/* * kernel/power/disk.c - Suspend-to-disk support. * * Copyright (c) 2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * Copyright (c) 2004 Pavel Machek <pavel@suse.cz> * * This file is released under the GPLv2. * */ #include <linux/suspend.h> #include <linux/syscalls.h> #include <linux/reboot.h> #include <linux/string.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/pm.h> #include <linux/console.h> #include <linux/cpu.h> #include <linux/freezer.h> #include "power.h" static int noresume = 0; char resume_file[256] = CONFIG_PM_STD_PARTITION; dev_t swsusp_resume_device; sector_t swsusp_resume_block; enum { HIBERNATION_INVALID, HIBERNATION_PLATFORM, HIBERNATION_TEST, HIBERNATION_TESTPROC, HIBERNATION_SHUTDOWN, HIBERNATION_REBOOT, /* keep last */ __HIBERNATION_AFTER_LAST }; #define HIBERNATION_MAX (__HIBERNATION_AFTER_LAST-1) #define HIBERNATION_FIRST (HIBERNATION_INVALID + 1) static int hibernation_mode = HIBERNATION_SHUTDOWN; struct hibernation_ops *hibernation_ops; /** * hibernation_set_ops - set the global hibernate operations * @ops: the hibernation operations to use in subsequent hibernation transitions */ void hibernation_set_ops(struct hibernation_ops *ops) { if (ops && !(ops->prepare && ops->enter && ops->finish)) { WARN_ON(1); return; } mutex_lock(&pm_mutex); hibernation_ops = ops; if (ops) hibernation_mode = HIBERNATION_PLATFORM; else if (hibernation_mode == HIBERNATION_PLATFORM) hibernation_mode = HIBERNATION_SHUTDOWN; mutex_unlock(&pm_mutex); } /** * platform_prepare - prepare the machine for hibernation using the * platform driver if so configured and return an error code if it fails */ static int platform_prepare(void) { return (hibernation_mode == HIBERNATION_PLATFORM && hibernation_ops) ? hibernation_ops->prepare() : 0; } /** * platform_finish - switch the machine to the normal mode of operation * using the platform driver (must be called after platform_prepare()) */ static void platform_finish(void) { if (hibernation_mode == HIBERNATION_PLATFORM && hibernation_ops) hibernation_ops->finish(); } /** * power_down - Shut the machine down for hibernation. * * Use the platform driver, if configured so; otherwise try * to power off or reboot. */ static void power_down(void) { switch (hibernation_mode) { case HIBERNATION_TEST: case HIBERNATION_TESTPROC: break; case HIBERNATION_SHUTDOWN: kernel_power_off(); break; case HIBERNATION_REBOOT: kernel_restart(NULL); break; case HIBERNATION_PLATFORM: if (hibernation_ops) { kernel_shutdown_prepare(SYSTEM_SUSPEND_DISK); hibernation_ops->enter(); break; } } kernel_halt(); /* * Valid image is on the disk, if we continue we risk serious data * corruption after resume. */ printk(KERN_CRIT "Please power me down manually\n"); while(1); } static void unprepare_processes(void) { thaw_processes(); pm_restore_console(); } static int prepare_processes(void) { int error = 0; pm_prepare_console(); if (freeze_processes()) { error = -EBUSY; unprepare_processes(); } return error; } /** * hibernate - The granpappy of the built-in hibernation management */ int hibernate(void) { int error; /* The snapshot device should not be opened while we're running */ if (!atomic_add_unless(&snapshot_device_available, -1, 0)) return -EBUSY; /* Allocate memory management structures */ error = create_basic_memory_bitmaps(); if (error) goto Exit; error = prepare_processes(); if (error) goto Finish; mutex_lock(&pm_mutex); if (hibernation_mode == HIBERNATION_TESTPROC) { printk("swsusp debug: Waiting for 5 seconds.