/* Copyright (C) 2002 Richard Henderson Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/moduleloader.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/elf.h> #include <linux/seq_file.h> #include <linux/syscalls.h> #include <linux/fcntl.h> #include <linux/rcupdate.h> #include <linux/capability.h> #include <linux/cpu.h> #include <linux/moduleparam.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/vermagic.h> #include <linux/notifier.h> #include <linux/sched.h> #include <linux/stop_machine.h> #include <linux/device.h> #include <linux/string.h> #include <linux/mutex.h> #include <linux/unwind.h> #include <asm/uaccess.h> #include <asm/semaphore.h> #include <asm/cacheflush.h> #include <linux/license.h> #if 0 #define DEBUGP printk #else #define DEBUGP(fmt , a...) #endif #ifndef ARCH_SHF_SMALL #define ARCH_SHF_SMALL 0 #endif /* If this is set, the section belongs in the init part of the module */ #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1)) /* Protects module list */ static DEFINE_SPINLOCK(modlist_lock); /* List of modules, protected by module_mutex AND modlist_lock */ static DEFINE_MUTEX(module_mutex); static LIST_HEAD(modules); static BLOCKING_NOTIFIER_HEAD(module_notify_list); int register_module_notifier(struct notifier_block * nb) { return blocking_notifier_chain_register(&module_notify_list, nb); } EXPORT_SYMBOL(register_module_notifier); int unregister_module_notifier(struct notifier_block * nb) { return blocking_notifier_chain_unregister(&module_notify_list, nb); } EXPORT_SYMBOL(unregister_module_notifier); /* We require a truly strong try_module_get() */ static inline int strong_try_module_get(struct module *mod) { if (mod && mod->state == MODULE_STATE_COMING) return 0; return try_module_get(mod); } static inline void add_taint_module(struct module *mod, unsigned flag) { add_taint(flag); mod->taints |= flag; } /* A thread that wants to hold a reference to a module only while it * is running can call ths to safely exit. * nfsd and lockd use this. */ void __module_put_and_exit(struct module *mod, long code) { module_put(mod); do_exit(code); } EXPORT_SYMBOL(__module_put_and_exit); /* Find a module section: 0 means not found. */ static unsigned int find_sec(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, const char *secstrings, const char *name) { unsigned int i; for (i = 1; i < hdr->e_shnum; i++) /* Alloc bit cleared means "ignore it." */ if ((sechdrs[i].sh_flags & SHF_ALLOC) && strcmp(secstrings+sechdrs[i].sh_name, name) == 0) return i; return 0; } /* Provided by the linker */ extern const struct kernel_symbol __start___ksymtab[]; extern const struct kernel_symbol __stop___ksymtab[]; extern const struct kernel_symbol __start___ksymtab_gpl[]; extern const struct kernel_symbol __stop___ksymtab_gpl[]; extern const struct kernel_symbol __start___ksymtab_gpl_future[]; extern const struct kernel_symbol __stop___ksymtab_gpl_future[]; extern const struct kernel_symbol __start___ksymtab_unused[]; extern const struct kernel_symbol __stop___ksymtab_unused[]; extern const struct kernel_symbol __start___ksymtab_unused_gpl[]; extern const struct kernel_symbol __stop___ksymtab_unused_gpl[]; extern const struct kernel_symbol __start___ksymtab_gpl_future[]; extern const struct kernel_symbol __stop___ksymtab_gpl_future[]; extern const unsigned long __start___kcrctab[]; extern const unsigned long __start___kcrctab_gpl[]; extern const unsigned long __start___kcrctab_gpl_future[]; extern const unsigned long __start___kcrctab_unused[]; extern const unsigned long __start___kcrctab_unused_gpl[]; #ifndef CONFIG_MODVERSIONS #define symversion(base, idx) NULL #else #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) #endif /* lookup symbol in given range of kernel_symbols */ static const struct kernel_symbol *lookup_symbol(const char *name, const struct kernel_symbol *start, const struct kernel_symbol *stop) { const struct kernel_symbol *ks = start; for (; ks < stop; ks++) if (strcmp(ks->name, name) == 0) return ks; return NULL; } static void printk_unused_warning(const char *name) { printk(KERN_WARNING "Symbol %s is marked as UNUSED, " "however this module is using it.\n", name); printk(KERN_WARNING "This symbol will go away in the future.\n"); printk(KERN_WARNING "Please evalute if this is the right api to use, " "and if it really is, submit a report the linux kernel " "mailinglist together with submitting your code for " "inclusion.\n"); } /* Find a symbol, return value, crc and module which owns it */ static unsigned long __find_symbol(const char *name, struct module **owner, const unsigned long **crc, int gplok) { struct module *mod; const struct kernel_symbol *ks; /* Core kernel first. */ *owner = NULL; ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab); if (ks) { *crc = symversion(__start___kcrctab, (ks - __start___ksymtab)); return ks->value; } if (gplok) { ks = lookup_symbol(name, __start___ksymtab_gpl, __stop___ksymtab_gpl); if (ks) { *crc = symversion(__start___kcrctab_gpl, (ks - __start___ksymtab_gpl)); return ks->value; } } ks = lookup_symbol(name, __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future); if (ks) { if (!gplok) { printk(KERN_WARNING "Symbol %s is being used " "by a non-GPL module, which will not " "be allowed in the future\n", name); printk(KERN_WARNING "Please see the file " "Documentation/feature-removal-schedule.txt " "in the kernel source tree for more " "details.\n"); } *crc = symversion(__start___kcrctab_gpl_future, (ks - __start___ksymtab_gpl_future)); return ks->value; } ks = lookup_symbol(name, __start___ksymtab_unused, __stop___ksymtab_unused); if (ks) { printk_unused_warning(name); *crc = symversion(__start___kcrctab_unused, (ks - __start___ksymtab_unused)); return ks->value; } if (gplok) ks = lookup_symbol(name, __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl); if (ks) { printk_unused_warning(name); *crc = symversion(__start___kcrctab_unused_gpl, (ks - __start___ksymtab_unused_gpl)); return ks->value; } /* Now try modules. */ list_for_each_entry(mod, &modules, list) { *owner = mod; ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms); if (ks) { *crc = symversion(mod->crcs, (ks - mod->syms)); return ks->value; } if (gplok) { ks = lookup_symbol(name, mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms); if (ks) { *crc = symversion(mod->gpl_crcs, (ks - mod->gpl_syms)); return ks->value; } } ks = lookup_symbol(name, mod->unused_syms, mod->unused_syms + mod->num_unused_syms); if (ks) { printk_unused_warning(name); *crc = symversion(mod->unused_crcs, (ks - mod->unused_syms)); return ks->value; } if (gplok) { ks = lookup_symbol(name, mod->unused_gpl_syms, mod->unused_gpl_syms + mod->num_unused_gpl_syms); if (ks) { printk_unused_warning(name); *crc = symversion(mod->unused_gpl_crcs, (ks - mod->unused_gpl_syms)); return ks->value; } } ks = lookup_symbol(name, mod->gpl_future_syms, (mod->gpl_future_syms + mod->num_gpl_future_syms)); if (ks) { if (!gplok) { printk(KERN_WARNING "Symbol %s is being used " "by a non-GPL module, which will not " "be allowed in the future\n", name); printk(KERN_WARNING "Please see the file " "Documentation/feature-removal-schedule.txt " "in the kernel source tree for more " "details.