/* net/atm/clip.c - RFC1577 Classical IP over ATM */ /* Written 1995-2000 by Werner Almesberger, EPFL LRC/ICA */ #include <linux/string.h> #include <linux/errno.h> #include <linux/kernel.h> /* for UINT_MAX */ #include <linux/module.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/wait.h> #include <linux/timer.h> #include <linux/if_arp.h> /* for some manifest constants */ #include <linux/notifier.h> #include <linux/atm.h> #include <linux/atmdev.h> #include <linux/atmclip.h> #include <linux/atmarp.h> #include <linux/capability.h> #include <linux/ip.h> /* for net/route.h */ #include <linux/in.h> /* for struct sockaddr_in */ #include <linux/if.h> /* for IFF_UP */ #include <linux/inetdevice.h> #include <linux/bitops.h> #include <linux/poison.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <linux/jhash.h> #include <net/route.h> /* for struct rtable and routing */ #include <net/icmp.h> /* icmp_send */ #include <asm/param.h> /* for HZ */ #include <asm/byteorder.h> /* for htons etc. */ #include <asm/system.h> /* save/restore_flags */ #include <asm/uaccess.h> #include <asm/atomic.h> #include "common.h" #include "resources.h" #include <net/atmclip.h> static struct net_device *clip_devs; static struct atm_vcc *atmarpd; static struct neigh_table clip_tbl; static struct timer_list idle_timer; static int to_atmarpd(enum atmarp_ctrl_type type, int itf, __be32 ip) { struct sock *sk; struct atmarp_ctrl *ctrl; struct sk_buff *skb; pr_debug("to_atmarpd(%d)\n", type); if (!atmarpd) return -EUNATCH; skb = alloc_skb(sizeof(struct atmarp_ctrl),GFP_ATOMIC); if (!skb) return -ENOMEM; ctrl = (struct atmarp_ctrl *) skb_put(skb,sizeof(struct atmarp_ctrl)); ctrl->type = type; ctrl->itf_num = itf; ctrl->ip = ip; atm_force_charge(atmarpd, skb->truesize); sk = sk_atm(atmarpd); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk, skb->len); return 0; } static void link_vcc(struct clip_vcc *clip_vcc, struct atmarp_entry *entry) { pr_debug("link_vcc %p to entry %p (neigh %p)\n", clip_vcc, entry, entry->neigh); clip_vcc->entry = entry; clip_vcc->xoff = 0; /* @@@ may overrun buffer by one packet */ clip_vcc->next = entry->vccs; entry->vccs = clip_vcc; entry->neigh->used = jiffies; } static void unlink_clip_vcc(struct clip_vcc *clip_vcc) { struct atmarp_entry *entry = clip_vcc->entry; struct clip_vcc **walk; if (!entry) { printk(KERN_CRIT "!clip_vcc->entry (clip_vcc %p)\n", clip_vcc); return; } netif_tx_lock_bh(entry->neigh->dev); /* block clip_start_xmit() */ entry->neigh->used = jiffies; for (walk = &entry->vccs; *walk; walk = &(*walk)->next) if (*walk == clip_vcc) { int error; *walk = clip_vcc->next; /* atomic */ clip_vcc->entry = NULL; if (clip_vcc->xoff) netif_wake_queue(entry->neigh->dev); if (entry->vccs) goto out; entry->expires = jiffies - 1; /* force resolution or expiration */ error = neigh_update(entry->neigh, NULL, NUD_NONE, NEIGH_UPDATE_F_ADMIN); if (error) printk(KERN_CRIT "unlink_clip_vcc: " "neigh_update failed with %d\n", error); goto out; } printk(KERN_CRIT "ATMARP: unlink_clip_vcc failed (entry %p, vcc " "0x%p)\n", entry, clip_vcc); out: netif_tx_unlock_bh(entry->neigh->dev); } /* The neighbour entry n->lock is held. */ static int neigh_check_cb(struct neighbour *n) { struct atmarp_entry *entry = NEIGH2ENTRY(n); struct clip_vcc *cv; for (cv = entry->vccs; cv; cv = cv->next) { unsigned long exp = cv->last_use + cv->idle_timeout; if (cv->idle_timeout && time_after(jiffies, exp)) { pr_debug("releasing vcc %p->%p of entry %p\n", cv, cv->vcc, entry); vcc_release_async(cv->vcc, -ETIMEDOUT); } } if (entry->vccs || time_before(jiffies, entry->expires)) return 0; if (atomic_read(&n->refcnt) > 1) { struct sk_buff *skb; pr_debug("destruction postponed with ref %d\n", atomic_read(&n->refcnt)); while ((skb = skb_dequeue(&n->arp_queue)) != NULL) dev_kfree_skb(skb); return 0; } pr_debug("expired neigh %p\n", n); return 1; } static void idle_timer_check(unsigned long dummy) { write_lock(&clip_tbl.lock); __neigh_for_each_release(&clip_tbl, neigh_check_cb); mod_timer(&idle_timer, jiffies + CLIP_CHECK_INTERVAL * HZ); write_unlock(&clip_tbl.lock); } static int clip_arp_rcv(struct sk_buff *skb) { struct atm_vcc *vcc; pr_debug("clip_arp_rcv\n"); vcc = ATM_SKB(skb)->vcc; if (!vcc || !atm_charge(vcc, skb->truesize)) { dev_kfree_skb_any(skb); return 0; } pr_debug("pushing to %p\n", vcc); pr_debug("using %p\n", CLIP_VCC(vcc)->old_push); CLIP_VCC(vcc)->old_push(vcc, skb); return 0; } static const unsigned char llc_oui[] = { 0xaa, /* DSAP: non-ISO */ 0xaa, /* SSAP: non-ISO */ 0x03, /* Ctrl: Unnumbered Information Command PDU */ 0x00, /* OUI: EtherType */ 0x00, 0x00 }; static void clip_push(struct atm_vcc *vcc, struct sk_buff *skb) { struct clip_vcc *clip_vcc = CLIP_VCC(vcc); pr_debug("clip push\n"); if (!skb) { pr_debug("removing VCC %p\n", clip_vcc); if (clip_vcc->entry) unlink_clip_vcc(clip_vcc); clip_vcc->old_push(vcc, NULL); /* pass on the bad news */ kfree(clip_vcc); return; } atm_return(vcc, skb->truesize); skb->dev = clip_vcc->entry ? clip_vcc->entry->neigh->dev : clip_devs; /* clip_vcc->entry == NULL if we don't have an IP address yet */ if (!skb->dev) { dev_kfree_skb_any(skb); return; } ATM_SKB(skb)->vcc = vcc; skb_reset_mac_header(skb); if (!clip_vcc->encap || skb->len < RFC1483LLC_LEN || memcmp(skb->data, llc_oui, sizeof (llc_oui))) skb->protocol = htons(ETH_P_IP); else { skb->protocol = ((__be16 *) skb->data)[3]; skb_pull(skb, RFC1483LLC_LEN); if (skb->protocol == htons(ETH_P_ARP)) { skb->dev->stats.rx_packets++; skb->dev->stats.rx_bytes += skb->len; clip_arp_rcv(skb); return; } } clip_vcc->last_use = jiffies; skb->dev->stats.rx_packets++; skb->dev->stats.rx_bytes += skb->len; memset(ATM_SKB(skb), 0, sizeof(struct atm_skb_data)); netif_rx(skb); } /* * Note: these spinlocks _must_not_ block on non-SMP. The only goal is that * clip_pop is atomic with respect to the critical section in clip_start_xmit. */ static void clip_pop(struct atm_vcc *vcc, struct sk_buff *skb) { struct clip_vcc *clip_vcc = CLIP_VCC(vcc); struct net_device *dev = skb->dev; int old; unsigned long flags; pr_debug("clip_pop(vcc %p)\n", vcc); clip_vcc->old_pop(vcc, skb); /* skb->dev == NULL in outbound ARP packets */ if (!dev) return; spin_lock_irqsave(&PRIV(dev)->xoff_lock, flags); if (atm_may_send(vcc, 0)) { old = xchg(&clip_vcc->xoff, 0); if (old) netif_wake_queue(dev); } spin_unlock_irqrestore(&PRIV(dev)->xoff_lock, flags); } static void clip_neigh_solicit(struct neighbour *neigh, struct sk_buff *skb) { pr_debug("clip_neigh_solicit (neigh %p, skb %p)\n", neigh, skb); to_atmarpd(act_need, PRIV(neigh->dev)->number, NEIGH2ENTRY(neigh)->ip); } static void clip_neigh_error(struct neighbour *neigh, struct sk_buff *skb) { #ifndef