/* * Authors: * Copyright 2001, 2002 by Robert Olsson * Uppsala University and * Swedish University of Agricultural Sciences * * Alexey Kuznetsov * Ben Greear * Jens Låås * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * * A tool for loading the network with preconfigurated packets. * The tool is implemented as a linux module. Parameters are output * device, delay (to hard_xmit), number of packets, and whether * to use multiple SKBs or just the same one. * pktgen uses the installed interface's output routine. * * Additional hacking by: * * Jens.Laas@data.slu.se * Improved by ANK. 010120. * Improved by ANK even more. 010212. * MAC address typo fixed. 010417 --ro * Integrated. 020301 --DaveM * Added multiskb option 020301 --DaveM * Scaling of results. 020417--sigurdur@linpro.no * Significant re-work of the module: * * Convert to threaded model to more efficiently be able to transmit * and receive on multiple interfaces at once. * * Converted many counters to __u64 to allow longer runs. * * Allow configuration of ranges, like min/max IP address, MACs, * and UDP-ports, for both source and destination, and can * set to use a random distribution or sequentially walk the range. * * Can now change most values after starting. * * Place 12-byte packet in UDP payload with magic number, * sequence number, and timestamp. * * Add receiver code that detects dropped pkts, re-ordered pkts, and * latencies (with micro-second) precision. * * Add IOCTL interface to easily get counters & configuration. * --Ben Greear * * Renamed multiskb to clone_skb and cleaned up sending core for two distinct * skb modes. A clone_skb=0 mode for Ben "ranges" work and a clone_skb != 0 * as a "fastpath" with a configurable number of clones after alloc's. * clone_skb=0 means all packets are allocated this also means ranges time * stamps etc can be used. clone_skb=100 means 1 malloc is followed by 100 * clones. * * Also moved to /proc/net/pktgen/ * --ro * * Sept 10: Fixed threading/locking. Lots of bone-headed and more clever * mistakes. Also merged in DaveM's patch in the -pre6 patch. * --Ben Greear * * Integrated to 2.5.x 021029 --Lucio Maciel (luciomaciel@zipmail.com.br) * * * 021124 Finished major redesign and rewrite for new functionality. * See Documentation/networking/pktgen.txt for how to use this. * * The new operation: * For each CPU one thread/process is created at start. This process checks * for running devices in the if_list and sends packets until count is 0 it * also the thread checks the thread->control which is used for inter-process * communication. controlling process "posts" operations to the threads this * way. The if_lock should be possible to remove when add/rem_device is merged * into this too. * * By design there should only be *one* "controlling" process. In practice * multiple write accesses gives unpredictable result. Understood by "write" * to /proc gives result code thats should be read be the "writer". * For practical use this should be no problem. * * Note when adding devices to a specific CPU there good idea to also assign * /proc/irq/XX/smp_affinity so TX-interrupts gets bound to the same CPU. * --ro * * Fix refcount off by one if first packet fails, potential null deref, * memleak 030710- KJP * * First "ranges" functionality for ipv6 030726 --ro * * Included flow support. 030802 ANK. * * Fixed unaligned access on IA-64 Grant Grundler * * Remove if fix from added Harald Welte 040419 * ia64 compilation fix from Aron Griffis 040604 * * New xmit() return, do_div and misc clean up by Stephen Hemminger * 040923 * * Randy Dunlap fixed u64 printk compiler waring * * Remove FCS from BW calculation. Lennert Buytenhek * New time handling. Lennert Buytenhek 041213 * * Corrections from Nikolai Malykh (nmalykh@bilim.com) * Removed unused flags F_SET_SRCMAC & F_SET_SRCIP 041230 * * interruptible_sleep_on_timeout() replaced Nishanth Aravamudan * 050103 * * MPLS support by Steven Whitehouse * * 802.1Q/Q-in-Q support by Francesco Fondelli (FF) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* do_div */ #include #define VERSION "pktgen v2.68: Packet Generator for packet performance testing.