\n"); } *crc = symversion(mod->gpl_future_crcs, (ks - mod->gpl_future_syms)); return ks->value; } } DEBUGP("Failed to find symbol %s\n", name); return 0; } /* Search for module by name: must hold module_mutex. */ static struct module *find_module(const char *name) { struct module *mod; list_for_each_entry(mod, &modules, list) { if (strcmp(mod->name, name) == 0) return mod; } return NULL; } #ifdef CONFIG_SMP /* Number of blocks used and allocated. */ static unsigned int pcpu_num_used, pcpu_num_allocated; /* Size of each block. -ve means used. */ static int *pcpu_size; static int split_block(unsigned int i, unsigned short size) { /* Reallocation required? */ if (pcpu_num_used + 1 > pcpu_num_allocated) { int *new = kmalloc(sizeof(new[0]) * pcpu_num_allocated*2, GFP_KERNEL); if (!new) return 0; memcpy(new, pcpu_size, sizeof(new[0])*pcpu_num_allocated); pcpu_num_allocated *= 2; kfree(pcpu_size); pcpu_size = new; } /* Insert a new subblock */ memmove(&pcpu_size[i+1], &pcpu_size[i], sizeof(pcpu_size[0]) * (pcpu_num_used - i)); pcpu_num_used++; pcpu_size[i+1] -= size; pcpu_size[i] = size; return 1; } static inline unsigned int block_size(int val) { if (val < 0) return -val; return val; } /* Created by linker magic */ extern char __per_cpu_start[], __per_cpu_end[]; static void *percpu_modalloc(unsigned long size, unsigned long align, const char *name) { unsigned long extra; unsigned int i; void *ptr; if (align > SMP_CACHE_BYTES) { printk(KERN_WARNING "%s: per-cpu alignment %li > %i\n", name, align, SMP_CACHE_BYTES); align = SMP_CACHE_BYTES; } ptr = __per_cpu_start; for (i = 0; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) { /* Extra for alignment requirement. */ extra = ALIGN((unsigned long)ptr, align) - (unsigned long)ptr; BUG_ON(i == 0 && extra != 0); if (pcpu_size[i] < 0 || pcpu_size[i] < extra + size) continue; /* Transfer extra to previous block. */ if (pcpu_size[i-1] < 0) pcpu_size[i-1] -= extra; else pcpu_size[i-1] += extra; pcpu_size[i] -= extra; ptr += extra; /* Split block if warranted */ if (pcpu_size[i] - size > sizeof(unsigned long)) if (!split_block(i, size)) return NULL; /* Mark allocated */ pcpu_size[i] = -pcpu_size[i]; return ptr; } printk(KERN_WARNING "Could not allocate %lu bytes percpu data\n", size); return NULL; } static void percpu_modfree(void *freeme) { unsigned int i; void *ptr = __per_cpu_start + block_size(pcpu_size[0]); /* First entry is core kernel percpu data. */ for (i = 1; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) { if (ptr == freeme) { pcpu_size[i] = -pcpu_size[i]; goto free; } } BUG(); free: /* Merge with previous? */ if (pcpu_size[i-1] >= 0) { pcpu_size[i-1] += pcpu_size[i]; pcpu_num_used--; memmove(&pcpu_size[i], &pcpu_size[i+1], (pcpu_num_used - i) * sizeof(pcpu_size[0])); i--; } /* Merge with next? */ if (i+1 < pcpu_num_used && pcpu_size[i+1] >= 0) { pcpu_size[i] += pcpu_size[i+1]; pcpu_num_used--; memmove(&pcpu_size[i+1], &pcpu_size[i+2], (pcpu_num_used - (i+1)) * sizeof(pcpu_size[0])); } } static unsigned int find_pcpusec(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, const char *secstrings) { return find_sec(hdr, sechdrs, secstrings, ".data.percpu"); } static int percpu_modinit(void) { pcpu_num_used = 2; pcpu_num_allocated = 2; pcpu_size = kmalloc(sizeof(pcpu_size[0]) * pcpu_num_allocated, GFP_KERNEL); /* Static in-kernel percpu data (used). */ pcpu_size[0] = -ALIGN(__per_cpu_end-__per_cpu_start, SMP_CACHE_BYTES); /* Free room. */ pcpu_size[1] = PERCPU_ENOUGH_ROOM + pcpu_size[0]; if (pcpu_size[1] < 0) { printk(KERN_ERR "No per-cpu room for modules.\n"); pcpu_num_used = 1; } return 0; } __initcall(percpu_modinit); #else /* ... !CONFIG_SMP */ static inline void *percpu_modalloc(unsigned long size, unsigned long align, const char *name) { return NULL; } static inline void percpu_modfree(void *pcpuptr) { BUG(); } static inline unsigned int find_pcpusec(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, const char *secstrings) { return 0; } static inline void percpu_modcopy(void *pcpudst, const void *src, unsigned long size) { /* pcpusec should be 0, and size of that section should be 0. */ BUG_ON(size != 0); } #endif /* CONFIG_SMP */ #define MODINFO_ATTR(field) \ static void setup_modinfo_##field(struct module *mod, const char *s) \ { \ mod->field = kstrdup(s, GFP_KERNEL); \ } \ static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ struct module *mod, char *buffer) \ { \ return sprintf(buffer, "%s\n", mod->field); \ } \ static int modinfo_##field##_exists(struct module *mod) \ { \ return mod->field != NULL; \ } \ static void free_modinfo_##field(struct module *mod) \ { \ kfree(mod->field); \ mod->field = NULL; \ } \ static struct module_attribute modinfo_##field = { \ .attr = { .name = __stringify(field), .mode = 0444, \ .owner = THIS_MODULE }, \ .show = show_modinfo_##field, \ .setup = setup_modinfo_##field, \ .test = modinfo_##field##_exists, \ .free = free_modinfo_##field, \ }; MODINFO_ATTR(version); MODINFO_ATTR(srcversion); #ifdef CONFIG_MODULE_UNLOAD /* Init the unload section of the module. */ static void module_unload_init(struct module *mod) { unsigned int i; INIT_LIST_HEAD(&mod->modules_which_use_me); for (i = 0; i < NR_CPUS; i++) local_set(&mod->ref[i].count, 0); /* Hold reference count during initialization. */ local_set(&mod->ref[raw_smp_processor_id()].count, 1); /* Backwards compatibility macros put refcount during init. */ mod->waiter = current; } /* modules using other modules */ struct module_use { struct list_head list; struct module *module_which_uses; }; /* Does a already use b? */ static int already_uses(struct module *a, struct module *b) { struct module_use *use; list_for_each_entry(use, &b->modules_which_use_me, list) { if (use->module_which_uses == a) { DEBUGP("%s uses %s!\n", a->name, b->name); return 1; } } DEBUGP("%s does not use %s!\n", a->name, b->name); return 0; } /* Module a uses b */ static int use_module(struct module *a, struct module *b) { struct module_use *use; int no_warn; if (b == NULL || already_uses(a, b)) return 1; if (!strong_try_module_get(b)) return 0; DEBUGP("Allocating new usage for %s.\n", a->name); use = kmalloc(sizeof(*use), GFP_ATOMIC); if (!use) { printk("%s: out of memory loading\n", a->name); module_put(b); return 0; } use->module_which_uses = a; list_add(&use->list, &b->modules_which_use_me); no_warn = sysfs_create_link(b->holders_dir, &a->mkobj.kobj, a->name); return 1; } /* Clear the unload stuff of the module. */ static void module_unload_free(struct module *mod) { struct module *i; list_for_each_entry(i, &modules, list) { struct module_use *use; list_for_each_entry(use, &i->modules_which_use_me, list) { if (use->module_which_uses == mod) { DEBUGP("%s unusing %s\n", mod->name, i->name); module_put(i); list_del(&use->list); kfree(use); sysfs_remove_link(i->holders_dir, mod->name); /* There can be at most one match. */ break; } } } } #ifdef CONFIG_MODULE_FORCE_UNLOAD static inline int try_force_unload(unsigned int flags) { int ret = (flags & O_TRUNC); if (ret) add_taint(TAINT_FORCED_RMMOD); return ret; } #else static inline int try_force_unload(unsigned int flags) { return 0; } #endif /* CONFIG_MODULE_FORCE_UNLOAD */ struct stopref { struct module *mod; int flags; int *forced; }; /* Whole machine is stopped with interrupts off when this runs. */ static int __try_stop_module(void *_sref) { struct stopref *sref = _sref; /* If it's not unused, quit unless we are told to block. */ if ((sref->flags & O_NONBLOCK) && module_refcount(sref->mod) != 0) { if (!