CONFIG_ATM_CLIP_NO_ICMP icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0); #endif kfree_skb(skb); } static struct neigh_ops clip_neigh_ops = { .family = AF_INET, .solicit = clip_neigh_solicit, .error_report = clip_neigh_error, .output = dev_queue_xmit, .connected_output = dev_queue_xmit, .hh_output = dev_queue_xmit, .queue_xmit = dev_queue_xmit, }; static int clip_constructor(struct neighbour *neigh) { struct atmarp_entry *entry = NEIGH2ENTRY(neigh); struct net_device *dev = neigh->dev; struct in_device *in_dev; struct neigh_parms *parms; pr_debug("clip_constructor (neigh %p, entry %p)\n", neigh, entry); neigh->type = inet_addr_type(&init_net, entry->ip); if (neigh->type != RTN_UNICAST) return -EINVAL; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (!in_dev) { rcu_read_unlock(); return -EINVAL; } parms = in_dev->arp_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); rcu_read_unlock(); neigh->ops = &clip_neigh_ops; neigh->output = neigh->nud_state & NUD_VALID ? neigh->ops->connected_output : neigh->ops->output; entry->neigh = neigh; entry->vccs = NULL; entry->expires = jiffies - 1; return 0; } static u32 clip_hash(const void *pkey, const struct net_device *dev) { return jhash_2words(*(u32 *) pkey, dev->ifindex, clip_tbl.hash_rnd); } static struct neigh_table clip_tbl = { .family = AF_INET, .entry_size = sizeof(struct neighbour)+sizeof(struct atmarp_entry), .key_len = 4, .hash = clip_hash, .constructor = clip_constructor, .id = "clip_arp_cache", /* parameters are copied from ARP ... */ .parms = { .tbl = &clip_tbl, .base_reachable_time = 30 * HZ, .retrans_time = 1 * HZ, .gc_staletime = 60 * HZ, .reachable_time = 30 * HZ, .delay_probe_time = 5 * HZ, .queue_len = 3, .ucast_probes = 3, .mcast_probes = 3, .anycast_delay = 1 * HZ, .proxy_delay = (8 * HZ) / 10, .proxy_qlen = 64, .locktime = 1 * HZ, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; /* @@@ copy bh locking from arp.c -- need to bh-enable atm code before */ /* * We play with the resolve flag: 0 and 1 have the usual meaning, but -1 means * to allocate the neighbour entry but not to ask atmarpd for resolution. Also, * don't increment the usage count. This is used to create entries in * clip_setentry. */ static int clip_encap(struct atm_vcc *vcc, int mode) { CLIP_VCC(vcc)->encap = mode; return 0; } static int clip_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct clip_priv *clip_priv = PRIV(dev); struct atmarp_entry *entry; struct atm_vcc *vcc; int old; unsigned long flags; pr_debug("clip_start_xmit (skb %p)\n", skb); if (!skb_dst(skb)) { printk(KERN_ERR "clip_start_xmit: skb_dst(skb) == NULL\n"); dev_kfree_skb(skb); dev->stats.tx_dropped++; return 0; } if (!skb_dst(skb)->neighbour) { #if 0 skb_dst(skb)->neighbour = clip_find_neighbour(skb_dst(skb), 1); if (!skb_dst(skb)->neighbour) { dev_kfree_skb(skb); /* lost that one */ dev->stats.tx_dropped++; return 0; } #endif printk(KERN_ERR "clip_start_xmit: NO NEIGHBOUR !