#ifndef _ASM_IA64_SN_SN_SAL_H #define _ASM_IA64_SN_SN_SAL_H /* * System Abstraction Layer definitions for IA64 * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved. */ #include #include #include #include #include #include #include // SGI Specific Calls #define SN_SAL_POD_MODE 0x02000001 #define SN_SAL_SYSTEM_RESET 0x02000002 #define SN_SAL_PROBE 0x02000003 #define SN_SAL_GET_MASTER_NASID 0x02000004 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005 #define SN_SAL_LOG_CE 0x02000006 #define SN_SAL_REGISTER_CE 0x02000007 #define SN_SAL_GET_PARTITION_ADDR 0x02000009 #define SN_SAL_XP_ADDR_REGION 0x0200000f #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011 #define SN_SAL_PRINT_ERROR 0x02000012 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant #define SN_SAL_GET_SAPIC_INFO 0x0200001d #define SN_SAL_GET_SN_INFO 0x0200001e #define SN_SAL_CONSOLE_PUTC 0x02000021 #define SN_SAL_CONSOLE_GETC 0x02000022 #define SN_SAL_CONSOLE_PUTS 0x02000023 #define SN_SAL_CONSOLE_GETS 0x02000024 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025 #define SN_SAL_CONSOLE_POLL 0x02000026 #define SN_SAL_CONSOLE_INTR 0x02000027 #define SN_SAL_CONSOLE_PUTB 0x02000028 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a #define SN_SAL_CONSOLE_READC 0x0200002b #define SN_SAL_SYSCTL_MODID_GET 0x02000031 #define SN_SAL_SYSCTL_GET 0x02000032 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036 #define SN_SAL_BUS_CONFIG 0x02000037 #define SN_SAL_SYS_SERIAL_GET 0x02000038 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c #define SN_SAL_COHERENCE 0x0200003d #define SN_SAL_MEMPROTECT 0x0200003e #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant #define SN_SAL_IROUTER_OP 0x02000043 #define SN_SAL_SYSCTL_EVENT 0x02000044 #define SN_SAL_IOIF_INTERRUPT 0x0200004a #define SN_SAL_HWPERF_OP 0x02000050 // lock #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060 #define SN_SAL_BTE_RECOVER 0x02000061 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000062 #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065 #define SN_SAL_SET_OS_FEATURE_SET 0x02000066 /* * Service-specific constants */ /* Console interrupt manipulation */ /* action codes */ #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */ #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */ #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */ /* interrupt specification & status return codes */ #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */ #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */ /* interrupt handling */ #define SAL_INTR_ALLOC 1 #define SAL_INTR_FREE 2 /* * IRouter (i.e. generalized system controller) operations */ #define SAL_IROUTER_OPEN 0 /* open a subchannel */ #define SAL_IROUTER_CLOSE 1 /* close a subchannel */ #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */ #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */ #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for * an open subchannel */ #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */ #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */ #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */ /* IRouter interrupt mask bits */ #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV /* * Error Handling Features */ #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000 /* * SAL Error Codes */ #define SALRET_MORE_PASSES 1 #define SALRET_OK 0 #define SALRET_NOT_IMPLEMENTED (-1) #define SALRET_INVALID_ARG (-2) #define SALRET_ERROR (-3) #define SN_SAL_FAKE_PROM 0x02009999 /** * sn_sal_revision - get the SGI SAL revision number * * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor). * This routine simply extracts the major and minor values and * presents them in a u32 format. * * For example, version 4.05 would be represented at 0x0405. */ static inline u32 sn_sal_rev(void) { struct ia64_sal_systab *systab = efi.sal_systab; return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor); } /* * Returns the master console nasid, if the call fails, return an illegal * value. */ static inline u64 ia64_sn_get_console_nasid(void) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0); if (ret_stuff.status < 0) return ret_stuff.status; /* Master console nasid is in 'v0' */ return ret_stuff.v0; } /* * Returns the master baseio nasid, if the call fails, return an illegal * value. */ static inline u64 ia64_sn_get_master_baseio_nasid(void) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0); if (ret_stuff.status < 0) return ret_stuff.status; /* Master baseio nasid is in 'v0' */ return ret_stuff.v0; } static inline char * ia64_sn_get_klconfig_addr(nasid_t nasid) { struct ia64_sal_retval ret_stuff; int cnodeid; cnodeid = nasid_to_cnodeid(nasid); ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0); /* * We should panic if a valid cnode nasid does not produce * a klconfig address. */ if (ret_stuff.status != 0) { panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status); } return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL; } /* * Returns the next console character. */ static inline u64 ia64_sn_console_getc(int *ch) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0); /* character is in 'v0' */ *ch = (int)ret_stuff.v0; return ret_stuff.status; } /* * Read a character from the SAL console device, after a previous interrupt * or poll operation has given us to know that a character is available * to be read. */ static inline u64 ia64_sn_console_readc(void) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0); /* character is in 'v0' */ return ret_stuff.v0; } /* * Sends the given character to the console. */ static inline u64 ia64_sn_console_putc(char ch) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0); return ret_stuff.status; } /* * Sends the given buffer to the console. */ static inline u64 ia64_sn_console_putb(const char *buf, int len) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0); if ( ret_stuff.status == 0 ) { return ret_stuff.v0; } return (u64)0; } /* * Print a platform error record */ static inline u64 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0); return ret_stuff.status; } /* * Check for Platform errors */ static inline u64 ia64_sn_plat_cpei_handler(void) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0); return ret_stuff.status; } /* * Set Error Handling Features (Obsolete) */ static inline u64 ia64_sn_plat_set_error_handling_features(void) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES, (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES), 0, 0, 0, 0, 0, 0); return ret_stuff.status; } /* * Checks for console input. */ static inline u64 ia64_sn_console_check(int *result) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0); /* result is in 'v0' */ *result = (int)ret_stuff.v0; return ret_stuff.status; } /* * Checks console interrupt status */ static inline u64 ia64_sn_console_intr_status(void) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 0, SAL_CONSOLE_INTR_STATUS, 0, 0, 0, 0, 0); if (ret_stuff.status == 0) { return ret_stuff.v0; } return 0; } /* * Enable an interrupt on the SAL console device. */ static inline void ia64_sn_console_intr_enable(uint64_t intr) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, intr, SAL_CONSOLE_INTR_ON, 0, 0, 0, 0, 0); } /* * Disable an interrupt on the SAL console device. */ static inline void ia64_sn_console_intr_disable(uint64_t intr) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, intr, SAL_CONSOLE_INTR_OFF, 0, 0, 0, 0, 0); } /* * Sends a character buffer to the console asynchronously. */ static inline u64 ia64_sn_console_xmit_chars(char *buf, int len) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0); if (ret_stuff.status == 0) { return ret_stuff.v0; } return 0; } /* * Returns the iobrick module Id */ static inline u64 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0); /* result is in 'v0' */ *result = (int)ret_stuff.v0; return ret_stuff.status; } /** * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function * * SN_SAL_POD_MODE actually takes an argument, but it's always * 0 when we call it from the kernel, so we don't have to expose * it to the caller. */ static inline u64 ia64_sn_pod_mode(void) { struct ia64_sal_retval isrv; SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0); if (isrv.status) return 0; return isrv.v0; } /** * ia64_sn_probe_mem - read from memory safely * @addr: address to probe * @size: number bytes to read (1,2,4,8) * @data_ptr: address to store value read by probe (-1 returned if probe fails) * * Call into the SAL to do a memory read. If the read generates a machine * check, this routine will recover gracefully and return -1 to the caller. * @addr is usually a kernel virtual address in uncached space (i.e. the * address starts with 0xc), but if called in physical mode, @addr should * be a physical address. * * Return values: * 0 - probe successful * 1 - probe failed (generated MCA) * 2 - Bad arg * <0 - PAL error */ static inline u64 ia64_sn_probe_mem(long addr, long size, void *data_ptr) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0); if (data_ptr) { switch (size) { case 1: *((u8*)data_ptr) = (u8)isrv.v0; break; case 2: *((u16*)data_ptr) = (u16)isrv.v0; break; case 4: *((u32*)data_ptr) = (u32)isrv.v0; break; case 8: *((u64*)data_ptr) = (u64)isrv.v0; break; default: isrv.status = 2; } } return isrv.status; } /* * Retrieve the system serial number as an ASCII string. */ static inline u64 ia64_sn_sys_serial_get(char *buf) { struct ia64_sal_retval ret_stuff; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0); return ret_stuff.status; } extern char sn_system_serial_number_string[]; extern u64 sn_partition_serial_number; static inline char * sn_system_serial_number(void) { if (sn_system_serial_number_string[0]) { return(sn_system_serial_number_string); } else { ia64_sn_sys_serial_get(sn_system_serial_number_string); return(sn_system_serial_number_string); } } /* * Returns a unique id number for this system and partition (suitable for * use with license managers), based in part on the system serial number. */ static inline u64 ia64_sn_partition_serial_get(void) { struct ia64_sal_retval ret_stuff; ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, 0, 0, 0, 0, 0, 0); if (ret_stuff.status != 0) return 0; return ret_stuff.v0; } static inline u64 sn_partition_serial_number_val(void) { if (unlikely(sn_partition_serial_number == 0)) { sn_partition_serial_number = ia64_sn_partition_serial_get(); } return sn_partition_serial_number; } /* * Returns the partition id of the nasid passed in as an argument, * or INVALID_PARTID if the partition id cannot be retrieved. */ static inline partid_t ia64_sn_sysctl_partition_get(nasid_t nasid) { struct ia64_sal_retval ret_stuff; ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid, 0, 0, 0, 0, 0, 0); if (ret_stuff.status != 0) return INVALID_PARTID; return ((partid_t)ret_stuff.v0); } /* * Returns the partition id of the current processor. */ extern partid_t sn_partid; static inline partid_t sn_local_partid(void) { if (unlikely(sn_partid < 0)) { sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id())); } return sn_partid; } /* * Returns the physical address of the partition's reserved page through * an iterative number of calls. * * On first call, 'cookie' and 'len' should be set to 0, and 'addr' * set to the nasid of the partition whose reserved page's address is * being sought. * On subsequent calls, pass the values, that were passed back on the * previous call. * * While the return status equals SALRET_MORE_PASSES, keep calling * this function after first copying 'len' bytes starting at 'addr' * into 'buf'. Once the return status equals SALRET_OK, 'addr' will * be the physical address of the partition's reserved page. If the * return status equals neither of these, an error as occurred. */ static inline s64 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len) { struct ia64_sal_retval rv; ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie, *addr, buf, *len, 0, 0, 0); *cookie = rv.v0; *addr = rv.v1; *len = rv.v2; return rv.status; } /* * Register or unregister a physical address range being referenced across * a partition boundary for which certain SAL errors should be scanned for, * cleaned up and ignored. This is of value for kernel partitioning code only. * Values for the operation argument: * 1 = register this address range with SAL * 0 = unregister this address range with SAL * * SAL maintains a reference count on an address range in case it is registered * multiple times. * * On success, returns the reference count of the address range after the SAL * call has performed the current registration/unregistration. Returns a * negative value if an error occurred. */ static inline int sn_register_xp_addr_region(u64 paddr, u64 len, int operation) { struct ia64_sal_retval ret_stuff; ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, (u64)operation, 0, 0, 0, 0); return ret_stuff.status; } /* * Register or unregister an instruction range for which SAL errors should * be ignored. If an error occurs while in the registered range, SAL jumps * to return_addr after ignoring the error. Values for the operation argument: * 1 = register this instruction range with SAL * 0 = unregister this instruction range with SAL * * Returns 0 on success, or a negative value if an error occurred. */ static inline int sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr, int virtual, int operation) { struct ia64_sal_retval ret_stuff; u64 call; if (virtual) { call = SN_SAL_NO_FAULT_ZONE_VIRTUAL; } else { call = SN_SAL_NO_FAULT_ZONE_PHYSICAL; } ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr, (u64)1, 0, 0, 0); return ret_stuff.status; } /* * Change or query the coherence domain for this partition. Each cpu-based * nasid is represented by a bit in an array of 64-bit words: * 0 = not in this partition's coherency domain * 1 = in this partition's coherency domain * * It is not possible for the local system's nasids to be removed from * the coherency domain. Purpose of the domain arguments: * new_domain = set the coherence domain to the given nasids * old_domain = return the current coherence domain * * Returns 0 on success, or a negative value if an error occurred. */ static inline int sn_change_coherence(u64 *new_domain, u64 *old_domain) { struct ia64_sal_retval ret_stuff; ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain, (u64)old_domain, 0, 0, 0, 0, 0); return ret_stuff.status; } /* * Change memory access protections for a physical address range. * nasid_array is not used on Altix, but may be in future architectures. * Available memory protection access classes are defined after the function. */ static inline int sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array) { struct