/* * kernel/sched_cpupri.c * * CPU priority management * * Copyright (C) 2007-2008 Novell * * Author: Gregory Haskins <ghaskins@novell.com> * * This code tracks the priority of each CPU so that global migration * decisions are easy to calculate. Each CPU can be in a state as follows: * * (INVALID), IDLE, NORMAL, RT1, ... RT99 * * going from the lowest priority to the highest. CPUs in the INVALID state * are not eligible for routing. The system maintains this state with * a 2 dimensional bitmap (the first for priority class, the second for cpus * in that class). Therefore a typical application without affinity * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit * searches). For tasks with affinity restrictions, the algorithm has a * worst case complexity of O(min(102, nr_domcpus)), though the scenario that * yields the worst case search is fairly contrived. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include "sched_cpupri.h" /* Convert between a 140 based task->prio, and our 102 based cpupri */ static int convert_prio(int prio) { int cpupri; if (prio == CPUPRI_INVALID) cpupri = CPUPRI_INVALID; else if (prio == MAX_PRIO) cpupri = CPUPRI_IDLE; else if (prio >= MAX_RT_PRIO) cpupri = CPUPRI_NORMAL; else cpupri = MAX_RT_PRIO - prio + 1; return cpupri; } #define for_each_cpupri_active(array, idx) \ for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \ idx < CPUPRI_NR_PRIORITIES; \ idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1)) /** * cpupri_find - find the best (lowest-pri) CPU in the system * @cp: The cpupri context * @p: The task * @lowest_mask: A mask to fill in with selected CPUs (or NULL) * * Note: This function returns the recommended CPUs as calculated during the * current invokation. By the time the call returns, the CPUs may have in * fact changed priorities any number of times. While not ideal, it is not * an issue of correctness since the normal rebalancer logic will correct * any discrepancies created by racing against the uncertainty of the current * priority configuration. * * Returns: (int)bool - CPUs were found */ int cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask) { int idx = 0; int task_pri = convert_prio(p->prio); for_each_cpupri_active(cp->pri_active, idx) { struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; if (idx >= task_pri) break; if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) continue; if (lowest_mask) { cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); /* * We have to ensure that we have at least one bit * still set in the array, since the map could have * been concurrently emptied between the first and * second reads of vec->mask. If we hit this * condition, simply act as though we never hit this * priority level and continue on. */ if (cpumask_any(lowest_mask) >= nr_cpu_ids) continue; } return 1; } return 0; } /** * cpupri_set - update the cpu priority setting * @cp: The cpupri context * @cpu: The target cpu * @pri: The priority (INVALID-RT99) to assign to this CPU * * Note: Assumes cpu_rq(cpu)->lock is locked * * Returns: (void) */ void cpupri_set(struct cpupri *cp, int cpu, int newpri) { int *currpri = &cp->cpu_to_pri[cpu]; int oldpri = *currpri; unsigned long flags; newpri = convert_prio(newpri); BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); if (newpri == oldpri) return; /* * If the cpu was currently mapped to a different value, we * need to map it to the new value then remove the old value. * Note, we must add the new value first, otherwise we risk the * cpu being cleared from pri_active, and this cpu could be * missed for a push or pull. */ if (likely(newpri != CPUPRI_INVALID)) { struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; spin_lock_irqsave(&vec->lock, flags); cpumask_set_cpu(cpu, vec->mask); vec->count++; if (vec->count == 1) set_bit(newpri, cp->pri_active); spin_unlock_irqrestore(&vec->lock, flags); } if (likely(oldpri != CPUPRI_INVALID)) { struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; spin_lock_irqsave(&vec->lock, flags); vec->count--; if (!vec->count) clear_bit(oldpri, cp->pri_active); cpumask_clear_cpu(cpu, vec->mask); spin_unlock_irqrestore(&vec->lock, flags); } *currpri = newpri; } /** * cpupri_init - initialize the cpupri structure * @cp: The cpupri context * @bootmem: true if allocations need to use bootmem * * Returns: -ENOMEM if memory fails. */ int cpupri_init(struct cpupri *cp, bool bootmem) { gfp_t gfp = GFP_KERNEL; int i; if (bootmem) gfp = GFP_NOWAIT; memset(cp, 0, sizeof(*cp)); for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { struct cpupri_vec *vec = &cp->pri_to_cpu[i]; spin_lock_init(&vec->lock); vec->count = 0; if (!zalloc_cpumask_var(&vec->mask, gfp)) goto cleanup; } for_each_possible_cpu(i) cp->cpu_to_pri[i] = CPUPRI_INVALID; return 0; cleanup: for (i--; i >= 0; i--) free_cpumask_var(cp->pri_to_cpu[i].mask); return -ENOMEM; } /** * cpupri_cleanup - clean up the cpupri structure * @cp: The cpupri context */ void cpupri_cleanup(struct cpupri *cp) { int i; for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) free_cpumask_var(cp->pri_to_cpu[i].mask); }