(*sref->forced = try_force_unload(sref->flags))) return -EWOULDBLOCK; } /* Mark it as dying. */ sref->mod->state = MODULE_STATE_GOING; return 0; } static int try_stop_module(struct module *mod, int flags, int *forced) { struct stopref sref = { mod, flags, forced }; return stop_machine_run(__try_stop_module, &sref, NR_CPUS); } unsigned int module_refcount(struct module *mod) { unsigned int i, total = 0; for (i = 0; i < NR_CPUS; i++) total += local_read(&mod->ref[i].count); return total; } EXPORT_SYMBOL(module_refcount); /* This exists whether we can unload or not */ static void free_module(struct module *mod); static void wait_for_zero_refcount(struct module *mod) { /* Since we might sleep for some time, drop the semaphore first */ mutex_unlock(&module_mutex); for (;;) { DEBUGP("Looking at refcount...\n"); set_current_state(TASK_UNINTERRUPTIBLE); if (module_refcount(mod) == 0) break; schedule(); } current->state = TASK_RUNNING; mutex_lock(&module_mutex); } asmlinkage long sys_delete_module(const char __user *name_user, unsigned int flags) { struct module *mod; char name[MODULE_NAME_LEN]; int ret, forced = 0; if (!capable(CAP_SYS_MODULE)) return -EPERM; if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) return -EFAULT; name[MODULE_NAME_LEN-1] = '\0'; if (mutex_lock_interruptible(&module_mutex) != 0) return -EINTR; mod = find_module(name); if (!mod) { ret = -ENOENT; goto out; } if (!list_empty(&mod->modules_which_use_me)) { /* Other modules depend on us: get rid of them first. */ ret = -EWOULDBLOCK; goto out; } /* Doing init or already dying? */ if (mod->state != MODULE_STATE_LIVE) { /* FIXME: if (force), slam module count and wake up waiter --RR */ DEBUGP("%s already dying\n", mod->name); ret = -EBUSY; goto out; } /* If it has an init func, it must have an exit func to unload */ if ((mod->init != NULL && mod->exit == NULL) || mod->unsafe) { forced = try_force_unload(flags); if (!forced) { /* This module can't be removed */ ret = -EBUSY; goto out; } } /* Set this up before setting mod->state */ mod->waiter = current; /* Stop the machine so refcounts can't move and disable module. */ ret = try_stop_module(mod, flags, &forced); if (ret != 0) goto out; /* Never wait if forced. */ if (!forced && module_refcount(mod) != 0) wait_for_zero_refcount(mod); /* Final destruction now noone is using it. */ if (mod->exit != NULL) { mutex_unlock(&module_mutex); mod->exit(); mutex_lock(&module_mutex); } free_module(mod); out: mutex_unlock(&module_mutex); return ret; } static void print_unload_info(struct seq_file *m, struct module *mod) { struct module_use *use; int printed_something = 0; seq_printf(m, " %u ", module_refcount(mod)); /* Always include a trailing , so userspace can differentiate between this and the old multi-field proc format. */ list_for_each_entry(use, &mod->modules_which_use_me, list) { printed_something = 1; seq_printf(m, "%s,", use->module_which_uses->name); } if (mod->unsafe) { printed_something = 1; seq_printf(m, "[unsafe],"); } if (mod->init != NULL && mod->exit == NULL) { printed_something = 1; seq_printf(m, "[permanent],"); } if (!printed_something) seq_printf(m, "-"); } void __symbol_put(const char *symbol) { struct module *owner; unsigned long flags; const unsigned long *crc; spin_lock_irqsave(&modlist_lock, flags); if (!__find_symbol(symbol, &owner, &crc, 1)) BUG(); module_put(owner); spin_unlock_irqrestore(&modlist_lock, flags); } EXPORT_SYMBOL(__symbol_put); void symbol_put_addr(void *addr) { struct module *modaddr; if (core_kernel_text((unsigned long)addr)) return; if (!(modaddr = module_text_address((unsigned long)addr))) BUG(); module_put(modaddr); } EXPORT_SYMBOL_GPL(symbol_put_addr); static ssize_t show_refcnt(struct module_attribute *mattr, struct module *mod, char *buffer) { /* sysfs holds a reference */ return sprintf(buffer, "%u\n", module_refcount(mod)-1); } static struct module_attribute refcnt = { .attr = { .name = "refcnt", .mode = 0444, .owner = THIS_MODULE }, .show = show_refcnt, }; void module_put(struct module *module) { if (module) { unsigned int cpu = get_cpu(); local_dec(&module->ref[cpu].count); /* Maybe they're waiting for us to drop reference? */ if (unlikely(!module_is_live(module))) wake_up_process(module->waiter); put_cpu(); } } EXPORT_SYMBOL(module_put); #else /* !CONFIG_MODULE_UNLOAD */ static void print_unload_info(struct seq_file *m, struct module *mod) { /* We don't know the usage count, or what modules are using. */ seq_printf(m, " - -"); } static inline void module_unload_free(struct module *mod) { } static inline int use_module(struct module *a, struct module *b) { return strong_try_module_get(b); } static inline void module_unload_init(struct module *mod) { } #endif /* CONFIG_MODULE_UNLOAD */ static ssize_t show_initstate(struct module_attribute *mattr, struct module *mod, char *buffer) { const char *state = "unknown"; switch (mod->state) { case MODULE_STATE_LIVE: state = "live"; break; case MODULE_STATE_COMING: state = "coming"; break; case MODULE_STATE_GOING: state = "going"; break; } return sprintf(buffer, "%s\n", state); } static struct module_attribute initstate = { .attr = { .name = "initstate", .mode = 0444, .owner = THIS_MODULE }, .show = show_initstate, }; static struct module_attribute *modinfo_attrs[] = { &modinfo_version, &modinfo_srcversion, &initstate, #ifdef CONFIG_MODULE_UNLOAD &refcnt, #endif NULL, }; static const char vermagic[] = VERMAGIC_STRING; #ifdef CONFIG_MODVERSIONS static int check_version(Elf_Shdr *sechdrs, unsigned int versindex, const char *symname, struct module *mod, const unsigned long *crc) { unsigned int i, num_versions; struct modversion_info *versions; /* Exporting module didn't supply crcs? OK, we're already tainted. */ if (!crc) return 1; versions = (void *) sechdrs[versindex].sh_addr; num_versions = sechdrs[versindex].sh_size / sizeof(struct modversion_info); for (i = 0; i < num_versions; i++) { if (strcmp(versions[i].name, symname) != 0) continue; if (versions[i].crc == *crc) return 1; printk("%s: disagrees about version of symbol %s\n", mod->name, symname); DEBUGP("Found checksum %lX vs module %lX\n", *crc, versions[i].crc); return 0; } /* Not in module's version table. OK, but that taints the kernel. */ if (!(tainted & TAINT_FORCED_MODULE)) printk("%s: no version for \"%s\" found: kernel tainted.\n", mod->name, symname); add_taint_module(mod, TAINT_FORCED_MODULE); return 1; } static inline int check_modstruct_version(Elf_Shdr *sechdrs, unsigned int versindex, struct module *mod) { const unsigned long *crc; struct module *owner; if (!__find_symbol("struct_module", &owner, &crc, 1)) BUG(); return check_version(sechdrs, versindex, "struct_module", mod, crc); } /* First part is kernel version, which we ignore. */ static inline int same_magic(const char *amagic, const char *bmagic) { amagic += strcspn(amagic, " "); bmagic += strcspn(bmagic, " "); return strcmp(amagic, bmagic) == 0; } #else static inline int check_version(Elf_Shdr *sechdrs, unsigned int versindex, const char *symname, struct module *mod, const unsigned long *crc) { return 1; } static inline int check_modstruct_version(Elf_Shdr *sechdrs, unsigned int versindex, struct module *mod) { return 1; } static inline int same_magic(const char *amagic, const char *bmagic) { return strcmp(amagic, bmagic) == 0; } #endif /* CONFIG_MODVERSIONS */ /* Resolve a symbol for this module. I.e. if we find one, record usage. Must be holding module_mutex. */ static unsigned long resolve_symbol(Elf_Shdr *sechdrs, unsigned int versindex, const char *name, struct module *mod) { struct module *owner; unsigned long ret; const unsigned long *crc; ret = __find_symbol(name, &owner, &crc, !