\n" /* The buckets are exponential in 'width' */ #define LAT_BUCKETS_MAX 32 #define IP_NAME_SZ 32 #define MAX_MPLS_LABELS 16 /* This is the max label stack depth */ #define MPLS_STACK_BOTTOM htonl(0x00000100) /* Device flag bits */ #define F_IPSRC_RND (1<<0) /* IP-Src Random */ #define F_IPDST_RND (1<<1) /* IP-Dst Random */ #define F_UDPSRC_RND (1<<2) /* UDP-Src Random */ #define F_UDPDST_RND (1<<3) /* UDP-Dst Random */ #define F_MACSRC_RND (1<<4) /* MAC-Src Random */ #define F_MACDST_RND (1<<5) /* MAC-Dst Random */ #define F_TXSIZE_RND (1<<6) /* Transmit size is random */ #define F_IPV6 (1<<7) /* Interface in IPV6 Mode */ #define F_MPLS_RND (1<<8) /* Random MPLS labels */ #define F_VID_RND (1<<9) /* Random VLAN ID */ #define F_SVID_RND (1<<10) /* Random SVLAN ID */ /* Thread control flag bits */ #define T_TERMINATE (1<<0) #define T_STOP (1<<1) /* Stop run */ #define T_RUN (1<<2) /* Start run */ #define T_REMDEVALL (1<<3) /* Remove all devs */ #define T_REMDEV (1<<4) /* Remove one dev */ /* If lock -- can be removed after some work */ #define if_lock(t) spin_lock(&(t->if_lock)); #define if_unlock(t) spin_unlock(&(t->if_lock)); /* Used to help with determining the pkts on receive */ #define PKTGEN_MAGIC 0xbe9be955 #define PG_PROC_DIR "pktgen" #define PGCTRL "pgctrl" static struct proc_dir_entry *pg_proc_dir = NULL; #define MAX_CFLOWS 65536 #define VLAN_TAG_SIZE(x) ((x)->vlan_id == 0xffff ? 0 : 4) #define SVLAN_TAG_SIZE(x) ((x)->svlan_id == 0xffff ? 0 : 4) struct flow_state { __be32 cur_daddr; int count; }; struct pktgen_dev { /* * Try to keep frequent/infrequent used vars. separated. */ struct proc_dir_entry *entry; /* proc file */ struct pktgen_thread *pg_thread;/* the owner */ struct list_head list; /* Used for chaining in the thread's run-queue */ int running; /* if this changes to false, the test will stop */ /* If min != max, then we will either do a linear iteration, or * we will do a random selection from within the range. */ __u32 flags; int removal_mark; /* non-zero => the device is marked for * removal by worker thread */ int min_pkt_size; /* = ETH_ZLEN; */ int max_pkt_size; /* = ETH_ZLEN; */ int nfrags; __u32 delay_us; /* Default delay */ __u32 delay_ns; __u64 count; /* Default No packets to send */ __u64 sofar; /* How many pkts we've sent so far */ __u64 tx_bytes; /* How many bytes we've transmitted */ __u64 errors; /* Errors when trying to transmit, pkts will be re-sent */ /* runtime counters relating to clone_skb */ __u64 next_tx_us; /* timestamp of when to tx next */ __u32 next_tx_ns; __u64 allocated_skbs; __u32 clone_count; int last_ok; /* Was last skb sent? * Or a failed transmit of some sort? This will keep * sequence numbers in order, for example. */ __u64 started_at; /* micro-seconds */ __u64 stopped_at; /* micro-seconds */ __u64 idle_acc; /* micro-seconds */ __u32 seq_num; int clone_skb; /* Use multiple SKBs during packet gen. If this number * is greater than 1, then that many copies of the same * packet will be sent before a new packet is allocated. * For instance, if you want to send 1024 identical packets * before creating a new packet, set clone_skb to 1024. */ char dst_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ char dst_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ char src_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ char src_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ struct in6_addr in6_saddr; struct in6_addr in6_daddr; struct in6_addr cur_in6_daddr; struct in6_addr cur_in6_saddr; /* For ranges */ struct in6_addr min_in6_daddr; struct in6_addr max_in6_daddr; struct in6_addr min_in6_saddr; struct in6_addr max_in6_saddr; /* If we're doing ranges, random or incremental, then this * defines the min/max for those ranges. */ __be32 saddr_min; /* inclusive, source IP address */ __be32 saddr_max; /* exclusive, source IP address */ __be32 daddr_min; /* inclusive, dest IP address */ __be32 daddr_max; /* exclusive, dest IP address */ __u16 udp_src_min; /* inclusive, source UDP port */ __u16 udp_src_max; /* exclusive, source UDP port */ __u16 udp_dst_min; /* inclusive, dest UDP port */ __u16 udp_dst_max; /* exclusive, dest UDP port */ /* DSCP + ECN */ __u8 tos; /* six most significant bits of (former) IPv4 TOS are for dscp codepoint */ __u8 traffic_class; /* ditto for the (former) Traffic Class in IPv6 (see RFC 3260, sec. 4) */ /* MPLS */ unsigned nr_labels; /* Depth of stack, 0 = no MPLS */ __be32 labels[MAX_MPLS_LABELS]; /* VLAN/SVLAN (802.1Q/Q-in-Q) */ __u8 vlan_p; __u8 vlan_cfi; __u16 vlan_id; /* 0xffff means no vlan tag */ __u8 svlan_p; __u8 svlan_cfi; __u16 svlan_id; /* 0xffff means no svlan tag */ __u32 src_mac_count; /* How many MACs to iterate through */ __u32 dst_mac_count; /* How many MACs to iterate through */ unsigned char dst_mac[ETH_ALEN]; unsigned char src_mac[ETH_ALEN]; __u32 cur_dst_mac_offset; __u32 cur_src_mac_offset; __be32 cur_saddr; __be32 cur_daddr; __u16 cur_udp_dst; __u16 cur_udp_src; __u32 cur_pkt_size; __u8 hh[14]; /* = { 0x00, 0x80, 0xC8, 0x79, 0xB3, 