/* $Id: ross.h,v 1.13 1998/01/07 06:49:11 baccala Exp $ * ross.h: Ross module specific definitions and defines. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ #ifndef _SPARC_ROSS_H #define _SPARC_ROSS_H #include <asm/asi.h> #include <asm/page.h> /* Ross made Hypersparcs have a %psr 'impl' field of '0001'. The 'vers' * field has '1111'. */ /* The MMU control register fields on the HyperSparc. * * ----------------------------------------------------------------- * |implvers| RSV |CWR|SE|WBE| MID |BM| C|CS|MR|CM|RSV|CE|RSV|NF|ME| * ----------------------------------------------------------------- * 31 24 23-22 21 20 19 18-15 14 13 12 11 10 9 8 7-2 1 0 * * Phew, lots of fields there ;-) * * CWR: Cache Wrapping Enabled, if one cache wrapping is on. * SE: Snoop Enable, turns on bus snooping for cache activity if one. * WBE: Write Buffer Enable, one turns it on. * MID: The ModuleID of the chip for MBus transactions. * BM: Boot-Mode. One indicates the MMU is in boot mode. * C: Indicates whether accesses are cachable while the MMU is * disabled. * CS: Cache Size -- 0 = 128k, 1 = 256k * MR: Memory Reflection, one indicates that the memory bus connected * to the MBus supports memory reflection. * CM: Cache Mode -- 0 = write-through, 1 = copy-back * CE: Cache Enable -- 0 = no caching, 1 = cache is on * NF: No Fault -- 0 = faults trap the CPU from supervisor mode * 1 = faults from supervisor mode do not generate traps * ME: MMU Enable -- 0 = MMU is off, 1 = MMU is on */ #define HYPERSPARC_CWENABLE 0x00200000 #define HYPERSPARC_SBENABLE 0x00100000 #define HYPERSPARC_WBENABLE 0x00080000 #define HYPERSPARC_MIDMASK 0x00078000 #define HYPERSPARC_BMODE 0x00004000 #define HYPERSPARC_ACENABLE 0x00002000 #define HYPERSPARC_CSIZE 0x00001000 #define HYPERSPARC_MRFLCT 0x00000800 #define HYPERSPARC_CMODE 0x00000400 #define HYPERSPARC_CENABLE 0x00000100 #define HYPERSPARC_NFAULT 0x00000002 #define HYPERSPARC_MENABLE 0x00000001 /* The ICCR instruction cache register on the HyperSparc. * * ----------------------------------------------- * | | FTD | ICE | * ----------------------------------------------- * 31 1 0 * * This register is accessed using the V8 'wrasr' and 'rdasr' * opcodes, since not all assemblers understand them and those * that do use different semantics I will just hard code the * instruction with a '.word' statement. * * FTD: If set to one flush instructions executed during an * instruction cache hit occurs, the corresponding line * for said cache-hit is invalidated. If FTD is zero, * an unimplemented 'flush' trap will occur when any * flush is executed by the processor. * * ICE: If set to one, the instruction cache is enabled. If * zero, the cache will not be used for instruction fetches. * * All other bits are read as zeros, and writes to them have no * effect. * * Wheee, not many assemblers understand the %iccr register nor * the generic asr r/w instructions. * * 1000 0011 0100 0111 1100 0000 0000 0000 ! rd %iccr, %g1 * * 0x 8 3 4 7 c 0 0 0 ! 0x8347c000 * * 1011 1111 1000 0000 0110 0000 0000 0000 ! wr %g1, 0x0, %iccr * * 0x b f 8 0 6 0 0 0 ! 0xbf806000 * */ #define HYPERSPARC_ICCR_FTD 0x00000002 #define HYPERSPARC_ICCR_ICE 0x00000001 #ifndef __ASSEMBLY__ static inline unsigned int get_ross_icr(void) { unsigned int icreg; __asm__ __volatile__(".word 0x8347c000\n\t" /* rd %iccr, %g1 */ "mov %%g1, %0\n\t" : "=r" (icreg) : /* no inputs */ : "g1", "memory"); return icreg; } static inline void put_ross_icr(unsigned int icreg) { __asm__ __volatile__("or %%g0, %0, %%g1\n\t" ".word 0xbf806000\n\t" /* wr %g1, 0x0, %iccr */ "nop\n\t" "nop\n\t" "nop\n\t" : /* no outputs */ : "r" (icreg) : "g1", "memory"); return; } /* HyperSparc specific cache flushing. */ /* This is for the on-chip instruction cache. */ static inline void hyper_flush_whole_icache(void) { __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : /* no outputs */ : "i" (ASI_M_FLUSH_IWHOLE) : "memory"); return; } extern int vac_cache_size; extern int vac_line_size; static inline void hyper_clear_all_tags(void) { unsigned long addr; for(addr = 0; addr < vac_cache_size; addr += vac_line_size) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : /* no outputs */ : "r" (addr), "i" (ASI_M_DATAC_TAG) : "memory"); } static inline void hyper_flush_unconditional_combined(void) { unsigned long addr; for (addr = 0; addr < vac_cache_size; addr += vac_line_size) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : /* no outputs */ : "r" (addr), "i" (ASI_M_FLUSH_CTX) : "memory"); } static inline void hyper_flush_cache_user(void) { unsigned long addr; for (addr = 0; addr < vac_cache_size; addr += vac_line_size) __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : /* no outputs */ : "r" (addr), "i" (ASI_M_FLUSH_USER) : "memory"); } static inline void hyper_flush_cache_page(unsigned long page) { unsigned long end; page &= PAGE_MASK; end = page + PAGE_SIZE; while (page < end) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : /* no outputs */ : "r" (page), "i" (ASI_M_FLUSH_PAGE) : "memory"); page += vac_line_size; } } #endif /* !(__ASSEMBLY__) */ #endif /* !(_SPARC_ROSS_H) */