\n"); dev_kfree_skb(skb); dev->stats.tx_dropped++; return 0; } entry = NEIGH2ENTRY(skb_dst(skb)->neighbour); if (!entry->vccs) { if (time_after(jiffies, entry->expires)) { /* should be resolved */ entry->expires = jiffies + ATMARP_RETRY_DELAY * HZ; to_atmarpd(act_need, PRIV(dev)->number, entry->ip); } if (entry->neigh->arp_queue.qlen < ATMARP_MAX_UNRES_PACKETS) skb_queue_tail(&entry->neigh->arp_queue, skb); else { dev_kfree_skb(skb); dev->stats.tx_dropped++; } return 0; } pr_debug("neigh %p, vccs %p\n", entry, entry->vccs); ATM_SKB(skb)->vcc = vcc = entry->vccs->vcc; pr_debug("using neighbour %p, vcc %p\n", skb_dst(skb)->neighbour, vcc); if (entry->vccs->encap) { void *here; here = skb_push(skb, RFC1483LLC_LEN); memcpy(here, llc_oui, sizeof(llc_oui)); ((__be16 *) here)[3] = skb->protocol; } atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc); ATM_SKB(skb)->atm_options = vcc->atm_options; entry->vccs->last_use = jiffies; pr_debug("atm_skb(%p)->vcc(%p)->dev(%p)\n", skb, vcc, vcc->dev); old = xchg(&entry->vccs->xoff, 1); /* assume XOFF ... */ if (old) { printk(KERN_WARNING "clip_start_xmit: XOFF->XOFF transition\n"); return 0; } dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; vcc->send(vcc, skb); if (atm_may_send(vcc, 0)) { entry->vccs->xoff = 0; return 0; } spin_lock_irqsave(&clip_priv->xoff_lock, flags); netif_stop_queue(dev); /* XOFF -> throttle immediately */ barrier(); if (!entry->vccs->xoff) netif_start_queue(dev); /* Oh, we just raced with clip_pop. netif_start_queue should be good enough, because nothing should really be asleep because of the brief netif_stop_queue. If this isn't true or if it changes, use netif_wake_queue instead. */ spin_unlock_irqrestore(&clip_priv->xoff_lock, flags); return 0; } static int clip_mkip(struct atm_vcc *vcc, int timeout) { struct sk_buff_head *rq, queue; struct clip_vcc *clip_vcc; struct sk_buff *skb, *tmp; unsigned long flags; if (!vcc->push) return -EBADFD; clip_vcc = kmalloc(sizeof(struct clip_vcc), GFP_KERNEL); if (!clip_vcc) return -ENOMEM; pr_debug("mkip clip_vcc %p vcc %p\n", clip_vcc, vcc); clip_vcc->vcc = vcc; vcc->user_back = clip_vcc; set_bit(ATM_VF_IS_CLIP, &vcc->flags); clip_vcc->entry = NULL; clip_vcc->xoff = 0; clip_vcc->encap = 1; clip_vcc->last_use = jiffies; clip_vcc->idle_timeout = timeout * HZ; clip_vcc->old_push = vcc->push; clip_vcc->old_pop = vcc->pop; vcc->push = clip_push; vcc->pop = clip_pop; __skb_queue_head_init(&queue); rq = &sk_atm(vcc)->sk_receive_queue; spin_lock_irqsave(&rq->lock, flags); skb_queue_splice_init(rq, &queue); spin_unlock_irqrestore(&rq->lock, flags); /* re-process everything received between connection setup and MKIP */ skb_queue_walk_safe(&queue, skb, tmp) { if (!clip_devs) { atm_return(vcc, skb->truesize); kfree_skb(skb); } else { struct net_device *dev = skb->dev; unsigned int len = skb->len; skb_get(skb); clip_push(vcc, skb); dev->stats.rx_packets--; dev->stats.rx_bytes -= len; kfree_skb(skb); } } return 0; } static int clip_setentry(struct atm_vcc *vcc, __be32 ip) { struct neighbour *neigh; struct atmarp_entry *entry; int error; struct clip_vcc *clip_vcc; struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip, .tos = 1}} }; struct rtable *rt; if (vcc->push != clip_push) { printk(KERN_WARNING "clip_setentry: non-CLIP VCC\n"); return -EBADF; } clip_vcc = CLIP_VCC(vcc); if (!ip) { if (!clip_vcc->entry) { printk(KERN_ERR "hiding hidden ATMARP entry\n"); return 0; } pr_debug("setentry: remove\n"); unlink_clip_vcc(clip_vcc); return 0; } error = ip_route_output_key(&init_net, &rt, &fl); if (error) return error; neigh = __neigh_lookup(&clip_tbl, &ip, rt->u.dst.dev, 1); ip_rt_put(rt); if (!neigh) return -ENOMEM; entry = NEIGH2ENTRY(neigh); if (entry != clip_vcc->entry) { if (!clip_vcc->entry) pr_debug("setentry: add\n"); else { pr_debug("setentry: update\n"); unlink_clip_vcc(clip_vcc); } link_vcc(clip_vcc, entry); } error = neigh_update(neigh, llc_oui, NUD_PERMANENT, NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN); neigh_release(neigh); return error; } static const struct net_device_ops clip_netdev_ops = { .ndo_start_xmit = clip_start_xmit, }; static void clip_setup(struct net_device *dev) { dev->netdev_ops = &clip_netdev_ops; dev->type = ARPHRD_ATM; dev->hard_header_len = RFC1483LLC_LEN; dev->mtu = RFC1626_MTU; dev->tx_queue_len = 100; /* "normal" queue (packets) */ /* When using a "real" qdisc, the qdisc determines the queue */ /* length. tx_queue_len is only used for the default case, */ /* without any more elaborate queuing. 100 is a reasonable */ /* compromise between decent burst-tolerance and protection */ /* against memory hogs. */ dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; } static int clip_create(int number) { struct net_device *dev; struct clip_priv *clip_priv; int error; if (number != -1) { for (dev = clip_devs; dev; dev = PRIV(dev)->next) if (PRIV(dev)->number == number) return -EEXIST; } else { number = 0; for (dev = clip_devs; dev; dev = PRIV(dev)->next) if (PRIV(dev)->number >= number) number = PRIV(dev)->number + 1; } dev = alloc_netdev(sizeof(struct clip_priv), "", clip_setup); if (!dev) return -ENOMEM; clip_priv = PRIV(dev); sprintf(dev->name, "atm%d", number); spin_lock_init(&clip_priv->xoff_lock); clip_priv->number = number; error = register_netdev(dev); if (error) { free_netdev(dev); return error; } clip_priv->next = clip_devs; clip_devs = dev; pr_debug("registered (net:%s)\n", dev->name); return number; } static int clip_device_event(struct notifier_block *this, unsigned long event, void *arg) { struct net_device *dev = arg; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; if (event == NETDEV_UNREGISTER) { neigh_ifdown(&clip_tbl, dev); return NOTIFY_DONE; } /* ignore non-CLIP devices */ if (dev->type != ARPHRD_ATM || dev->netdev_ops != &clip_netdev_ops) return NOTIFY_DONE; switch (event) { case NETDEV_UP: pr_debug("clip_device_event NETDEV_UP\n"); to_atmarpd(act_up, PRIV(dev)->number, 0); break; case NETDEV_GOING_DOWN: pr_debug("clip_device_event NETDEV_DOWN\n"); to_atmarpd(act_down, PRIV(dev)->number, 0); break; case NETDEV_CHANGE: case NETDEV_CHANGEMTU: pr_debug("clip_device_event NETDEV_CHANGE*\n"); to_atmarpd(act_change, PRIV(dev)->number, 0); break; } return NOTIFY_DONE; } static int clip_inet_event(struct notifier_block *this, unsigned long event, void *ifa) { struct in_device *in_dev; in_dev = ((struct in_ifaddr *)ifa)->ifa_dev; /* * Transitions are of the down-change-up type, so it's sufficient to * handle the change on up. */ if (event != NETDEV_UP) return NOTIFY_DONE; return clip_device_event(this, NETDEV_CHANGE, in_dev->dev); } static struct notifier_block clip_dev_notifier = { .notifier_call = clip_device_event, }; static struct notifier_block clip_inet_notifier = { .notifier_call = clip_inet_event, }; static void atmarpd_close(struct atm_vcc *vcc) { pr_debug("atmarpd_close\n"); rtnl_lock(); atmarpd = NULL; skb_queue_purge(&sk_atm(vcc)->sk_receive_queue); rtnl_unlock(); pr_debug("(done)\n"); module_put(THIS_MODULE); } static struct atmdev_ops atmarpd_dev_ops = { .close = atmarpd_close }; static struct atm_dev