0xCB, We fill in SRC address later 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00 }; */ __u16 pad; /* pad out the hh struct to an even 16 bytes */ struct sk_buff *skb; /* skb we are to transmit next, mainly used for when we * are transmitting the same one multiple times */ struct net_device *odev; /* The out-going device. Note that the device should * have it's pg_info pointer pointing back to this * device. This will be set when the user specifies * the out-going device name (not when the inject is * started as it used to do.) */ struct flow_state *flows; unsigned cflows; /* Concurrent flows (config) */ unsigned lflow; /* Flow length (config) */ unsigned nflows; /* accumulated flows (stats) */ char result[512]; }; struct pktgen_hdr { __be32 pgh_magic; __be32 seq_num; __be32 tv_sec; __be32 tv_usec; }; struct pktgen_thread { spinlock_t if_lock; struct list_head if_list; /* All device here */ struct list_head th_list; struct task_struct *tsk; char result[512]; u32 max_before_softirq; /* We'll call do_softirq to prevent starvation. */ /* Field for thread to receive "posted" events terminate, stop ifs etc. */ u32 control; int pid; int cpu; wait_queue_head_t queue; }; #define REMOVE 1 #define FIND 0 /* This code works around the fact that do_div cannot handle two 64-bit numbers, and regular 64-bit division doesn't work on x86 kernels. --Ben */ #define PG_DIV 0 /* This was emailed to LMKL by: Chris Caputo * Function copied/adapted/optimized from: * * nemesis.sourceforge.net/browse/lib/static/intmath/ix86/intmath.c.html * * Copyright 1994, University of Cambridge Computer Laboratory * All Rights Reserved. * */ static inline s64 divremdi3(s64 x, s64 y, int type) { u64 a = (x < 0) ? -x : x; u64 b = (y < 0) ? -y : y; u64 res = 0, d = 1; if (b > 0) { while (b < a) { b <<= 1; d <<= 1; } } do { if (a >= b) { a -= b; res += d; } b >>= 1; d >>= 1; } while (d); if (PG_DIV == type) { return (((x ^ y) & (1ll << 63)) == 0) ? res : -(s64) res; } else { return ((x & (1ll << 63)) == 0) ? a : -(s64) a; } } /* End of hacks to deal with 64-bit math on x86 */ /** Convert to milliseconds */ static inline __u64 tv_to_ms(const struct timeval *tv) { __u64 ms = tv->tv_usec / 1000; ms += (__u64) tv->tv_sec * (__u64) 1000; return ms; } /** Convert to micro-seconds */ static inline __u64 tv_to_us(const struct timeval *tv) { __u64 us = tv->tv_usec; us += (__u64) tv->tv_sec * (__u64) 1000000; return us; } static inline __u64 pg_div(__u64 n, __u32 base) { __u64 tmp = n; do_div(tmp, base); /* printk("pktgen: pg_div, n: %llu base: %d rv: %llu\n", n, base, tmp); */ return tmp; } static inline __u64 pg_div64(__u64 n, __u64 base) { __u64 tmp = n; /* * How do we know if the architecture we are running on * supports division with 64 bit base? * */ #if defined(__sparc_v9__) || defined(__powerpc64__) || defined(__alpha__) || defined(__x86_64__) || defined(__ia64__) do_div(tmp, base); #else tmp = divremdi3(n, base, PG_DIV); #endif return tmp; } static inline __u64 getCurMs(void) { struct timeval tv; do_gettimeofday(&tv); return tv_to_ms(&tv); } static inline __u64 getCurUs(void) { struct timeval tv; do_gettimeofday(&tv); return tv_to_us(&tv); } static inline __u64 tv_diff(const struct timeval *a, const struct timeval *b) { return tv_to_us(a) - tv_to_us(b); } /* old include end */ static char version[] __initdata = VERSION; static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *i); static int pktgen_add_device(struct pktgen_thread *t, const char *ifname); static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t, const char *ifname); static int pktgen_device_event(struct notifier_block *, unsigned long, void *); static void pktgen_run_all_threads(void); static void pktgen_stop_all_threads_ifs(void); static int pktgen_stop_device(struct pktgen_dev *pkt_dev); static void pktgen_stop(struct pktgen_thread *t); static void pktgen_clear_counters(struct pktgen_dev *pkt_dev); static unsigned int scan_ip6(const char *s, char ip[16]); static unsigned int fmt_ip6(char *s, const char ip[16]); /* Module parameters, defaults. */ static int pg_count_d = 1000; /* 1000 pkts by default */ static int pg_delay_d; static int pg_clone_skb_d; static int debug; static DEFINE_MUTEX(pktgen_thread_lock); static LIST_HEAD(pktgen_threads); static struct notifier_block pktgen_notifier_block = { .notifier_call = pktgen_device_event, }; /* * /proc handling functions * */ static int pgctrl_show(struct seq_file *seq, void *v) { seq_puts(seq, VERSION); return 0; } static ssize_t pgctrl_write(struct file *file, const char __user * buf, size_t count, loff_t * ppos) { int err = 0; char data[128]; if (!capable(CAP_NET_ADMIN)) { err = -EPERM; goto out; } if (count > sizeof(data)) count = sizeof(data); if (copy_from_user(data, buf, count)) { err = -EFAULT; goto out; } data[count - 1] = 0; /* Make string */ if (!strcmp(data, "stop")) pktgen_stop_all_threads_ifs(); else if (!strcmp(data, "start")) pktgen_run_all_threads(); else printk("pktgen: Unknown command: %s\n", data); err = count; out: return err; } static int pgctrl_open(struct inode *inode, struct file *file) { return single_open(file, pgctrl_show, PDE(inode)->data); } static const struct file_operations pktgen_fops = { .owner = THIS_MODULE, .open = pgctrl_open, .read = seq_read, .llseek = seq_lseek, .write = pgctrl_write, .release = single_release, }; static int pktgen_if_show(struct seq_file *seq, void *v) { int i; struct pktgen_dev *pkt_dev = seq->private; __u64 sa; __u64 stopped; __u64 now = getCurUs(); seq_printf(seq, "Params: count %llu min_pkt_size: %u max_pkt_size: %u\n", (unsigned long long)pkt_dev->count, pkt_dev->min_pkt_size, pkt_dev->max_pkt_size); seq_printf(seq, " frags: %d delay: %u clone_skb: %d ifname: %s\n", pkt_dev->nfrags, 1000 * pkt_dev->delay_us + pkt_dev->delay_ns, pkt_dev->clone_skb, pkt_dev->odev->name); seq_printf(seq, " flows: %u flowlen: %u\n", pkt_dev->cflows, pkt_dev->lflow); if (pkt_dev->flags & F_IPV6) { char b1[128], b2[128], b3[128]; fmt_ip6(b1, pkt_dev->in6_saddr.s6_addr); fmt_ip6(b2, pkt_dev->min_in6_saddr.s6_addr); fmt_ip6(b3, pkt_dev->max_in6_saddr.s6_addr); seq_printf(seq, " saddr: %s min_saddr: %s max_saddr: %s\n", b1, b2, b3); fmt_ip6(b1, pkt_dev->in6_daddr.s6_addr); fmt_ip6(b2, pkt_dev->min_in6_daddr.s6_addr); fmt_ip6(b3, pkt_dev->max_in6_daddr.s6_addr); seq_printf(seq, " daddr: %s min_daddr: %s max_daddr: %s\n", b1, b2, b3); } else seq_printf(seq, " dst_min: %s dst_max: %s\n src_min: %s src_max: %s\n", pkt_dev->dst_min, pkt_dev->dst_max, pkt_dev->src_min, pkt_dev->src_max); seq_puts(seq, " src_mac: "); if (is_zero_ether_addr(pkt_dev->src_mac)) for (i = 0; i < 6; i++) seq_printf(seq, "%02X%s", pkt_dev->odev->dev_addr[i], i == 5 ? " " : ":"); else for (i = 0; i < 6; i++) seq_printf(seq, "%02X%s", pkt_dev->src_mac[i], i == 5 ? " " : ":"); seq_printf(seq, "dst_mac: "); for (i = 0; i < 6; i++) seq_printf(seq, "%02X%s", pkt_dev->dst_mac[i], i == 5 ? "\n" : ":"); seq_printf(seq, " udp_src_min: %d udp_src_max: %d udp_dst_min: %d udp_dst_max: %d\n", pkt_dev->udp_src_min, pkt_dev->udp_src_max, pkt_dev->udp_dst_min, pkt_dev->udp_dst_max); seq_printf(seq, " src_mac_count: %d dst_mac_count: %d\n", pkt_dev->src_mac_count, pkt_dev->dst_mac_count); if (pkt_dev->nr_labels) { unsigned i; seq_printf(seq, " mpls: "); for (i = 0; i < pkt_dev->nr_labels; i++) seq_printf(seq, "%08x%s", ntohl(pkt_dev->labels[i]), i == pkt_dev->nr_labels-1 ? "\n" : ", "); } if (pkt_dev->vlan_id != 0xffff) { seq_printf(seq, " vlan_id: %u vlan_p: %u vlan_cfi: %u\n", pkt_dev->vlan_id, pkt_dev->vlan_p, pkt_dev->vlan_cfi); } if (pkt_dev->svlan_id != 0xffff) { seq_printf(seq, " svlan_id: %u vlan_p: %u vlan_cfi: %u\n", pkt_dev->svlan_id, pkt_dev->svlan_p, pkt_dev->svlan_cfi); } if (pkt_dev->tos) { seq_printf(seq, " tos: 0x%02x\n", pkt_dev->tos); } if (pkt_dev->traffic_class) { seq_printf(seq, " traffic_class: 0x%02x\n", pkt_dev->traffic_class); } seq_printf(seq, " Flags: "); if (pkt_dev->flags & F_IPV6) seq_printf(seq, "IPV6 "); if (pkt_dev->flags & F_IPSRC_RND) seq_printf(seq, "IPSRC_RND "); if (pkt_dev->flags & F_IPDST_RND) seq_printf(seq, "IPDST_RND "); if (pkt_dev->flags & F_TXSIZE_RND) seq_printf(seq, "TXSIZE_RND "); if (pkt_dev->flags & F_UDPSRC_RND) seq_printf(seq, "UDPSRC_RND "); if (pkt_dev->flags & F_UDPDST_RND) seq_printf(seq, "UDPDST_RND "); if (pkt_dev->flags & F_MPLS_RND) seq_printf(seq, "MPLS_RND "); if (pkt_dev->flags & F_MACSRC_RND) seq_printf(seq, "MACSRC_RND "); if (pkt_dev->flags & F_MACDST_RND) seq_printf(seq, "MACDST_RND "); if (pkt_dev->flags & F_VID_RND) seq_printf(seq, "VID_RND "); if (pkt_dev->flags & F_SVID_RND) seq_printf(seq, "SVID_RND "); seq_puts(seq, "\n"); sa = pkt_dev->started_at; stopped = pkt_dev->stopped_at; if (pkt_dev->running) stopped = now; /* not really stopped, more like last-running-at */ seq_printf(seq, "Current:\n pkts-sofar: %llu errors: %llu\n started: %lluus stopped: %lluus idle: %lluus\n", (unsigned long long)pkt_dev->sofar, (unsigned long long)pkt_dev->errors, (unsigned long long)sa, (unsigned long long)stopped, (unsigned long long)pkt_dev->idle_acc); seq_printf(seq, " seq_num: %d cur_dst_mac_offset: %d cur_src_mac_offset: %d\n", pkt_dev->seq_num, pkt_dev->cur_dst_mac_offset, pkt_dev->cur_src_mac_offset); if (pkt_dev->flags & F_IPV6) { char b1[128], b2[128]; fmt_ip6(b1, pkt_dev->cur_in6_daddr.s6_addr); fmt_ip6(b2, pkt_dev->cur_in6_saddr.s6_addr); seq_printf(seq, " cur_saddr: %s cur_daddr: %s\n", b2, b1); } else seq_printf(seq, " cur_saddr: 0x%x cur_daddr: 0x%x\n", pkt_dev->cur_saddr, pkt_dev->cur_daddr); seq_printf(seq, " cur_udp_dst: %d cur_udp_src: %d\n", pkt_dev->cur_udp_dst, pkt_dev->cur_udp_src); seq_printf(seq, " flows: %u\n", pkt_dev->nflows); if (pkt_dev->result[0]) seq_printf(seq, "Result: %s\n", pkt_dev->result); else seq_printf(seq, "Result: Idle\n"); return 0; } static int hex32_arg(const char __user *user_buffer, unsigned long maxlen, __u32 *num) { int i = 0; *num = 0; for (; i < maxlen; i++) { char c; *num <<= 4; if (get_user(c, &user_buffer[i])) return -EFAULT; if ((c >= '0') && (c <= '9')) *num |= c - '0'; else if ((c >= 'a') && (c <= 'f')) *num |= c - 'a' + 10; else if ((c >= 'A') && (c <= 'F')) *num |= c - 'A' + 10; else break; } return i; } static int count_trail_chars(const char __user * user_buffer, unsigned int maxlen) { int i; for (i = 0; i < maxlen; i++) { char c; if (get_user(c, &user_buffer[i])) return -EFAULT; switch (c) { case '\"': case '\n': case '\r': case '\t': case ' ': case '=': break; default: goto done; }; } done: return i; } static unsigned long num_arg(const char __user * user_buffer, unsigned long maxlen, unsigned long *num) { int i = 0; *num = 0; for (; i < maxlen; i++) { char c; if (get_user(c, &user_buffer[i])) return -EFAULT; if ((c >= '0') && (c <= '9')) { *num *= 10; *num += c - '0'; } else break; } return i; } static int strn_len(const char __user * user_buffer, unsigned int maxlen) { int i = 0; for (; i < maxlen; i++) { char c; if (get_user(c, &user_buffer[i])) return -EFAULT; switch (c) { case '\"': case '\n': case '\r': case '\t': case ' ': goto done_str; break; default: break; }; } done_str: return i; } static ssize_t get_labels(const char __user *buffer, struct pktgen_dev *pkt_dev) { unsigned n = 0; char c; ssize_t i = 0; int len; pkt_dev->nr_labels = 0; do { __u32 tmp; len = hex32_arg(&buffer[i], 8, &tmp); if (len <= 0) return len; pkt_dev->labels[n] = htonl(tmp); if (pkt_dev->labels[n] & MPLS_STACK_BOTTOM) pkt_dev->flags |= F_MPLS_RND; i += len; if (get_user(c, &buffer[i])) return -EFAULT; i++; n++; if (n >= MAX_MPLS_LABELS) return -E2BIG; } while (c == ','); pkt_dev->nr_labels = n; return i; } static ssize_t pktgen_if_write(struct file *file, const char __user * user_buffer, size_t count, loff_t * offset) { struct seq_file *seq = (struct seq_file *)file->private_data; struct pktgen_dev *pkt_dev = seq->private; int i = 0, max, len; char name[16], valstr[32]; unsigned long value = 0; char *pg_result = NULL; int tmp = 0; char buf[128]; pg_result = &(pkt_dev->result[0]); if (count < 1) { printk("pktgen: wrong command format\n"); return -EINVAL; } max = count - i; tmp = count_trail_chars(&user_buffer[i], max); if (tmp < 0) { printk("pktgen: illegal format\n"); return tmp; } i += tmp; /* Read variable name */ len = strn_len(&user_buffer[i], sizeof(name) - 1); if (len < 0) { return len; } memset(name, 0, sizeof(name)); if (copy_from_user(name, &user_buffer[i], len)) return -EFAULT; i += len; max = count - i; len = count_trail_chars(&user_buffer[i], max); if (len < 0) return len; i += len; if (debug) { char tb[count + 1]; if (copy_from_user(tb, user_buffer, count)) return -EFAULT; tb[count] = 0; printk("pktgen: %s,%lu buffer -:%s:-\n", name, (unsigned long)count, tb); } if (!strcmp(name, "min_pkt_size")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value < 14 + 20 + 8) value = 14 + 20 + 8; if (value != pkt_dev->min_pkt_size) { pkt_dev->min_pkt_size = value; pkt_dev->cur_pkt_size = value; } sprintf(pg_result, "OK: min_pkt_size=%u", pkt_dev->min_pkt_size); return count; } if (!strcmp(name, "max_pkt_size")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value < 14 + 20 + 8) value = 14 + 20 + 8; if (value != pkt_dev->max_pkt_size) { pkt_dev->max_pkt_size = value; pkt_dev->cur_pkt_size = value; } sprintf(pg_result, "OK: max_pkt_size=%u", pkt_dev->max_pkt_size); return count; } /* Shortcut for min = max */ if (!strcmp(name, "pkt_size")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value < 14 + 20 + 8) value = 14 + 20 + 8; if (value != pkt_dev->min_pkt_size) { pkt_dev->min_pkt_size = value; pkt_dev->max_pkt_size = value; pkt_dev->cur_pkt_size = value; } sprintf(pg_result, "OK: pkt_size=%u", pkt_dev->min_pkt_size); return count; } if (!strcmp(name, "debug")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; debug = value; sprintf(pg_result, "OK: debug=%u", debug); return count; } if (!strcmp(name, "frags")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->nfrags = value; sprintf(pg_result, "OK: frags=%u", pkt_dev->nfrags); return count; } if (!strcmp(name, "delay")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value == 0x7FFFFFFF) { pkt_dev->delay_us = 0x7FFFFFFF; pkt_dev->delay_ns = 0; } else { pkt_dev->delay_us = value / 1000; pkt_dev->delay_ns = value % 1000; } sprintf(pg_result, "OK: delay=%u", 1000 * pkt_dev->delay_us + pkt_dev->delay_ns); return count; } if (!strcmp(name, "udp_src_min")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_src_min) { pkt_dev->udp_src_min = value; pkt_dev->cur_udp_src = value; } sprintf(pg_result, "OK: udp_src_min=%u", pkt_dev->udp_src_min); return count; } if (!strcmp(name, "udp_dst_min")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_dst_min) { pkt_dev->udp_dst_min = value; pkt_dev->cur_udp_dst = value; } sprintf(pg_result, "OK: udp_dst_min=%u", pkt_dev->udp_dst_min); return count; } if (!strcmp(name, "udp_src_max")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_src_max) { pkt_dev->udp_src_max = value; pkt_dev->cur_udp_src = value; } sprintf(pg_result, "OK: udp_src_max=%u", pkt_dev->udp_src_max); return count; } if (!strcmp(name, "udp_dst_max")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_dst_max) { pkt_dev->udp_dst_max = value; pkt_dev->cur_udp_dst = value; } sprintf(pg_result, "OK: udp_dst_max=%u", pkt_dev->udp_dst_max); return count; } if (!strcmp(name, "clone_skb")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->clone_skb = value; sprintf(pg_result, "OK: clone_skb=%d", pkt_dev->clone_skb); return count; } if (!strcmp(name, "count")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->count = value; sprintf(pg_result, "OK: count=%llu", (unsigned long long)pkt_dev->count); return count; } if (!strcmp(name, "src_mac_count")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (pkt_dev->src_mac_count != value) { pkt_dev->src_mac_count = value; pkt_dev->cur_src_mac_offset = 0; } sprintf(pg_result, "OK: src_mac_count=%d", pkt_dev->src_mac_count); return count; } if (!strcmp(name, "dst_mac_count")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (pkt_dev->dst_mac_count != value) { pkt_dev->dst_mac_count = value; pkt_dev->cur_dst_mac_offset = 0; } sprintf(pg_result, "OK: dst_mac_count=%d", pkt_dev->dst_mac_count); return count; } if (!strcmp(name, "flag")) { char f[32]; memset(f, 0, 32); len = strn_len(&user_buffer[i], sizeof(f) - 1); if (len < 0) { return len; } if (copy_from_user(f, &user_buffer[i], len)) return -EFAULT; i += len; if (strcmp(f, "IPSRC_RND") == 0) pkt_dev->flags |= F_IPSRC_RND; else if (strcmp(f, "!IPSRC_RND") == 0) pkt_dev->flags &= ~F_IPSRC_RND; else if (strcmp(f, "TXSIZE_RND") == 0) pkt_dev->flags |= F_TXSIZE_RND; else if (strcmp(f, "!TXSIZE_RND") == 0) pkt_dev->flags &= ~F_TXSIZE_RND; else if (strcmp(f, "IPDST_RND") == 0) pkt_dev->flags |= F_IPDST_RND; else if (strcmp(f, "!IPDST_RND") == 0) pkt_dev->flags &= ~F_IPDST_RND; else if (strcmp(f, "UDPSRC_RND") == 0) pkt_dev->flags |= F_UDPSRC_RND; else if (strcmp(f, "!UDPSRC_RND") == 0) pkt_dev->flags &= ~F_UDPSRC_RND; else if (strcmp(f, "UDPDST_RND") == 0) pkt_dev->flags |= F_UDPDST_RND; else if (strcmp(f, "!UDPDST_RND") == 0) pkt_dev->flags &= ~F_UDPDST_RND; else if (strcmp(f, "MACSRC_RND") == 0) pkt_dev->flags |= F_MACSRC_RND; else if (strcmp(f, "!MACSRC_RND") == 0) pkt_dev->flags &= ~F_MACSRC_RND; else if (strcmp(f, "MACDST_RND") == 0) pkt_dev->flags |= F_MACDST_RND; else if (strcmp(f, "!MACDST_RND") == 0) pkt_dev->flags &= ~F_MACDST_RND; else if (strcmp(f, "MPLS_RND") == 0) pkt_dev->flags |= F_MPLS_RND; else if (strcmp(f, "!MPLS_RND") == 0) pkt_dev->flags &= ~F_MPLS_RND; else if (strcmp(f, "VID_RND") == 0) pkt_dev->flags |= F_VID_RND; else if (strcmp(f, "!VID_RND") == 0) pkt_dev->flags &= ~F_VID_RND; else if (strcmp(f, "SVID_RND") == 0) pkt_dev->flags |= F_SVID_RND; else if (strcmp(f, "!SVID_RND") == 0) pkt_dev->flags &= ~F_SVID_RND; else if (strcmp(f, "!IPV6") == 0) pkt_dev->flags &= ~F_IPV6; else { sprintf(pg_result, "Flag -:%s:- unknown\nAvailable flags, (prepend ! to un-set flag):\n%s", f, "IPSRC_RND, IPDST_RND, UDPSRC_RND, UDPDST_RND, " "MACSRC_RND, MACDST_RND, TXSIZE_RND, IPV6, MPLS_RND, VID_RND, SVID_RND\n"); return count; } sprintf(pg_result, "OK: flags=0x%x", pkt_dev->flags); return count; } if (!strcmp(name, "dst_min") || !strcmp(name, "dst")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_min) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->dst_min) != 