#ifndef _M68KNOMMU_BITOPS_H #define _M68KNOMMU_BITOPS_H /* * Copyright 1992, Linus Torvalds. */ #include <linux/config.h> #include <linux/compiler.h> #include <asm/byteorder.h> /* swab32 */ #include <asm/system.h> /* save_flags */ #ifdef __KERNEL__ /* * Generic ffs(). */ static inline int ffs(int x) { int r = 1; if (!x) return 0; if (!(x & 0xffff)) { x >>= 16; r += 16; } if (!(x & 0xff)) { x >>= 8; r += 8; } if (!(x & 0xf)) { x >>= 4; r += 4; } if (!(x & 3)) { x >>= 2; r += 2; } if (!(x & 1)) { x >>= 1; r += 1; } return r; } /* * Generic __ffs(). */ static inline int __ffs(int x) { int r = 0; if (!x) return 0; if (!(x & 0xffff)) { x >>= 16; r += 16; } if (!(x & 0xff)) { x >>= 8; r += 8; } if (!(x & 0xf)) { x >>= 4; r += 4; } if (!(x & 3)) { x >>= 2; r += 2; } if (!(x & 1)) { x >>= 1; r += 1; } return r; } /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */ static inline int sched_find_first_bit(unsigned long *b) { if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(b[1])) return __ffs(b[1]) + 32; if (unlikely(b[2])) return __ffs(b[2]) + 64; if (b[3]) return __ffs(b[3]) + 96; return __ffs(b[4]) + 128; } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ static __inline__ unsigned long ffz(unsigned long word) { unsigned long result = 0; while(word & 1) { result++; word >>= 1; } return result; } static __inline__ void set_bit(int nr, volatile unsigned long * addr) { #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %0,%%a0; bset %1,(%%a0)" : "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "d" (nr) : "%a0", "cc"); #else __asm__ __volatile__ ("bset %1,%0" : "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "di" (nr) : "cc"); #endif } #define __set_bit(nr, addr) set_bit(nr, addr) /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() static __inline__ void clear_bit(int nr, volatile unsigned long * addr) { #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %0,%%a0; bclr %1,(%%a0)" : "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "d" (nr) : "%a0", "cc"); #else __asm__ __volatile__ ("bclr %1,%0" : "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "di" (nr) : "cc"); #endif } #define __clear_bit(nr, addr) clear_bit(nr, addr) static __inline__ void change_bit(int nr, volatile unsigned long * addr) { #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %0,%%a0; bchg %1,(%%a0)" : "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "d" (nr) : "%a0", "cc"); #else __asm__ __volatile__ ("bchg %1,%0" : "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "di" (nr) : "cc"); #endif } #define __change_bit(nr, addr) change_bit(nr, addr) static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr) { char retval; #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "d" (nr) : "%a0"); #else __asm__ __volatile__ ("bset %2,%1; sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "di" (nr) /* No clobber */); #endif return retval; } #define __test_and_set_bit(nr, addr) test_and_set_bit(nr, addr) static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr) { char retval; #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "d" (nr) : "%a0"); #else __asm__ __volatile__ ("bclr %2,%1; sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "di" (nr) /* No clobber */); #endif return retval; } #define __test_and_clear_bit(nr, addr) test_and_clear_bit(nr, addr) static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr) { char retval; #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %1,%%a0\n\tbchg %2,(%%a0)\n\tsne %0" : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "d" (nr) : "%a0"); #else __asm__ __volatile__ ("bchg %2,%1; sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[(nr^31) >> 3]) : "di" (nr) /* No clobber */); #endif return retval; } #define __test_and_change_bit(nr, addr) test_and_change_bit(nr, addr) /* * This routine doesn't need to be atomic. */ static __inline__ int __constant_test_bit(int nr, const volatile unsigned long * addr) { return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0; } static __inline__ int __test_bit(int nr, const volatile unsigned long * addr) { int * a = (int *) addr; int mask; a += nr >> 5; mask = 1 << (nr & 0x1f); return ((mask & *a) != 0); } #define test_bit(nr,addr) \ (__builtin_constant_p(nr) ? \ __constant_test_bit((nr),(addr)) : \ __test_bit((nr),(addr))) #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) static __inline__ int find_next_zero_bit (const void * addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL >> size; found_middle: return result + ffz(tmp); } /* * Find next one bit in a bitmap reasonably efficiently. */ static __inline__ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31UL; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *p++; tmp &= ~0UL << offset; if (size < 32) goto found_first; if (tmp) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = *p++) != 0) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp &= ~0UL >> (32 - size); if (tmp == 0UL) /* Are any bits set? */ return result + size; /* Nope. */ found_middle: return result + __ffs(tmp); } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) static __inline__ int ext2_set_bit(int nr, volatile void * addr) { char retval; #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %1,%%a0; bset %2,(%%a0); sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) : "d" (nr) : "%a0"); #else __asm__ __volatile__ ("bset %2,%1; sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) : "di" (nr) /* No clobber */); #endif return retval; } static __inline__ int ext2_clear_bit(int nr, volatile void * addr) { char retval; #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %1,%%a0; bclr %2,(%%a0); sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) : "d" (nr) : "%a0"); #else __asm__ __volatile__ ("bclr %2,%1; sne %0" : "=d" (retval), "+m" (((volatile char *)addr)[nr >> 3]) : "di" (nr) /* No clobber */); #endif return retval; } #define ext2_set_bit_atomic(lock, nr, addr) \ ({ \ int ret; \ spin_lock(lock); \ ret = ext2_set_bit((nr), (addr)); \ spin_unlock(lock); \ ret; \ }) #define ext2_clear_bit_atomic(lock, nr, addr) \ ({ \ int ret; \ spin_lock(lock); \ ret = ext2_clear_bit((nr), (addr)); \ spin_unlock(lock); \ ret; \ }) static __inline__ int ext2_test_bit(int nr, const volatile void * addr) { char retval; #ifdef CONFIG_COLDFIRE __asm__ __volatile__ ("lea %1,%%a0; btst %2,(%%a0); sne %0" : "=d" (retval) : "m" (((const volatile char *)addr)[nr >> 3]), "d" (nr) : "%a0"); #else __asm__ __volatile__ ("btst %2,%1; sne %0" : "=d" (retval) : "m" (((const volatile char *)addr)[nr >> 3]), "di" (nr) /* No clobber */); #endif return retval; } #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { /* We hold the little endian value in tmp, but then the * shift is illegal. So we could keep a big endian value * in tmp, like this: * * tmp = __swab32(*(p++)); * tmp |= ~0UL >> (32-offset); * * but this would decrease preformance, so we change the * shift: */ tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p; found_first: /* tmp is little endian, so we would have to swab the shift, * see above. But then we have to swab tmp below for ffz, so * we might as well do this here. */ return result + ffz(__swab32(tmp) | (~0UL << size)); found_middle: return result + ffz(__swab32(tmp)); } /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) /** * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif /* __KERNEL__ */ /* * fls: find last bit set. */ #define fls(x) generic_fls(x) #endif /* _M68KNOMMU_BITOPS_H */