atmarpd_dev = { .ops = &atmarpd_dev_ops, .type = "arpd", .number = 999, .lock = __SPIN_LOCK_UNLOCKED(atmarpd_dev.lock) }; static int atm_init_atmarp(struct atm_vcc *vcc) { rtnl_lock(); if (atmarpd) { rtnl_unlock(); return -EADDRINUSE; } mod_timer(&idle_timer, jiffies+CLIP_CHECK_INTERVAL*HZ); atmarpd = vcc; set_bit(ATM_VF_META,&vcc->flags); set_bit(ATM_VF_READY,&vcc->flags); /* allow replies and avoid getting closed if signaling dies */ vcc->dev = &atmarpd_dev; vcc_insert_socket(sk_atm(vcc)); vcc->push = NULL; vcc->pop = NULL; /* crash */ vcc->push_oam = NULL; /* crash */ rtnl_unlock(); return 0; } static int clip_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct atm_vcc *vcc = ATM_SD(sock); int err = 0; switch (cmd) { case SIOCMKCLIP: case ATMARPD_CTRL: case ATMARP_MKIP: case ATMARP_SETENTRY: case ATMARP_ENCAP: if (!capable(CAP_NET_ADMIN)) return -EPERM; break; default: return -ENOIOCTLCMD; } switch (cmd) { case SIOCMKCLIP: err = clip_create(arg); break; case ATMARPD_CTRL: err = atm_init_atmarp(vcc); if (!err) { sock->state = SS_CONNECTED; __module_get(THIS_MODULE); } break; case ATMARP_MKIP: err = clip_mkip(vcc, arg); break; case ATMARP_SETENTRY: err = clip_setentry(vcc, (__force __be32)arg); break; case ATMARP_ENCAP: err = clip_encap(vcc, arg); break; } return err; } static struct atm_ioctl clip_ioctl_ops = { .owner = THIS_MODULE, .ioctl = clip_ioctl, }; #ifdef CONFIG_PROC_FS static void svc_addr(struct seq_file *seq, struct sockaddr_atmsvc *addr) { static int code[] = { 1, 2, 10, 6, 1, 0 }; static int e164[] = { 1, 8, 4, 6, 1, 0 }; if (*addr->sas_addr.pub) { seq_printf(seq, "%s", addr->sas_addr.pub); if (*addr->sas_addr.prv) seq_putc(seq, '+'); } else if (!*addr->sas_addr.prv) { seq_printf(seq, "%s", "(none)"); return; } if (*addr->sas_addr.prv) { unsigned char *prv = addr->sas_addr.prv; int *fields; int i, j; fields = *prv == ATM_AFI_E164 ? e164 : code; for (i = 0; fields[i]; i++) { for (j = fields[i]; j; j--) seq_printf(seq, "%02X", *prv++); if (fields[i + 1]) seq_putc(seq, '.'); } } } /* This means the neighbour entry has no attached VCC objects. */ #define SEQ_NO_VCC_TOKEN ((void *) 2) static void atmarp_info(struct seq_file *seq, struct net_device *dev, struct atmarp_entry *entry, struct clip_vcc *clip_vcc) { unsigned long exp; char buf[17]; int svc, llc, off; svc = ((clip_vcc == SEQ_NO_VCC_TOKEN) || (sk_atm(clip_vcc->vcc)->sk_family == AF_ATMSVC)); llc = ((clip_vcc == SEQ_NO_VCC_TOKEN) || clip_vcc->encap); if (clip_vcc == SEQ_NO_VCC_TOKEN) exp = entry->neigh->used; else exp = clip_vcc->last_use; exp = (jiffies - exp) / HZ; seq_printf(seq, "%-6s%-4s%-4s%5ld ", dev->name, svc ? "SVC" : "PVC", llc ? "LLC" : "NULL", exp); off = scnprintf(buf, sizeof(buf) - 1, "%pI4", &entry->ip); while (off < 16) buf[off++] = ' '; buf[off] = '\0'; seq_printf(seq, "%s", buf); if (clip_vcc == SEQ_NO_VCC_TOKEN) { if (time_before(jiffies, entry->expires)) seq_printf(seq, "(resolving)\n"); else seq_printf(seq, "(expired, ref %d)\n", atomic_read(&entry->neigh->refcnt)); } else if (!svc) { seq_printf(seq, "%d.%d.