(mod->taints & TAINT_PROPRIETARY_MODULE)); if (ret) { /* use_module can fail due to OOM, or module unloading */ if (!check_version(sechdrs, versindex, name, mod, crc) || !use_module(mod, owner)) ret = 0; } return ret; } /* * /sys/module/foo/sections stuff * J. Corbet <corbet@lwn.net> */ #ifdef CONFIG_KALLSYMS static ssize_t module_sect_show(struct module_attribute *mattr, struct module *mod, char *buf) { struct module_sect_attr *sattr = container_of(mattr, struct module_sect_attr, mattr); return sprintf(buf, "0x%lx\n", sattr->address); } static void free_sect_attrs(struct module_sect_attrs *sect_attrs) { int section; for (section = 0; section < sect_attrs->nsections; section++) kfree(sect_attrs->attrs[section].name); kfree(sect_attrs); } static void add_sect_attrs(struct module *mod, unsigned int nsect, char *secstrings, Elf_Shdr *sechdrs) { unsigned int nloaded = 0, i, size[2]; struct module_sect_attrs *sect_attrs; struct module_sect_attr *sattr; struct attribute **gattr; /* Count loaded sections and allocate structures */ for (i = 0; i < nsect; i++) if (sechdrs[i].sh_flags & SHF_ALLOC) nloaded++; size[0] = ALIGN(sizeof(*sect_attrs) + nloaded * sizeof(sect_attrs->attrs[0]), sizeof(sect_attrs->grp.attrs[0])); size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]); sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL); if (sect_attrs == NULL) return; /* Setup section attributes. */ sect_attrs->grp.name = "sections"; sect_attrs->grp.attrs = (void *)sect_attrs + size[0]; sect_attrs->nsections = 0; sattr = §_attrs->attrs[0]; gattr = §_attrs->grp.attrs[0]; for (i = 0; i < nsect; i++) { if (! (sechdrs[i].sh_flags & SHF_ALLOC)) continue; sattr->address = sechdrs[i].sh_addr; sattr->name = kstrdup(secstrings + sechdrs[i].sh_name, GFP_KERNEL); if (sattr->name == NULL) goto out; sect_attrs->nsections++; sattr->mattr.show = module_sect_show; sattr->mattr.store = NULL; sattr->mattr.attr.name = sattr->name; sattr->mattr.attr.owner = mod; sattr->mattr.attr.mode = S_IRUGO; *(gattr++) = &(sattr++)->mattr.attr; } *gattr = NULL; if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp)) goto out; mod->sect_attrs = sect_attrs; return; out: free_sect_attrs(sect_attrs); } static void remove_sect_attrs(struct module *mod) { if (mod->sect_attrs) { sysfs_remove_group(&mod->mkobj.kobj, &mod->sect_attrs->grp); /* We are positive that no one is using any sect attrs * at this point. Deallocate immediately. */ free_sect_attrs(mod->sect_attrs); mod->sect_attrs = NULL; } } #else static inline void add_sect_attrs(struct module *mod, unsigned int nsect, char *sectstrings, Elf_Shdr *sechdrs) { } static inline void remove_sect_attrs(struct module *mod) { } #endif /* CONFIG_KALLSYMS */ #ifdef CONFIG_SYSFS int module_add_modinfo_attrs(struct module *mod) { struct module_attribute *attr; struct module_attribute *temp_attr; int error = 0; int i; mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) * (ARRAY_SIZE(modinfo_attrs) + 1)), GFP_KERNEL); if (!mod->modinfo_attrs) return -ENOMEM; temp_attr = mod->modinfo_attrs; for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) { if (!attr->test || (attr->test && attr->test(mod))) { memcpy(temp_attr, attr, sizeof(*temp_attr)); temp_attr->attr.owner = mod; error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr); ++temp_attr; } } return error; } void module_remove_modinfo_attrs(struct module *mod) { struct module_attribute *attr; int i; for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) { /* pick a field to test for end of list */ if (!attr->attr.name) break; sysfs_remove_file(&mod->mkobj.kobj,&attr->attr); if (attr->free) attr->free(mod); } kfree(mod->modinfo_attrs); } #endif #ifdef CONFIG_SYSFS int mod_sysfs_init(struct module *mod) { int err; if (!module_subsys.kset.subsys) { printk(KERN_ERR "%s: module_subsys not initialized\n", mod->name); err = -EINVAL; goto out; } memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj)); err = kobject_set_name(&mod->mkobj.kobj, "%s", mod->name); if (err) goto out; kobj_set_kset_s(&mod->mkobj, module_subsys); mod->mkobj.mod = mod; kobject_init(&mod->mkobj.kobj); out: return err; } int mod_sysfs_setup(struct module *mod, struct kernel_param *kparam, unsigned int num_params) { int err; /* delay uevent until full sysfs population */ err = kobject_add(&mod->mkobj.kobj); if (err) goto out; mod->holders_dir = kobject_add_dir(&mod->mkobj.kobj, "holders"); if (!mod->holders_dir) goto out_unreg; err = module_param_sysfs_setup(mod, kparam, num_params); if (err) goto out_unreg_holders; err = module_add_modinfo_attrs(mod); if (err) goto out_unreg_param; kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); return 0; out_unreg_param: module_param_sysfs_remove(mod); out_unreg_holders: kobject_unregister(mod->holders_dir); out_unreg: kobject_del(&mod->mkobj.kobj); kobject_put(&mod->mkobj.kobj); out: return err; } #endif static void mod_kobject_remove(struct module *mod) { module_remove_modinfo_attrs(mod); module_param_sysfs_remove(mod); kobject_unregister(mod->mkobj.drivers_dir); kobject_unregister(mod->holders_dir); kobject_unregister(&mod->mkobj.kobj); } /* * unlink the module with the whole machine is stopped with interrupts off * - this defends against kallsyms not taking locks */ static int __unlink_module(void *_mod) { struct module *mod = _mod; list_del(&mod->list); return 0; } /* Free a module, remove from lists, etc (must hold module mutex). */ static void free_module(struct module *mod) { /* Delete from various lists */ stop_machine_run(__unlink_module, mod, NR_CPUS); remove_sect_attrs(mod); mod_kobject_remove(mod); unwind_remove_table(mod->unwind_info, 0); /* Arch-specific cleanup. */ module_arch_cleanup(mod); /* Module unload stuff */ module_unload_free(mod); /* This may be NULL, but that's OK */ module_free(mod, mod->module_init); kfree(mod->args); if (mod->percpu) percpu_modfree(mod->percpu); /* Free lock-classes: */ lockdep_free_key_range(mod->module_core, mod->core_size); /* Finally, free the core (containing the module structure) */ module_free(mod, mod->module_core); } void *__symbol_get(const char *symbol) { struct module *owner; unsigned long value, flags; const unsigned long *crc; spin_lock_irqsave(&modlist_lock, flags); value = __find_symbol(symbol, &owner, &crc, 1); if (value && !strong_try_module_get(owner)) value = 0; spin_unlock_irqrestore(&modlist_lock, flags); return (void *)value; } EXPORT_SYMBOL_GPL(__symbol_get); /* * Ensure that an exported symbol [global namespace] does not already exist * in the Kernel or in some other modules exported symbol table. */ static int verify_export_symbols(struct module *mod) { const char *name = NULL; unsigned long i, ret = 0; struct module *owner; const unsigned long *crc; for (i = 0; i < mod->num_syms; i++) if (__find_symbol(mod->syms[i].name, &owner, &crc, 