\n"); mdelay(5000); goto Thaw; } /* Free memory before shutting down devices. */ error = swsusp_shrink_memory(); if (error) goto Thaw; error = platform_prepare(); if (error) goto Thaw; suspend_console(); error = device_suspend(PMSG_FREEZE); if (error) { printk(KERN_ERR "PM: Some devices failed to suspend\n"); goto Resume_devices; } error = disable_nonboot_cpus(); if (error) goto Enable_cpus; if (hibernation_mode == HIBERNATION_TEST) { printk("swsusp debug: Waiting for 5 seconds.\n"); mdelay(5000); goto Enable_cpus; } pr_debug("PM: snapshotting memory.\n"); in_suspend = 1; error = swsusp_suspend(); if (error) goto Enable_cpus; if (in_suspend) { enable_nonboot_cpus(); platform_finish(); device_resume(); resume_console(); pr_debug("PM: writing image.\n"); error = swsusp_write(); if (!error) power_down(); else { swsusp_free(); goto Thaw; } } else { pr_debug("PM: Image restored successfully.\n"); } swsusp_free(); Enable_cpus: enable_nonboot_cpus(); Resume_devices: platform_finish(); device_resume(); resume_console(); Thaw: mutex_unlock(&pm_mutex); unprepare_processes(); Finish: free_basic_memory_bitmaps(); Exit: atomic_inc(&snapshot_device_available); return error; } /** * software_resume - Resume from a saved image. * * Called as a late_initcall (so all devices are discovered and * initialized), we call swsusp to see if we have a saved image or not. * If so, we quiesce devices, the restore the saved image. We will * return above (in hibernate() ) if everything goes well. * Otherwise, we fail gracefully and return to the normally * scheduled program. * */ static int software_resume(void) { int error; mutex_lock(&pm_mutex); if (!swsusp_resume_device) { if (!strlen(resume_file)) { mutex_unlock(&pm_mutex); return -ENOENT; } swsusp_resume_device = name_to_dev_t(resume_file); pr_debug("swsusp: Resume From Partition %s\n", resume_file); } else { pr_debug("swsusp: Resume From Partition %d:%d\n", MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device)); } if (noresume) { /** * FIXME: If noresume is specified, we need to find the partition * and reset it back to normal swap space. */ mutex_unlock(&pm_mutex); return 0; } pr_debug("PM: Checking swsusp image.\n"); error = swsusp_check(); if (error) goto Unlock; /* The snapshot device should not be opened while we're running */ if (!atomic_add_unless(&snapshot_device_available, -1, 0)) { error = -EBUSY; goto Unlock; } error = create_basic_memory_bitmaps(); if (error) goto Finish; pr_debug("PM: Preparing processes for restore.\n"); error = prepare_processes(); if (error) { swsusp_close(); goto Done; } pr_debug("PM: Reading swsusp image.\n"); error = swsusp_read(); if (error) { swsusp_free(); goto Thaw; } pr_debug("PM: Preparing devices for restore.\n"); suspend_console(); error = device_suspend(PMSG_PRETHAW); if (error) goto Free; error = disable_nonboot_cpus(); if (!error) swsusp_resume(); enable_nonboot_cpus(); Free: swsusp_free(); device_resume(); resume_console(); Thaw: printk(KERN_ERR "PM: Restore failed, recovering.\n"); unprepare_processes(); Done: free_basic_memory_bitmaps(); Finish: atomic_inc(&snapshot_device_available); /* For success case, the suspend path will release the lock */ Unlock: mutex_unlock(&pm_mutex); pr_debug("PM: Resume from disk failed.\n"); return 0; } late_initcall(software_resume); static const char * const hibernation_modes[] = { [HIBERNATION_PLATFORM] = "platform", [HIBERNATION_SHUTDOWN] = "shutdown", [HIBERNATION_REBOOT] = "reboot", [HIBERNATION_TEST] = "test", [HIBERNATION_TESTPROC] = "testproc", }; /** * disk - Control hibernation mode * * Suspend-to-disk can be handled in several ways. We have a few options * for putting the system to sleep - using the platform driver (e.g. ACPI * or other hibernation_ops), powering off the system or rebooting the * system (for testing) as well as the two test