/* Common Flash Interface structures * See http://support.intel.com/design/flash/technote/index.htm * $Id: cfi.h,v 1.57 2005/11/15 23:28:17 tpoynor Exp $ */ #ifndef __MTD_CFI_H__ #define __MTD_CFI_H__ #include <linux/delay.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/mtd/flashchip.h> #include <linux/mtd/map.h> #include <linux/mtd/cfi_endian.h> #ifdef CONFIG_MTD_CFI_I1 #define cfi_interleave(cfi) 1 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1) #else #define cfi_interleave_is_1(cfi) (0) #endif #ifdef CONFIG_MTD_CFI_I2 # ifdef cfi_interleave # undef cfi_interleave # define cfi_interleave(cfi) ((cfi)->interleave) # else # define cfi_interleave(cfi) 2 # endif #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2) #else #define cfi_interleave_is_2(cfi) (0) #endif #ifdef CONFIG_MTD_CFI_I4 # ifdef cfi_interleave # undef cfi_interleave # define cfi_interleave(cfi) ((cfi)->interleave) # else # define cfi_interleave(cfi) 4 # endif #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4) #else #define cfi_interleave_is_4(cfi) (0) #endif #ifdef CONFIG_MTD_CFI_I8 # ifdef cfi_interleave # undef cfi_interleave # define cfi_interleave(cfi) ((cfi)->interleave) # else # define cfi_interleave(cfi) 8 # endif #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8) #else #define cfi_interleave_is_8(cfi) (0) #endif static inline int cfi_interleave_supported(int i) { switch (i) { #ifdef CONFIG_MTD_CFI_I1 case 1: #endif #ifdef CONFIG_MTD_CFI_I2 case 2: #endif #ifdef CONFIG_MTD_CFI_I4 case 4: #endif #ifdef CONFIG_MTD_CFI_I8 case 8: #endif return 1; default: return 0; } } /* NB: these values must represents the number of bytes needed to meet the * device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes. * These numbers are used in calculations. */ #define CFI_DEVICETYPE_X8 (8 / 8) #define CFI_DEVICETYPE_X16 (16 / 8) #define CFI_DEVICETYPE_X32 (32 / 8) #define CFI_DEVICETYPE_X64 (64 / 8) /* NB: We keep these structures in memory in HOST byteorder, except * where individually noted. */ /* Basic Query Structure */ struct cfi_ident { uint8_t qry[3]; uint16_t P_ID; uint16_t P_ADR; uint16_t A_ID; uint16_t A_ADR; uint8_t VccMin; uint8_t VccMax; uint8_t VppMin; uint8_t VppMax; uint8_t WordWriteTimeoutTyp; uint8_t BufWriteTimeoutTyp; uint8_t BlockEraseTimeoutTyp; uint8_t ChipEraseTimeoutTyp; uint8_t WordWriteTimeoutMax; uint8_t BufWriteTimeoutMax; uint8_t BlockEraseTimeoutMax; uint8_t ChipEraseTimeoutMax; uint8_t DevSize; uint16_t InterfaceDesc; uint16_t MaxBufWriteSize; uint8_t NumEraseRegions; uint32_t EraseRegionInfo[0]; /* Not host ordered */ } __attribute__((packed)); /* Extended Query Structure for both PRI and ALT */ struct cfi_extquery { uint8_t pri[3]; uint8_t MajorVersion; uint8_t MinorVersion; } __attribute__((packed)); /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */ struct cfi_pri_intelext { uint8_t pri[3]; uint8_t MajorVersion; uint8_t MinorVersion; uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature block follows - FIXME - not currently supported */ uint8_t SuspendCmdSupport; uint16_t BlkStatusRegMask; uint8_t VccOptimal; uint8_t VppOptimal; uint8_t NumProtectionFields; uint16_t ProtRegAddr; uint8_t FactProtRegSize; uint8_t UserProtRegSize; uint8_t extra[0]; } __attribute__((packed)); struct cfi_intelext_otpinfo { uint32_t ProtRegAddr; uint16_t FactGroups; uint8_t FactProtRegSize; uint16_t UserGroups; uint8_t UserProtRegSize; } __attribute__((packed)); struct cfi_intelext_blockinfo { uint16_t NumIdentBlocks; uint16_t BlockSize; uint16_t MinBlockEraseCycles; uint8_t BitsPerCell; uint8_t BlockCap; } __attribute__((packed)); struct cfi_intelext_regioninfo { uint16_t NumIdentPartitions; uint8_t NumOpAllowed; uint8_t