1)) { name = mod->syms[i].name; ret = -ENOEXEC; goto dup; } for (i = 0; i < mod->num_gpl_syms; i++) if (__find_symbol(mod->gpl_syms[i].name, &owner, &crc, 1)) { name = mod->gpl_syms[i].name; ret = -ENOEXEC; goto dup; } dup: if (ret) printk(KERN_ERR "%s: exports duplicate symbol %s (owned by %s)\n", mod->name, name, module_name(owner)); return ret; } /* Change all symbols so that sh_value encodes the pointer directly. */ static int simplify_symbols(Elf_Shdr *sechdrs, unsigned int symindex, const char *strtab, unsigned int versindex, unsigned int pcpuindex, struct module *mod) { Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; unsigned long secbase; unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); int ret = 0; for (i = 1; i < n; i++) { switch (sym[i].st_shndx) { case SHN_COMMON: /* We compiled with -fno-common. These are not supposed to happen. */ DEBUGP("Common symbol: %s\n", strtab + sym[i].st_name); printk("%s: please compile with -fno-common\n", mod->name); ret = -ENOEXEC; break; case SHN_ABS: /* Don't need to do anything */ DEBUGP("Absolute symbol: 0x%08lx\n", (long)sym[i].st_value); break; case SHN_UNDEF: sym[i].st_value = resolve_symbol(sechdrs, versindex, strtab + sym[i].st_name, mod); /* Ok if resolved. */ if (sym[i].st_value != 0) break; /* Ok if weak. */ if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK) break; printk(KERN_WARNING "%s: Unknown symbol %s\n", mod->name, strtab + sym[i].st_name); ret = -ENOENT; break; default: /* Divert to percpu allocation if a percpu var. */ if (sym[i].st_shndx == pcpuindex) secbase = (unsigned long)mod->percpu; else secbase = sechdrs[sym[i].st_shndx].sh_addr; sym[i].st_value += secbase; break; } } return ret; } /* Update size with this section: return offset. */ static long get_offset(unsigned long *size, Elf_Shdr *sechdr) { long ret; ret = ALIGN(*size, sechdr->sh_addralign ?: 1); *size = ret + sechdr->sh_size; return ret; } /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld might -- code, read-only data, read-write data, small data. Tally sizes, and place the offsets into sh_entsize fields: high bit means it belongs in init. */ static void layout_sections(struct module *mod, const Elf_Ehdr *hdr, Elf_Shdr *sechdrs, const char *secstrings) { static unsigned long const masks[][2] = { /* NOTE: all executable code must be the first section * in this array; otherwise modify the text_size * finder in the two loops below */ { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, { ARCH_SHF_SMALL | SHF_ALLOC, 0 } }; unsigned int m, i; for (i = 0; i < hdr->e_shnum; i++) sechdrs[i].sh_entsize = ~0UL; DEBUGP("Core section allocation order:\n"); for (m = 0; m < ARRAY_SIZE(masks); ++m) { for (i = 0; i < hdr->e_shnum; ++i) { Elf_Shdr *s = &sechdrs[i]; if ((s->sh_flags & masks[m][0]) != masks[m][0] || (s->sh_flags & masks[m][1]) || s->sh_entsize != ~0UL || strncmp(secstrings + s->sh_name, ".init", 5) == 0) continue; s->sh_entsize = get_offset(&mod->core_size, s); DEBUGP("\t%s\n", secstrings + s->sh_name); } if (m == 0) mod->core_text_size = mod->core_size; } DEBUGP("Init section allocation order:\n"); for (m = 0; m < ARRAY_SIZE(masks); ++m) { for (i = 0; i < hdr->e_shnum; ++i) { Elf_Shdr *s = &sechdrs[i]; if ((s->sh_flags & masks[m][0]) != masks[m][0] || (s->sh_flags & masks[m][1]) || s->sh_entsize != ~0UL || strncmp(secstrings + s->sh_name, ".init", 5) != 0) continue; s->sh_entsize = (get_offset(&mod->init_size, s) | INIT_OFFSET_MASK); DEBUGP("\t%s\n", secstrings + s->sh_name); } if (m == 0) mod->init_text_size = mod->init_size; } } static void set_license(struct module *mod, const char *license) { if (!license) license = "unspecified"; if (!license_is_gpl_compatible(license)) { if (!(tainted & TAINT_PROPRIETARY_MODULE)) printk(KERN_WARNING "%s: module license '%s' taints " "kernel.\n", mod->name, license); add_taint_module(mod, TAINT_PROPRIETARY_MODULE); } } /* Parse tag=value strings from .modinfo section */ static char *next_string(char *string, unsigned long *secsize) { /* Skip non-zero chars */ while (string[0]) { string++; if ((*secsize)-- <= 1) return NULL; } /* Skip any zero padding. */ while (!string[0]) { string++; if ((*secsize)-- <= 1) return NULL; } return string; } static char *get_modinfo(Elf_Shdr *sechdrs, unsigned int info, const char *tag) { char *p; unsigned int taglen = strlen(tag); unsigned long size = sechdrs[info].sh_size; for (p = (char *)sechdrs[info].sh_addr; p; p = next_string(p, &size)) { if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') return p + taglen + 1; } return NULL; } static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs, unsigned int infoindex) { struct module_attribute *attr; int i; for (i = 0; (attr = modinfo_attrs[i]); i++) { if (attr->setup) attr->setup(mod, get_modinfo(sechdrs, infoindex, attr->attr.name)); } } #ifdef CONFIG_KALLSYMS int is_exported(const char *name, const struct module *mod) { if (!mod && lookup_symbol(name, __start___ksymtab, __stop___ksymtab)) return 1; else if (mod && lookup_symbol(name, mod->syms, mod->syms + mod->num_syms)) return 1; else return 0; } /* As per nm */ static char elf_type(const Elf_Sym *sym, Elf_Shdr *sechdrs, const char *secstrings, struct module *mod) { if (ELF_ST_BIND(sym->st_info) == STB_WEAK) { if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT) return 'v'; else return 'w'; } if (sym->st_shndx == SHN_UNDEF) return 'U'; if (sym->st_shndx == SHN_ABS) return 'a'; if (sym->st_shndx >= SHN_LORESERVE) return '?'; if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR) return 't'; if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) { if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE)) return 'r'; else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL) return 'g'; else return 'd'; } if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL) return 's'; else return 'b'; } if (strncmp(secstrings + sechdrs[sym->st_shndx].sh_name, ".debug", strlen(".debug")) == 0) return 'n'; return '?'; } static void add_kallsyms(struct module *mod, Elf_Shdr *sechdrs, unsigned int symindex, unsigned int strindex, const char *secstrings) { unsigned int i; mod->symtab = (void *)sechdrs[symindex].sh_addr; mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); mod->strtab = (void *)sechdrs[strindex].sh_addr; /* Set types up while we still have access to sections. */ for (i = 0; i < mod->num_symtab; i++) mod->symtab[i].st_info = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); } #else static inline void add_kallsyms(struct module *mod, Elf_Shdr *sechdrs, unsigned int symindex, unsigned int strindex, const char *secstrings) { } #endif /* CONFIG_KALLSYMS */ /* Allocate and load the module: note that size of section 0 is always zero, and we rely on this for optional sections. */ static struct module *load_module(void __user *umod, unsigned long len, const char __user *uargs) { Elf_Ehdr *hdr; Elf_Shdr *sechdrs; char *secstrings, *args, *modmagic, *strtab = NULL; unsigned int i; unsigned int symindex = 0; unsigned int strindex = 0; unsigned int setupindex; unsigned int exindex; unsigned int exportindex; unsigned int modindex; unsigned int obsparmindex; unsigned int infoindex; unsigned int gplindex; unsigned int crcindex; unsigned int gplcrcindex; unsigned int versindex; unsigned int pcpuindex; unsigned