modes. * * The system can support 'platform', and that is known a priori (and * encoded by the presence of hibernation_ops). However, the user may * choose 'shutdown' or 'reboot' as alternatives, as well as one fo the * test modes, 'test' or 'testproc'. * * show() will display what the mode is currently set to. * store() will accept one of * * 'platform' * 'shutdown' * 'reboot' * 'test' * 'testproc' * * It will only change to 'platform' if the system * supports it (as determined by having hibernation_ops). */ static ssize_t disk_show(struct kset *kset, char *buf) { int i; char *start = buf; for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) { if (!hibernation_modes[i]) continue; switch (i) { case HIBERNATION_SHUTDOWN: case HIBERNATION_REBOOT: case HIBERNATION_TEST: case HIBERNATION_TESTPROC: break; case HIBERNATION_PLATFORM: if (hibernation_ops) break; /* not a valid mode, continue with loop */ continue; } if (i == hibernation_mode) buf += sprintf(buf, "[%s] ", hibernation_modes[i]); else buf += sprintf(buf, "%s ", hibernation_modes[i]); } buf += sprintf(buf, "\n"); return buf-start; } static ssize_t disk_store(struct kset *kset, const char *buf, size_t n) { int error = 0; int i; int len; char *p; int mode = HIBERNATION_INVALID; p = memchr(buf, '\n', n); len = p ? p - buf : n; mutex_lock(&pm_mutex); for (i = HIBERNATION_FIRST; i <= HIBERNATION_MAX; i++) { if (len == strlen(hibernation_modes[i]) && !strncmp(buf, hibernation_modes[i], len)) { mode = i; break; } } if (mode != HIBERNATION_INVALID) { switch (mode) { case HIBERNATION_SHUTDOWN: case HIBERNATION_REBOOT: case HIBERNATION_TEST: case HIBERNATION_TESTPROC: hibernation_mode = mode; break; case HIBERNATION_PLATFORM: if (hibernation_ops) hibernation_mode = mode; else error = -EINVAL; } } else error = -EINVAL; if (!error) pr_debug("PM: suspend-to-disk mode set to '%s'\n", hibernation_modes[mode]); mutex_unlock(&pm_mutex); return error ? error : n; } power_attr(disk); static ssize_t resume_show(struct kset *kset, char *buf) { return sprintf(buf,"%d:%d\n", MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device)); } static ssize_t resume_store(struct kset *kset, const char *buf, size_t n) { unsigned int maj, min; dev_t res; int ret = -EINVAL; if (sscanf(buf, "%u:%u", &maj, &min) != 2) goto out; res = MKDEV(maj,min); if (maj != MAJOR(res) || min != MINOR(res)) goto out; mutex_lock(&pm_mutex); swsusp_resume_device = res; mutex_unlock(&pm_mutex); printk("Attempting manual resume\n"); noresume = 0; software_resume(); ret = n; out: return ret; } power_attr(resume); static ssize_t image_size_show(struct kset *kset, char *buf) { return sprintf(buf, "%lu\n", image_size); } static ssize_t image_size_store(struct kset *kset, const char *buf, size_t n) { unsigned long size; if (sscanf(buf, "%lu", &size) == 1) { image_size = size; return n; } return -EINVAL; } power_attr(image_size); static struct attribute * g[] = { &disk_attr.attr, &resume_attr.attr, &image_size_attr.attr, NULL, }; static struct attribute_group attr_group = { .attrs = g, }; static int __init pm_disk_init(void) { return sysfs_create_group(&power_subsys.kobj, &attr_group); } core_initcall(pm_disk_init); static int __init resume_setup(char *str) { if (noresume) return 1; strncpy( resume_file, str, 255 ); return 1; } static int __init resume_offset_setup(char *str) { unsigned long long offset; if (noresume) return 1; if (sscanf(str, "%llu", &offset) == 1) swsusp_resume_block = offset; return 1; } static int __init noresume_setup(char *str) { noresume = 1; return 1; } __setup("noresume", noresume_setup); __setup("resume_offset=", resume_offset_setup); __setup("resume=", resume_setup);