ia64_sal_retval ret_stuff; int cnodeid; unsigned long irq_flags; cnodeid = nasid_to_cnodeid(get_node_number(paddr)); // spin_lock(&NODEPDA(cnodeid)->bist_lock); local_irq_save(irq_flags); ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len, (u64)nasid_array, perms, 0, 0, 0); local_irq_restore(irq_flags); // spin_unlock(&NODEPDA(cnodeid)->bist_lock); return ret_stuff.status; } #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080 /* * Turns off system power. */ static inline void ia64_sn_power_down(void) { struct ia64_sal_retval ret_stuff; SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0); while(1); /* never returns */ } /** * ia64_sn_fru_capture - tell the system controller to capture hw state * * This routine will call the SAL which will tell the system controller(s) * to capture hw mmr information from each SHub in the system. */ static inline u64 ia64_sn_fru_capture(void) { struct ia64_sal_retval isrv; SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0); if (isrv.status) return 0; return isrv.v0; } /* * Performs an operation on a PCI bus or slot -- power up, power down * or reset. */ static inline u64 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type, u64 bus, char slot, u64 action) { struct ia64_sal_retval rv = {0, 0, 0, 0}; SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action, bus, (u64) slot, 0, 0); if (rv.status) return rv.v0; return 0; } /* * Open a subchannel for sending arbitrary data to the system * controller network via the system controller device associated with * 'nasid'. Return the subchannel number or a negative error code. */ static inline int ia64_sn_irtr_open(nasid_t nasid) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid, 0, 0, 0, 0, 0); return (int) rv.v0; } /* * Close system controller subchannel 'subch' previously opened on 'nasid'. */ static inline int ia64_sn_irtr_close(nasid_t nasid, int subch) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE, (u64) nasid, (u64) subch, 0, 0, 0, 0); return (int) rv.status; } /* * Read data from system controller associated with 'nasid' on * subchannel 'subch'. The buffer to be filled is pointed to by * 'buf', and its capacity is in the integer pointed to by 'len'. The * referent of 'len' is set to the number of bytes read by the SAL * call. The return value is either SALRET_OK (for bytes read) or * SALRET_ERROR (for error or "no data available"). */ static inline int ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV, (u64) nasid, (u64) subch, (u64) buf, (u64) len, 0, 0); return (int) rv.status; } /* * Write data to the system controller network via the system * controller associated with 'nasid' on suchannel 'subch'. The * buffer to be written out is pointed to by 'buf', and 'len' is the * number of bytes to be written. The return value is either the * number of bytes written (which could be zero) or a negative error * code. */ static inline int ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND, (u64) nasid, (u64) subch, (u64) buf, (u64) len, 0, 0); return (int) rv.v0; } /* * Check whether any interrupts are pending for the system controller * associated with 'nasid' and its subchannel 'subch'. The return * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or * SAL_IROUTER_INTR_RECV). */ static inline int ia64_sn_irtr_intr(nasid_t nasid, int subch) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS, (u64) nasid, (u64) subch, 0, 0, 0, 0); return (int) rv.v0; } /* * Enable the interrupt indicated by the intr parameter (either * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). */ static inline int ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON, (u64) nasid, (u64) subch, intr, 0, 0, 0); return (int) rv.v0; } /* * Disable the interrupt indicated by the intr parameter (either * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). */ static inline int ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF, (u64) nasid, (u64) subch, intr, 0, 0, 0); return (int) rv.v0; } /* * Set up a node as the point of contact for system controller * environmental event delivery. */ static inline int ia64_sn_sysctl_event_init(nasid_t nasid) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid, 0, 0, 0, 0, 0, 0); return (int) rv.v0; } /** * ia64_sn_get_fit_compt - read a FIT entry from the PROM header * @nasid: NASID of node to read * @index: FIT entry index to be retrieved (0..n) * @fitentry: 16 byte buffer where FIT entry will be stored. * @banbuf: optional buffer for retrieving banner * @banlen: length of banner buffer * * Access to the physical PROM chips needs to be serialized since reads and * writes can't occur at the same time, so we need to call into the SAL when * we want to look at the FIT entries on the chips. * * Returns: * %SALRET_OK if ok * %SALRET_INVALID_ARG if index too big * %SALRET_NOT_IMPLEMENTED if running on older PROM * ??? if nasid invalid OR banner buffer not large enough */ static inline int ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf, u64 banlen) { struct ia64_sal_retval rv; SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry, banbuf, banlen, 0, 0); return (int) rv.status; } /* * Initialize the SAL components of the system controller * communication driver; specifically pass in a sizable buffer that * can be used for allocation of subchannel queues as new subchannels * are opened. "buf" points to the buffer, and "len" specifies its * length. */ static inline int ia64_sn_irtr_init(nasid_t nasid, void *buf, int len) { struct ia64_sal_retval rv; SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT, (u64) nasid, (u64) buf, (u64) len, 0, 0, 0); return (int) rv.status; } /* * Returns the nasid, subnode & slice corresponding to a SAPIC ID * * In: * arg0 - SN_SAL_GET_SAPIC_INFO * arg1 - sapicid (lid >> 16) * Out: * v0 - nasid * v1 - subnode * v2 - slice */ static inline u64 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0); /***** BEGIN HACK - temp til old proms no longer supported ********/ if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { if (nasid) *nasid = sapicid & 0xfff; if (subnode) *subnode = (sapicid >> 13) & 1; if (slice) *slice = (sapicid >> 12) & 3; return 0; } /***** END HACK *******/ if (ret_stuff.status < 0) return ret_stuff.status; if (nasid) *nasid = (int) ret_stuff.v0; if (subnode) *subnode = (int) ret_stuff.v1; if (slice) *slice = (int) ret_stuff.v2; return 0; } /* * Returns information about the HUB/SHUB. * In: * arg0 - SN_SAL_GET_SN_INFO * arg1 - 0 (other values reserved for future use) * Out: * v0 * [7:0] - shub type (0=shub1, 1=shub2) * [15:8] - Log2 max number of nodes in entire system (includes * C-bricks, I-bricks, etc) * [23:16] - Log2 of nodes per sharing domain * [31:24] - partition ID * [39:32] - coherency_id * [47:40] - regionsize * v1 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid) * [23:15] - bit position of low nasid bit */ static inline u64 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift, u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; ret_stuff.v1 = 0; ret_stuff.v2 = 0; SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0); /***** BEGIN HACK - temp til old proms no longer supported ********/ if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { int nasid = get_sapicid() & 0xfff;; #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48 if (shubtype) *shubtype = 0; if (nasid_bitmask) *nasid_bitmask = 0x7ff; if (nasid_shift) *nasid_shift = 38; if (systemsize) *systemsize = 11; if (sharing_domain_size) *sharing_domain_size = 9; if (partid) *partid = ia64_sn_sysctl_partition_get(nasid); if (coher) *coher = nasid >> 9; if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >> SH_SHUB_ID_NODES_PER_BIT_SHFT; return 0; } /***** END HACK *******/ if (ret_stuff.status < 0) return ret_stuff.status; if (shubtype) *shubtype = ret_stuff.v0 & 0xff; if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff; if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff; if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff; if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff; if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff; if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff); if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff; return 0; } /* * This is the access point to the Altix PROM hardware performance * and status monitoring interface. For info on using this, see * include/asm-ia64/sn/sn2/sn_hwperf.h */ static inline int ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2, u64 a3, u64 a4, int *v0) { struct ia64_sal_retval rv; SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid, opcode, a0, a1, a2, a3, a4); if (v0) *v0 = (int) rv.v0; return (int) rv.status; } static inline int ia64_sn_ioif_get_pci_topology(u64 rack, u64 bay, u64 slot, u64 slab, u64 buf, u64 len) { struct ia64_sal_retval rv; SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, rack, bay, slot, slab, buf, len, 0); return (int) rv.status; } /* * BTE error recovery is implemented in SAL */ static inline int ia64_sn_bte_recovery(nasid_t nasid) { struct ia64_sal_retval rv; rv.status = 0; SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, 0, 0, 0, 0, 0, 0, 0); if (rv.status == SALRET_NOT_IMPLEMENTED) return 0; return (int) rv.status; } static inline int ia64_sn_is_fake_prom(void) { struct ia64_sal_retval rv; SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0); return (rv.status == 0); } static inline int ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set) { struct ia64_sal_retval rv; SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0); if (rv.status != 0) return rv.status; *feature_set = rv.v0; return 0; } static inline int ia64_sn_set_os_feature(int feature) { struct ia64_sal_retval rv; SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0); return rv.status; } #endif /* _ASM_IA64_SN_SN_SAL_H */