int gplfutureindex; unsigned int gplfuturecrcindex; unsigned int unwindex = 0; unsigned int unusedindex; unsigned int unusedcrcindex; unsigned int unusedgplindex; unsigned int unusedgplcrcindex; struct module *mod; long err = 0; void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ struct exception_table_entry *extable; mm_segment_t old_fs; DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", umod, len, uargs); if (len < sizeof(*hdr)) return ERR_PTR(-ENOEXEC); /* Suck in entire file: we'll want most of it. */ /* vmalloc barfs on "unusual" numbers. Check here */ if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL) return ERR_PTR(-ENOMEM); if (copy_from_user(hdr, umod, len) != 0) { err = -EFAULT; goto free_hdr; } /* Sanity checks against insmoding binaries or wrong arch, weird elf version */ if (memcmp(hdr->e_ident, ELFMAG, 4) != 0 || hdr->e_type != ET_REL || !elf_check_arch(hdr) || hdr->e_shentsize != sizeof(*sechdrs)) { err = -ENOEXEC; goto free_hdr; } if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) goto truncated; /* Convenience variables */ sechdrs = (void *)hdr + hdr->e_shoff; secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; sechdrs[0].sh_addr = 0; for (i = 1; i < hdr->e_shnum; i++) { if (sechdrs[i].sh_type != SHT_NOBITS && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) goto truncated; /* Mark all sections sh_addr with their address in the temporary image. */ sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset; /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; strtab = (char *)hdr + sechdrs[strindex].sh_offset; } #ifndef CONFIG_MODULE_UNLOAD /* Don't load .exit sections */ if (strncmp(secstrings+sechdrs[i].sh_name, ".exit", 5) == 0) sechdrs[i].sh_flags &= ~(unsigned long)SHF_ALLOC; #endif } modindex = find_sec(hdr, sechdrs, secstrings, ".gnu.linkonce.this_module"); if (!modindex) { printk(KERN_WARNING "No module found in object\n"); err = -ENOEXEC; goto free_hdr; } mod = (void *)sechdrs[modindex].sh_addr; if (symindex == 0) { printk(KERN_WARNING "%s: module has no symbols (stripped?)\n", mod->name); err = -ENOEXEC; goto free_hdr; } /* Optional sections */ exportindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab"); gplindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab_gpl"); gplfutureindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab_gpl_future"); unusedindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab_unused"); unusedgplindex = find_sec(hdr, sechdrs, secstrings, "__ksymtab_unused_gpl"); crcindex = find_sec(hdr, sechdrs, secstrings, "__kcrctab"); gplcrcindex = find_sec(hdr, sechdrs, secstrings, "__kcrctab_gpl"); gplfuturecrcindex = find_sec(hdr, sechdrs, secstrings, "__kcrctab_gpl_future"); unusedcrcindex = find_sec(hdr, sechdrs, secstrings, "__kcrctab_unused"); unusedgplcrcindex = find_sec(hdr, sechdrs, secstrings, "__kcrctab_unused_gpl"); setupindex = find_sec(hdr, sechdrs, secstrings, "__param"); exindex = find_sec(hdr, sechdrs, secstrings, "__ex_table"); obsparmindex = find_sec(hdr, sechdrs, secstrings, "__obsparm"); versindex = find_sec(hdr, sechdrs, secstrings, "__versions"); infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo"); pcpuindex = find_pcpusec(hdr, sechdrs, secstrings); #ifdef ARCH_UNWIND_SECTION_NAME unwindex = find_sec(hdr, sechdrs, secstrings, ARCH_UNWIND_SECTION_NAME); #endif /* Don't keep modinfo section */ sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; #ifdef CONFIG_KALLSYMS /* Keep symbol and string tables for decoding later. */ sechdrs[symindex].sh_flags |= SHF_ALLOC; sechdrs[strindex].sh_flags |= SHF_ALLOC; #endif if (unwindex) sechdrs[unwindex].sh_flags |= SHF_ALLOC; /* Check module struct version now, before we try to use module. */ if (!check_modstruct_version(sechdrs, versindex, mod)) { err = -ENOEXEC; goto free_hdr; } modmagic = get_modinfo(sechdrs, infoindex, "vermagic"); /* This is allowed: modprobe --force will invalidate it. */ if (!modmagic) { add_taint_module(mod, TAINT_FORCED_MODULE); printk(KERN_WARNING "%s: no version magic, tainting kernel.\n", mod->name); } else if (!same_magic(modmagic, vermagic)) { printk(KERN_ERR "%s: version magic '%s' should be '%s'\n", mod->name, modmagic, vermagic); err = -ENOEXEC; goto free_hdr; } /* Now copy in args */ args = strndup_user(uargs, ~0UL >> 1); if (IS_ERR(args)) { err = PTR_ERR(args); goto free_hdr; } if (find_module(mod->name)) { err = -EEXIST; goto free_mod; } mod->state = MODULE_STATE_COMING; /* Allow arches to frob section contents and sizes. */ err = module_frob_arch_sections(hdr, sechdrs, secstrings, mod); if (err < 0) goto free_mod; if (pcpuindex) { /* We have a special allocation for this section. */ percpu = percpu_modalloc(sechdrs[pcpuindex].sh_size, sechdrs[pcpuindex].sh_addralign, mod->name); if (!percpu) { err = -ENOMEM; goto free_mod; } sechdrs[pcpuindex].sh_flags &= ~(unsigned long)SHF_ALLOC; mod->percpu = percpu; } /* Determine total sizes, and put offsets in sh_entsize. For now this is done generically; there doesn't appear to be any special cases for the architectures. */ layout_sections(mod, hdr, sechdrs, secstrings); /* Do the allocs. */ ptr = module_alloc(mod->core_size); if (!ptr) { err = -ENOMEM; goto free_percpu; } memset(ptr, 0, mod->core_size); mod->module_core = ptr; ptr = module_alloc(mod->init_size); if (!ptr && mod->init_size) { err = -ENOMEM; goto free_core; } memset(ptr, 0, mod->init_size); mod->module_init = ptr; /* Transfer each section which specifies SHF_ALLOC */ DEBUGP("final section addresses:\n"); for (i = 0; i < hdr->e_shnum; i++) { void *dest; if (!(sechdrs[i].sh_flags & SHF_ALLOC)) continue; if (sechdrs[i].sh_entsize & INIT_OFFSET_MASK) dest = mod->module_init + (sechdrs[i].sh_entsize & ~INIT_OFFSET_MASK); else dest = mod->module_core + sechdrs[i].sh_entsize; if (sechdrs[i].sh_type != SHT_NOBITS) memcpy(dest, (void *)sechdrs[i].sh_addr, sechdrs[i].sh_size); /* Update sh_addr to point to copy in image. */ sechdrs[i].sh_addr = (unsigned long)dest; DEBUGP("\t0x%lx %s\n", sechdrs[i].sh_addr, secstrings + sechdrs[i].sh_name); } /* Module has been moved. */ mod = (void *)sechdrs[modindex].sh_addr; /* Now we've moved module, initialize linked lists, etc. */ module_unload_init(mod); /* Initialize kobject, so we can reference it. */ if (mod_sysfs_init(mod) != 0) goto cleanup; /* Set up license info based on the info section */ set_license(mod, get_modinfo(sechdrs, infoindex, "license")); if (strcmp(mod->name, "ndiswrapper") == 0) add_taint(TAINT_PROPRIETARY_MODULE); if (strcmp(mod->name, "driverloader") == 0) add_taint_module(mod, TAINT_PROPRIETARY_MODULE); /* Set up MODINFO_ATTR fields */ setup_modinfo(mod, sechdrs, infoindex); /* Fix up syms, so that st_value is a pointer to location. */ err = simplify_symbols(sechdrs, symindex, strtab, versindex, pcpuindex, mod); if (err < 0) goto cleanup; /* Set up EXPORTed & EXPORT_GPLed symbols (section 0 is 0 length) */ mod->num_syms = sechdrs[exportindex].sh_size / sizeof(*mod->syms); mod->syms = (void *)sechdrs[exportindex].sh_addr; if (crcindex) mod->crcs = (void *)sechdrs[crcindex].sh_addr; mod->num_gpl_syms = sechdrs[gplindex].sh_size / sizeof(*mod->gpl_syms); mod->gpl_syms = (void *)sechdrs[gplindex].sh_addr; if (gplcrcindex) mod->gpl_crcs = (void *)sechdrs[gplcrcindex].sh_addr; mod->num_gpl_future_syms = sechdrs[gplfutureindex].sh_size / sizeof(*mod->gpl_future_syms); mod->num_unused_syms = sechdrs[unusedindex].sh_size / sizeof(*mod->unused_syms); mod->num_unused_gpl_syms = sechdrs[unusedgplindex].sh_size / sizeof(*mod->unused_gpl_syms); mod->gpl_future_syms = (void *)sechdrs[gplfutureindex].sh_addr; if (gplfuturecrcindex) mod->gpl_future_crcs = (void *)sechdrs[gplfuturecrcindex].sh_addr; mod->unused_syms = (void *)sechdrs[unusedindex].sh_addr; if (unusedcrcindex) mod->unused_crcs = (void *)sechdrs[unusedcrcindex].sh_addr; mod->unused_gpl_syms = (void *)sechdrs[unusedgplindex].sh_addr; if (unusedgplcrcindex) mod->unused_crcs = (void *)sechdrs[unusedgplcrcindex].sh_addr; #ifdef CONFIG_MODVERSIONS if ((mod->num_syms && !crcindex) || (mod->num_gpl_syms && !gplcrcindex) || (mod->num_gpl_future_syms && !gplfuturecrcindex) || (mod->num_unused_syms && !unusedcrcindex) || (mod->num_unused_gpl_syms && !unusedgplcrcindex)) { printk(KERN_WARNING "%s: No versions for exported symbols." " Tainting kernel.