NumOpAllowedSimProgMode; uint8_t NumOpAllowedSimEraMode; uint8_t NumBlockTypes; struct cfi_intelext_blockinfo BlockTypes[1]; } __attribute__((packed)); struct cfi_intelext_programming_regioninfo { uint8_t ProgRegShift; uint8_t Reserved1; uint8_t ControlValid; uint8_t Reserved2; uint8_t ControlInvalid; uint8_t Reserved3; } __attribute__((packed)); /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */ struct cfi_pri_amdstd { uint8_t pri[3]; uint8_t MajorVersion; uint8_t MinorVersion; uint8_t SiliconRevision; /* bits 1-0: Address Sensitive Unlock */ uint8_t EraseSuspend; uint8_t BlkProt; uint8_t TmpBlkUnprotect; uint8_t BlkProtUnprot; uint8_t SimultaneousOps; uint8_t BurstMode; uint8_t PageMode; uint8_t VppMin; uint8_t VppMax; uint8_t TopBottom; } __attribute__((packed)); struct cfi_pri_query { uint8_t NumFields; uint32_t ProtField[1]; /* Not host ordered */ } __attribute__((packed)); struct cfi_bri_query { uint8_t PageModeReadCap; uint8_t NumFields; uint32_t ConfField[1]; /* Not host ordered */ } __attribute__((packed)); #define P_ID_NONE 0x0000 #define P_ID_INTEL_EXT 0x0001 #define P_ID_AMD_STD 0x0002 #define P_ID_INTEL_STD 0x0003 #define P_ID_AMD_EXT 0x0004 #define P_ID_WINBOND 0x0006 #define P_ID_ST_ADV 0x0020 #define P_ID_MITSUBISHI_STD 0x0100 #define P_ID_MITSUBISHI_EXT 0x0101 #define P_ID_SST_PAGE 0x0102 #define P_ID_INTEL_PERFORMANCE 0x0200 #define P_ID_INTEL_DATA 0x0210 #define P_ID_RESERVED 0xffff #define CFI_MODE_CFI 1 #define CFI_MODE_JEDEC 0 struct cfi_private { uint16_t cmdset; void *cmdset_priv; int interleave; int device_type; int cfi_mode; /* Are we a JEDEC device pretending to be CFI? */ int addr_unlock1; int addr_unlock2; struct mtd_info *(*cmdset_setup)(struct map_info *); struct cfi_ident *cfiq; /* For now only one. We insist that all devs must be of the same type. */ int mfr, id; int numchips; unsigned long chipshift; /* Because they're of the same type */ const char *im_name; /* inter_module name for cmdset_setup */ struct flchip chips[0]; /* per-chip data structure for each chip */ }; /* * Returns the command address according to the given geometry. */ static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs, int interleave, int type) { return (cmd_ofs * type) * interleave; } /* * Transforms the CFI command for the given geometry (bus width & interleave). * It looks too long to be inline, but in the common case it should almost all * get optimised away. */ static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi) { map_word val = { {0} }; int wordwidth, words_per_bus, chip_mode, chips_per_word; unsigned long onecmd; int i; /* We do it this way to give the compiler a fighting chance of optimising away all the crap for 'bankwidth' larger than an unsigned long, in the common case where that support is disabled */ if (map_bankwidth_is_large(map)) { wordwidth = sizeof(unsigned long); words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1 } else { wordwidth = map_bankwidth(map); words_per_bus = 1; } chip_mode = map_bankwidth(map) / cfi_interleave(cfi); chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map); /* First, determine what the bit-pattern should be for a single device, according to chip mode and endianness... */ switch (chip_mode) { default: BUG(); case 1: onecmd = cmd; break; case 2: onecmd = cpu_to_cfi16(cmd); break; case 4: onecmd = cpu_to_cfi32(cmd); break; } /* Now replicate it across the size of an unsigned long, or just to the bus width as appropriate */ switch (chips_per_word) { default: BUG(); #if BITS_PER_LONG >= 64 case 8: onecmd |= (onecmd << (chip_mode * 32)); #endif case 4: onecmd |= (onecmd << (chip_mode * 16)); case 2: onecmd |= (onecmd << (chip_mode * 8)); case 1: ; } /* And finally, for the