0) { memset(pkt_dev->dst_min, 0, sizeof(pkt_dev->dst_min)); strncpy(pkt_dev->dst_min, buf, len); pkt_dev->daddr_min = in_aton(pkt_dev->dst_min); pkt_dev->cur_daddr = pkt_dev->daddr_min; } if (debug) printk("pktgen: dst_min set to: %s\n", pkt_dev->dst_min); i += len; sprintf(pg_result, "OK: dst_min=%s", pkt_dev->dst_min); return count; } if (!strcmp(name, "dst_max")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_max) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->dst_max) != 0) { memset(pkt_dev->dst_max, 0, sizeof(pkt_dev->dst_max)); strncpy(pkt_dev->dst_max, buf, len); pkt_dev->daddr_max = in_aton(pkt_dev->dst_max); pkt_dev->cur_daddr = pkt_dev->daddr_max; } if (debug) printk("pktgen: dst_max set to: %s\n", pkt_dev->dst_max); i += len; sprintf(pg_result, "OK: dst_max=%s", pkt_dev->dst_max); return count; } if (!strcmp(name, "dst6")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->in6_daddr.s6_addr); fmt_ip6(buf, pkt_dev->in6_daddr.s6_addr); ipv6_addr_copy(&pkt_dev->cur_in6_daddr, &pkt_dev->in6_daddr); if (debug) printk("pktgen: dst6 set to: %s\n", buf); i += len; sprintf(pg_result, "OK: dst6=%s", buf); return count; } if (!strcmp(name, "dst6_min")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->min_in6_daddr.s6_addr); fmt_ip6(buf, pkt_dev->min_in6_daddr.s6_addr); ipv6_addr_copy(&pkt_dev->cur_in6_daddr, &pkt_dev->min_in6_daddr); if (debug) printk("pktgen: dst6_min set to: %s\n", buf); i += len; sprintf(pg_result, "OK: dst6_min=%s", buf); return count; } if (!strcmp(name, "dst6_max")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->max_in6_daddr.s6_addr); fmt_ip6(buf, pkt_dev->max_in6_daddr.s6_addr); if (debug) printk("pktgen: dst6_max set to: %s\n", buf); i += len; sprintf(pg_result, "OK: dst6_max=%s", buf); return count; } if (!strcmp(name, "src6")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->in6_saddr.s6_addr); fmt_ip6(buf, pkt_dev->in6_saddr.s6_addr); ipv6_addr_copy(&pkt_dev->cur_in6_saddr, &pkt_dev->in6_saddr); if (debug) printk("pktgen: src6 set to: %s\n", buf); i += len; sprintf(pg_result, "OK: src6=%s", buf); return count; } if (!strcmp(name, "src_min")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_min) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->src_min) != 0) { memset(pkt_dev->src_min, 0, sizeof(pkt_dev->src_min)); strncpy(pkt_dev->src_min, buf, len); pkt_dev->saddr_min = in_aton(pkt_dev->src_min); pkt_dev->cur_saddr = pkt_dev->saddr_min; } if (debug) printk("pktgen: src_min set to: %s\n", pkt_dev->src_min); i += len; sprintf(pg_result, "OK: src_min=%s", pkt_dev->src_min); return count; } if (!strcmp(name, "src_max")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_max) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->src_max) != 0) { memset(pkt_dev->src_max, 0, sizeof(pkt_dev->src_max)); strncpy(pkt_dev->src_max, buf, len); pkt_dev->saddr_max = in_aton(pkt_dev->src_max); pkt_dev->cur_saddr = pkt_dev->saddr_max; } if (debug) printk("pktgen: src_max set to: %s\n", pkt_dev->src_max); i += len; sprintf(pg_result, "OK: src_max=%s", pkt_dev->src_max); return count; } if (!strcmp(name, "dst_mac")) { char *v = valstr; unsigned char old_dmac[ETH_ALEN]; unsigned char *m = pkt_dev->dst_mac; memcpy(old_dmac, pkt_dev->dst_mac, ETH_ALEN); len = strn_len(&user_buffer[i], sizeof(valstr) - 1); if (len < 0) { return len; } memset(valstr, 0, sizeof(valstr)); if (copy_from_user(valstr, &user_buffer[i], len)) return -EFAULT; i += len; for (*m = 0; *v && m < pkt_dev->dst_mac + 6; v++) { if (*v >= '0' && *v <= '9') { *m *= 16; *m += *v - '0'; } if (*v >= 'A' && *v <= 'F') { *m *= 16; *m += *v - 'A' + 10; } if (*v >= 'a' && *v <= 'f') { *m *= 16; *m += *v - 'a' + 10; } if (*v == ':') { m++; *m = 0; } } /* Set up Dest MAC */ if (compare_ether_addr(old_dmac, pkt_dev->dst_mac)) memcpy(&(pkt_dev->hh[0]), pkt_dev->dst_mac, ETH_ALEN); sprintf(pg_result, "OK: dstmac"); return count; } if (!strcmp(name, "src_mac")) { char *v = valstr; unsigned char *m = pkt_dev->src_mac; len = strn_len(&user_buffer[i], sizeof(valstr) - 1); if (len < 0) { return len; } memset(valstr, 0, sizeof(valstr)); if (copy_from_user(valstr, &user_buffer[i], len)) return -EFAULT; i += len; for (*m = 0; *v && m < pkt_dev->src_mac + 6; v++) { if (*v >= '0' && *v <= '9') { *m *= 16; *m += *v - '0'; } if (*v >= 'A' && *v <= 'F') { *m *= 16; *m += *v - 'A' + 10; } if (*v >= 'a' && *v <= 'f') { *m *= 16; *m += *v - 'a' + 10; } if (*v == ':') { m++; *m = 0; } } sprintf(pg_result, "OK: srcmac"); return count; } if (!strcmp(name, "clear_counters")) { pktgen_clear_counters(pkt_dev); sprintf(pg_result, "OK: Clearing counters.