\n", mod->name); add_taint_module(mod, TAINT_FORCED_MODULE); } #endif /* Now do relocations. */ for (i = 1; i < hdr->e_shnum; i++) { const char *strtab = (char *)sechdrs[strindex].sh_addr; unsigned int info = sechdrs[i].sh_info; /* Not a valid relocation section? */ if (info >= hdr->e_shnum) continue; /* Don't bother with non-allocated sections */ if (!(sechdrs[info].sh_flags & SHF_ALLOC)) continue; if (sechdrs[i].sh_type == SHT_REL) err = apply_relocate(sechdrs, strtab, symindex, i,mod); else if (sechdrs[i].sh_type == SHT_RELA) err = apply_relocate_add(sechdrs, strtab, symindex, i, mod); if (err < 0) goto cleanup; } /* Find duplicate symbols */ err = verify_export_symbols(mod); if (err < 0) goto cleanup; /* Set up and sort exception table */ mod->num_exentries = sechdrs[exindex].sh_size / sizeof(*mod->extable); mod->extable = extable = (void *)sechdrs[exindex].sh_addr; sort_extable(extable, extable + mod->num_exentries); /* Finally, copy percpu area over. */ percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, sechdrs[pcpuindex].sh_size); add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); err = module_finalize(hdr, sechdrs, mod); if (err < 0) goto cleanup; /* flush the icache in correct context */ old_fs = get_fs(); set_fs(KERNEL_DS); /* * Flush the instruction cache, since we've played with text. * Do it before processing of module parameters, so the module * can provide parameter accessor functions of its own. */ if (mod->module_init) flush_icache_range((unsigned long)mod->module_init, (unsigned long)mod->module_init + mod->init_size); flush_icache_range((unsigned long)mod->module_core, (unsigned long)mod->module_core + mod->core_size); set_fs(old_fs); mod->args = args; if (obsparmindex) printk(KERN_WARNING "%s: Ignoring obsolete parameters\n", mod->name); /* Size of section 0 is 0, so this works well if no params */ err = parse_args(mod->name, mod->args, (struct kernel_param *) sechdrs[setupindex].sh_addr, sechdrs[setupindex].sh_size / sizeof(struct kernel_param), NULL); if (err < 0) goto arch_cleanup; err = mod_sysfs_setup(mod, (struct kernel_param *) sechdrs[setupindex].sh_addr, sechdrs[setupindex].sh_size / sizeof(struct kernel_param)); if (err < 0) goto arch_cleanup; add_sect_attrs(mod, hdr->e_shnum, secstrings, sechdrs); /* Size of section 0 is 0, so this works well if no unwind info. */ mod->unwind_info = unwind_add_table(mod, (void *)sechdrs[unwindex].sh_addr, sechdrs[unwindex].sh_size); /* Get rid of temporary copy */ vfree(hdr); /* Done! */ return mod; arch_cleanup: module_arch_cleanup(mod); cleanup: module_unload_free(mod); module_free(mod, mod->module_init); free_core: module_free(mod, mod->module_core); free_percpu: if (percpu) percpu_modfree(percpu); free_mod: kfree(args); free_hdr: vfree(hdr); return ERR_PTR(err); truncated: printk(KERN_ERR "Module len %lu truncated\n", len); err = -ENOEXEC; goto free_hdr; } /* * link the module with the whole machine is stopped with interrupts off * - this defends against kallsyms not taking locks */ static int __link_module(void *_mod) { struct module *mod = _mod; list_add(&mod->list, &modules); return 0; } /* This is where the real work happens */ asmlinkage long sys_init_module(void __user *umod, unsigned long len, const char __user *uargs) { struct module *mod; int ret = 0; /* Must have permission */ if (!capable(CAP_SYS_MODULE)) return -EPERM; /* Only one module load at a time, please */ if (mutex_lock_interruptible(&module_mutex) != 0) return -EINTR; /* Do all the hard work */ mod = load_module(umod, len, uargs); if (IS_ERR(mod)) { mutex_unlock(&module_mutex); return PTR_ERR(mod); } /* Now sew it into the lists. They won't access us, since strong_try_module_get() will fail. */ stop_machine_run(__link_module, mod, NR_CPUS); /* Drop lock so they can recurse */ mutex_unlock(&module_mutex); blocking_notifier_call_chain(&module_notify_list, MODULE_STATE_COMING, mod); /* Start the module */ if (mod->init != NULL) ret = mod->init(); if (ret < 0) { /* Init routine failed: abort. Try to protect us from buggy refcounters. */ mod->state = MODULE_STATE_GOING; synchronize_sched(); if (mod->unsafe) printk(KERN_ERR "%s: module is now stuck!\n", mod->name); else { module_put(mod); mutex_lock(&module_mutex); free_module(mod); mutex_unlock(&module_mutex); } return ret; } /* Now it's a first class citizen! */ mutex_lock(&module_mutex); mod->state = MODULE_STATE_LIVE; /* Drop initial reference. */ module_put(mod); unwind_remove_table(mod->unwind_info, 1); module_free(mod, mod->module_init); mod->module_init = NULL; mod->init_size = 0; mod->init_text_size = 0; mutex_unlock(&module_mutex); return 0; } static inline int within(unsigned long addr, void *start, unsigned long size) { return ((void *)addr >= start && (void *)addr < start + size); } #ifdef CONFIG_KALLSYMS /* * This ignores the intensely annoying "mapping symbols" found * in ARM ELF files: $a, $t and $d. */ static inline int is_arm_mapping_symbol(const char *str) { return str[0] == '$' && strchr("atd", str[1]) && (str[2] == '\0' || str[2] == '.'); } static const char *get_ksymbol(struct module *mod, unsigned long addr, unsigned long *size, unsigned long *offset) { unsigned int i, best = 0; unsigned long nextval; /* At worse, next value is at end of module */ if (within(addr, mod->module_init, mod->init_size)) nextval = (unsigned long)mod->module_init+mod->init_text_size; else nextval = (unsigned long)mod->module_core+mod->core_text_size; /* Scan for closest preceeding symbol, and next symbol. (ELF starts real symbols at 1). */ for (i = 1; i < mod->num_symtab; i++) { if (mod->symtab[i].st_shndx == SHN_UNDEF) continue; /* We ignore unnamed symbols: they're uninformative * and inserted at a whim. */ if (mod->symtab[i].st_value <= addr && mod->symtab[i].st_value > mod->symtab[best].st_value && *(mod->strtab + mod->symtab[i].st_name) != '\0' && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name)) best = i; if (mod->symtab[i].st_value > addr && mod->symtab[i].st_value < nextval && *(mod->strtab + mod->symtab[i].st_name) != '\0' && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name)) nextval = mod->symtab[i].st_value; } if (!best) return NULL; *size = nextval - mod->symtab[best].st_value; *offset = addr - mod->symtab[best].st_value; return mod->strtab + mod->symtab[best].st_name; } /* For kallsyms to ask for address resolution. NULL means not found. We don't lock, as this is used for oops resolution and races are a lesser concern. */ const char *module_address_lookup(unsigned long addr, unsigned long *size, unsigned long *offset, char **modname) { struct module *mod; list_for_each_entry(mod, &modules, list) { if (within(addr, mod->module_init, mod->init_size) || within(addr, mod->module_core, mod->core_size)) { if (modname) *modname = mod->name; return get_ksymbol(mod, addr, size, offset); } } return NULL; } struct module *module_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *name, size_t namelen) { struct module *mod; mutex_lock(&module_mutex); list_for_each_entry(mod, &modules, list) { if (symnum < mod->num_symtab) { *value = mod->symtab[symnum].st_value; *type = mod->symtab[symnum].st_info; strlcpy(name, mod->strtab + mod->symtab[symnum].st_name, namelen); mutex_unlock(&module_mutex); return mod; } symnum -= mod->num_symtab; } mutex_unlock(&module_mutex); return NULL; } static unsigned long mod_find_symname(struct module *mod, const char *name) { unsigned int i; for (i = 0; i < mod->num_symtab; i++) if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 && mod->symtab[i].st_info != 'U') return mod->symtab[i].st_value; return 0; } /* Look for this name: can be of form module:name. */ unsigned long module_kallsyms_lookup_name(const char *name) { struct module *mod; char *colon; unsigned long ret = 0; /* Don't lock: we're in enough trouble already. */ if ((colon = strchr(name, ':')) != NULL) { *colon = '\0'; if ((mod = find_module(name)) != NULL) ret = mod_find_symname(mod, colon+1); *colon = ':'; } else { list_for_each_entry(mod, &modules, list) if ((ret = mod_find_symname(mod, name)) != 0) break; } return ret; } #endif /* CONFIG_KALLSYMS */ /* Called by the /proc file system to return a list of modules. */ static void *m_start(struct seq_file *m, loff_t *pos) { struct list_head *i; loff_t n = 0; mutex_lock(&module_mutex); list_for_each(i, &modules) { if (n++ == *pos) break; } if (i == &modules) return NULL; return i; } static void *m_next(struct seq_file *m, void *p, loff_t *pos) { struct list_head *i = p; (*pos)++; if (i->next == &modules) return NULL; return i->next; } static void m_stop(struct seq_file *m, void *p) { mutex_unlock(&module_mutex); } static char *taint_flags(unsigned int taints, char *buf) { int bx = 0; if (taints) { buf[bx++] = '('; if (taints & TAINT_PROPRIETARY_MODULE) buf[bx++] = 'P'; if (taints & TAINT_FORCED_MODULE) buf[bx++] = 'F'; /* * TAINT_FORCED_RMMOD: could be added. * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't * apply to modules. */ buf[bx++] = ')'; } buf[bx] = '\0'; return buf; } static int m_show(struct seq_file *m, void *p) { struct module *mod = list_entry(p, struct module, list); char buf[8]; seq_printf(m, "%s %lu", mod->name, mod->init_size + mod->core_size); print_unload_info(m, mod); /* Informative for users. */ seq_printf(m, " %s", mod->state == MODULE_STATE_GOING ? "Unloading": mod->state == MODULE_STATE_COMING ? "Loading": "Live"); /* Used by oprofile and other similar tools. */ seq_printf(m, " 0x%p", mod->module_core); /* Taints info */ if (mod->taints) seq_printf(m, " %s", taint_flags(mod->taints, buf)); seq_printf(m, "\n"); return 0; } /* Format: modulename size refcount deps address Where refcount is a number or -, and deps is a comma-separated list of depends or -. */ const struct seq_operations modules_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = m_show }; /* Given an address, look for it in the module exception tables. */ const struct exception_table_entry *search_module_extables(unsigned long addr) { unsigned long flags; const struct exception_table_entry *e = NULL; struct module *mod; spin_lock_irqsave(&modlist_lock, flags); list_for_each_entry(mod, &modules, list) { if (mod->num_exentries == 0) continue; e = search_extable(mod->extable, mod->extable + mod->num_exentries - 1, addr); if (e) break; } spin_unlock_irqrestore(&modlist_lock, flags); /* Now, if we found one, we are running inside it now, hence we cannot unload the module, hence no refcnt needed. */ return e; } /* * Is this a valid module address? */ int is_module_address(unsigned long addr) { unsigned long flags; struct module *mod; spin_lock_irqsave(&modlist_lock, flags); list_for_each_entry(mod, &modules, list) { if (within(addr, mod->module_core, mod->core_size)) { spin_unlock_irqrestore(&modlist_lock, flags); return 1; } } spin_unlock_irqrestore(&modlist_lock, flags); return 0; } /* Is this a valid kernel address? We don't grab the lock: we are oopsing. */ struct module *__module_text_address(unsigned long addr) { struct module *mod; list_for_each_entry(mod, &modules, list) if (within(addr, mod->module_init, mod->init_text_size) || within(addr, mod->module_core, mod->core_text_size)) return mod; return NULL; } struct module *module_text_address(unsigned long addr) { struct module *mod; unsigned long flags; spin_lock_irqsave(&modlist_lock, flags); mod = __module_text_address(addr); spin_unlock_irqrestore(&modlist_lock, flags); return mod; } /* Don't grab lock, we're oopsing. */ void print_modules(void) { struct module *mod; char buf[8]; printk("Modules linked in:"); list_for_each_entry(mod, &modules, list) printk(" %s%s", mod->name, taint_flags(mod->taints, buf)); printk("\n"); } #ifdef CONFIG_SYSFS static char *make_driver_name(struct device_driver *drv) { char *driver_name; driver_name = kmalloc(strlen(drv->name) + strlen(drv->bus->name) + 2, GFP_KERNEL); if (!driver_name) return NULL; sprintf(driver_name, "%s:%s", drv->bus->name, drv->name); return driver_name; } static void module_create_drivers_dir(struct module_kobject *mk) { if (!mk || mk->drivers_dir) return; mk->drivers_dir = kobject_add_dir(&mk->kobj, "drivers"); } void module_add_driver(struct module *mod, struct device_driver *drv) { char *driver_name; int no_warn; struct module_kobject *mk = NULL; if (!drv) return; if (mod) mk = &mod->mkobj; else if (drv->mod_name) { struct kobject *mkobj; /* Lookup built-in module entry in /sys/modules */ mkobj = kset_find_obj(&module_subsys.kset, drv->mod_name); if (mkobj) mk = container_of(mkobj, struct module_kobject, kobj); } if (!mk) return; /* Don't check return codes; these calls are idempotent */ no_warn = sysfs_create_link(&drv->kobj, &mk->kobj, "module"); driver_name = make_driver_name(drv); if (driver_name) { module_create_drivers_dir(mk); no_warn = sysfs_create_link(mk->drivers_dir, &drv->kobj, driver_name); kfree(driver_name); } } EXPORT_SYMBOL(module_add_driver); void module_remove_driver(struct device_driver *drv) { char *driver_name; if (!drv) return; sysfs_remove_link(&drv->kobj, "module"); if (drv->owner && drv->owner->mkobj.drivers_dir) { driver_name = make_driver_name(drv); if (driver_name) { sysfs_remove_link(drv->owner->mkobj.drivers_dir, driver_name); kfree(driver_name); } } /* * Undo the additional reference we added in module_add_driver() * via kset_find_obj() */ if (drv->mod_name) kobject_put(&drv->kobj); } EXPORT_SYMBOL(module_remove_driver); #endif #ifdef CONFIG_MODVERSIONS /* Generate the signature for struct module here, too, for modversions. */ void struct_module(struct module *mod) { return; } EXPORT_SYMBOL(struct_module); #endif