-level fault handler (iaccess_bit or * daccess_bit in ivt.S). */ #ifdef CONFIG_SMP # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ do { \ if (__safely_writable) { \ set_pte(__ptep, __entry); \ flush_tlb_page(__vma, __addr); \ } \ } while (0) #else # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ ptep_establish(__vma, __addr, __ptep, __entry) #endif # ifdef CONFIG_VIRTUAL_MEM_MAP /* arch mem_map init routine is needed due to holes in a virtual mem_map */ # define __HAVE_ARCH_MEMMAP_INIT extern void memmap_init (unsigned long size, int nid, unsigned long zone, unsigned long start_pfn); # endif /* CONFIG_VIRTUAL_MEM_MAP */ # endif /* !__ASSEMBLY__ */ /* * Identity-mapped regions use a large page size. We'll call such large pages * "granules". If you can think of a better name that's unambiguous, let me * know... */ #if defined(CONFIG_IA64_GRANULE_64MB) # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M #elif defined(CONFIG_IA64_GRANULE_16MB) # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M #endif #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) /* * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): */ #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) /* These tell get_user_pages() that the first gate page is accessible from user-level. */ #define FIXADDR_USER_START GATE_ADDR #ifdef HAVE_BUGGY_SEGREL # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) #else # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) #endif #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTE_SAME #define __HAVE_ARCH_PGD_OFFSET_GATE #define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE #include <asm-generic/pgtable-nopud.h> #include <asm-generic/pgtable.h> #endif /* _ASM_IA64_PGTABLE_H */