multi-word case, replicate it in all words in the structure */ for (i=0; i < words_per_bus; i++) { val.x[i] = onecmd; } return val; } #define CMD(x) cfi_build_cmd((x), map, cfi) static inline unsigned long cfi_merge_status(map_word val, struct map_info *map, struct cfi_private *cfi) { int wordwidth, words_per_bus, chip_mode, chips_per_word; unsigned long onestat, res = 0; int i; /* We do it this way to give the compiler a fighting chance of optimising away all the crap for 'bankwidth' larger than an unsigned long, in the common case where that support is disabled */ if (map_bankwidth_is_large(map)) { wordwidth = sizeof(unsigned long); words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1 } else { wordwidth = map_bankwidth(map); words_per_bus = 1; } chip_mode = map_bankwidth(map) / cfi_interleave(cfi); chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map); onestat = val.x[0]; /* Or all status words together */ for (i=1; i < words_per_bus; i++) { onestat |= val.x[i]; } res = onestat; switch(chips_per_word) { default: BUG(); #if BITS_PER_LONG >= 64 case 8: res |= (onestat >> (chip_mode * 32)); #endif case 4: res |= (onestat >> (chip_mode * 16)); case 2: res |= (onestat >> (chip_mode * 8)); case 1: ; } /* Last, determine what the bit-pattern should be for a single device, according to chip mode and endianness... */ switch (chip_mode) { case 1: break; case 2: res = cfi16_to_cpu(res); break; case 4: res = cfi32_to_cpu(res); break; default: BUG(); } return res; } #define MERGESTATUS(x) cfi_merge_status((x), map, cfi) /* * Sends a CFI command to a bank of flash for the given geometry. * * Returns the offset in flash where the command was written. * If prev_val is non-null, it will be set to the value at the command address, * before the command was written. */ static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base, struct map_info *map, struct cfi_private *cfi, int type, map_word *prev_val) { map_word val; uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type); val = cfi_build_cmd(cmd, map, cfi); if (prev_val) *prev_val = map_read(map, addr); map_write(map, val, addr); return addr - base; } static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr) { map_word val = map_read(map, addr); if (map_bankwidth_is_1(map)) { return val.x[0]; } else if (map_bankwidth_is_2(map)) { return cfi16_to_cpu(val.x[0]); } else { /* No point in a 64-bit byteswap since that would just be swapping the responses from different chips, and we are only interested in one chip (a representative sample) */ return cfi32_to_cpu(val.x[0]); } } static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr) { map_word val = map_read(map, addr); if (map_bankwidth_is_1(map)) { return val.x[0] & 0xff; } else if (map_bankwidth_is_2(map)) { return cfi16_to_cpu(val.x[0]); } else { /* No point in a 64-bit byteswap since that would just be swapping the responses from different chips, and we are only interested in one chip (a representative sample) */ return cfi32_to_cpu(val.x[0]); } } static inline void cfi_udelay(int us) { if (us >= 1000) { msleep((us+999)/1000); } else { udelay(us); cond_resched(); } } struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size, const char* name); struct cfi_fixup { uint16_t mfr; uint16_t id; void (*fixup)(struct mtd_info *mtd, void* param); void* param; }; #define CFI_MFR_ANY 0xffff #define CFI_ID_ANY 0xffff #define CFI_MFR_AMD 0x0001 #define CFI_MFR_ST 0x0020 /* STMicroelectronics */ void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups); typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk); int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, loff_t ofs, size_t len, void *thunk); #endif /* __MTD_CFI_H__ */