%d\n", clip_vcc->vcc->dev->number, clip_vcc->vcc->vpi, clip_vcc->vcc->vci); } else { svc_addr(seq, &clip_vcc->vcc->remote); seq_putc(seq, '\n'); } } struct clip_seq_state { /* This member must be first. */ struct neigh_seq_state ns; /* Local to clip specific iteration. */ struct clip_vcc *vcc; }; static struct clip_vcc *clip_seq_next_vcc(struct atmarp_entry *e, struct clip_vcc *curr) { if (!curr) { curr = e->vccs; if (!curr) return SEQ_NO_VCC_TOKEN; return curr; } if (curr == SEQ_NO_VCC_TOKEN) return NULL; curr = curr->next; return curr; } static void *clip_seq_vcc_walk(struct clip_seq_state *state, struct atmarp_entry *e, loff_t * pos) { struct clip_vcc *vcc = state->vcc; vcc = clip_seq_next_vcc(e, vcc); if (vcc && pos != NULL) { while (*pos) { vcc = clip_seq_next_vcc(e, vcc); if (!vcc) break; --(*pos); } } state->vcc = vcc; return vcc; } static void *clip_seq_sub_iter(struct neigh_seq_state *_state, struct neighbour *n, loff_t * pos) { struct clip_seq_state *state = (struct clip_seq_state *)_state; return clip_seq_vcc_walk(state, NEIGH2ENTRY(n), pos); } static void *clip_seq_start(struct seq_file *seq, loff_t * pos) { struct clip_seq_state *state = seq->private; state->ns.neigh_sub_iter = clip_seq_sub_iter; return neigh_seq_start(seq, pos, &clip_tbl, NEIGH_SEQ_NEIGH_ONLY); } static int clip_seq_show(struct seq_file *seq, void *v) { static char atm_arp_banner[] = "IPitf TypeEncp Idle IP address ATM address\n"; if (v == SEQ_START_TOKEN) { seq_puts(seq, atm_arp_banner); } else { struct clip_seq_state *state = seq->private; struct neighbour *n = v; struct clip_vcc *vcc = state->vcc; atmarp_info(seq, n->dev, NEIGH2ENTRY(n), vcc); } return 0; } static const struct seq_operations arp_seq_ops = { .start = clip_seq_start, .next = neigh_seq_next, .stop = neigh_seq_stop, .show = clip_seq_show, }; static int arp_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &arp_seq_ops, sizeof(struct clip_seq_state)); } static const struct file_operations arp_seq_fops = { .open = arp_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, .owner = THIS_MODULE }; #endif static void atm_clip_exit_noproc(void); static int __init atm_clip_init(void) { neigh_table_init_no_netlink(&clip_tbl); clip_tbl_hook = &clip_tbl; register_atm_ioctl(&clip_ioctl_ops); register_netdevice_notifier(&clip_dev_notifier); register_inetaddr_notifier(&clip_inet_notifier); setup_timer(&idle_timer, idle_timer_check, 0); #ifdef CONFIG_PROC_FS { struct proc_dir_entry *p; p = proc_create("arp", S_IRUGO, atm_proc_root, &arp_seq_fops); if (!p) { printk(KERN_ERR "Unable to initialize " "/proc/net/atm/arp\n"); atm_clip_exit_noproc(); return -ENOMEM; } } #endif return 0; } static void atm_clip_exit_noproc(void) { struct net_device *dev, *next; unregister_inetaddr_notifier(&clip_inet_notifier); unregister_netdevice_notifier(&clip_dev_notifier); deregister_atm_ioctl(&clip_ioctl_ops); /* First, stop the idle timer, so it stops banging * on the table. */ del_timer_sync(&idle_timer); /* Next, purge the table, so that the device * unregister loop below does not hang due to * device references remaining in the table. */ neigh_ifdown(&clip_tbl, NULL); dev = clip_devs; while (dev) { next = PRIV(dev)->next; unregister_netdev(dev); free_netdev(dev); dev = next; } /* Now it is safe to fully shutdown whole table. */ neigh_table_clear(&clip_tbl); clip_tbl_hook = NULL; } static void __exit atm_clip_exit(void) { remove_proc_entry("arp", atm_proc_root); atm_clip_exit_noproc(); } module_init(atm_clip_init); module_exit(atm_clip_exit); MODULE_AUTHOR("Werner Almesberger"); MODULE_DESCRIPTION("Classical/IP over ATM interface"); MODULE_LICENSE("GPL");