\n"); return count; } if (!strcmp(name, "flows")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value > MAX_CFLOWS) value = MAX_CFLOWS; pkt_dev->cflows = value; sprintf(pg_result, "OK: flows=%u", pkt_dev->cflows); return count; } if (!strcmp(name, "flowlen")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->lflow = value; sprintf(pg_result, "OK: flowlen=%u", pkt_dev->lflow); return count; } if (!strcmp(name, "mpls")) { unsigned n, offset; len = get_labels(&user_buffer[i], pkt_dev); if (len < 0) { return len; } i += len; offset = sprintf(pg_result, "OK: mpls="); for (n = 0; n < pkt_dev->nr_labels; n++) offset += sprintf(pg_result + offset, "%08x%s", ntohl(pkt_dev->labels[n]), n == pkt_dev->nr_labels-1 ? "" : ","); if (pkt_dev->nr_labels && pkt_dev->vlan_id != 0xffff) { pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */ pkt_dev->svlan_id = 0xffff; if (debug) printk("pktgen: VLAN/SVLAN auto turned off\n"); } return count; } if (!strcmp(name, "vlan_id")) { len = num_arg(&user_buffer[i], 4, &value); if (len < 0) { return len; } i += len; if (value <= 4095) { pkt_dev->vlan_id = value; /* turn on VLAN */ if (debug) printk("pktgen: VLAN turned on\n"); if (debug && pkt_dev->nr_labels) printk("pktgen: MPLS auto turned off\n"); pkt_dev->nr_labels = 0; /* turn off MPLS */ sprintf(pg_result, "OK: vlan_id=%u", pkt_dev->vlan_id); } else { pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */ pkt_dev->svlan_id = 0xffff; if (debug) printk("pktgen: VLAN/SVLAN turned off\n"); } return count; } if (!strcmp(name, "vlan_p")) { len = num_arg(&user_buffer[i], 1, &value); if (len < 0) { return len; } i += len; if ((value <= 7) && (pkt_dev->vlan_id != 0xffff)) { pkt_dev->vlan_p = value; sprintf(pg_result, "OK: vlan_p=%u", pkt_dev->vlan_p); } else { sprintf(pg_result, "ERROR: vlan_p must be 0-7"); } return count; } if (!strcmp(name, "vlan_cfi")) { len = num_arg(&user_buffer[i], 1, &value); if (len < 0) { return len; } i += len; if ((value <= 1) && (pkt_dev->vlan_id != 0xffff)) { pkt_dev->vlan_cfi = value; sprintf(pg_result, "OK: vlan_cfi=%u", pkt_dev->vlan_cfi); } else { sprintf(pg_result, "ERROR: vlan_cfi must be 0-1"); } return count; } if (!strcmp(name, "svlan_id")) { len = num_arg(&user_buffer[i], 4, &value); if (len < 0) { return len; } i += len; if ((value <= 4095) && ((pkt_dev->vlan_id != 0xffff))) { pkt_dev->svlan_id = value; /* turn on SVLAN */ if (debug) printk("pktgen: SVLAN turned on\n"); if (debug && pkt_dev->nr_labels) printk("pktgen: MPLS auto turned off\n"); pkt_dev->nr_labels = 0; /* turn off MPLS */ sprintf(pg_result, "OK: svlan_id=%u", pkt_dev->svlan_id); } else { pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */ pkt_dev->svlan_id = 0xffff; if (debug) printk("pktgen: VLAN/SVLAN turned off\n"); } return count; } if (!strcmp(name, "svlan_p")) { len = num_arg(&user_buffer[i], 1, &value); if (len < 0) { return len; } i += len; if ((value <= 7) && (pkt_dev->svlan_id != 0xffff)) { pkt_dev->svlan_p = value; sprintf(pg_result, "OK: svlan_p=%u", pkt_dev->svlan_p); } else { sprintf(pg_result, "ERROR: svlan_p must be 0-7"); } return count; } if (!strcmp(name, "svlan_cfi")) { len = num_arg(&user_buffer[i], 1, &value); if (len < 0) { return len; } i += len; if ((value <= 1) && (pkt_dev->svlan_id != 0xffff)) { pkt_dev->svlan_cfi = value; sprintf(pg_result, "OK: svlan_cfi=%u", pkt_dev->svlan_cfi); } else { sprintf(pg_result, "ERROR: svlan_cfi must be 0-1"); } return count; } if (!strcmp(name, "tos")) { __u32 tmp_value = 0; len = hex32_arg(&user_buffer[i], 2, &tmp_value); if (len < 0) { return len; } i += len; if (len == 2) { pkt_dev->tos = tmp_value; sprintf(pg_result, "OK: tos=0x%02x", pkt_dev->tos); } else { sprintf(pg_result, "ERROR: tos must be 00-ff"); } return count; } if (!strcmp(name, "traffic_class")) { __u32 tmp_value = 0; len = hex32_arg(&user_buffer[i], 2, &tmp_value); if (len < 0) { return len; } i += len; if (len == 2) { pkt_dev->traffic_class = tmp_value; sprintf(pg_result, "OK: traffic_class=0x%02x", pkt_dev->traffic_class); } else { sprintf(pg_result, "ERROR: traffic_class must be 00-ff"); } return count; } sprintf(pkt_dev->result, "No such parameter \"%s\"", name); return -EINVAL; } static int pktgen_if_open(struct inode *inode, struct file *file) { return single_open(file, pktgen_if_show, PDE(inode)->data); } static const struct file_operations pktgen_if_fops = { .owner = THIS_MODULE, .open = pktgen_if_open, .read = seq_read, .llseek = seq_lseek, .write = pktgen_if_write, .release = single_release, }; static int pktgen_thread_show(struct seq_file *seq, void *v) { struct pktgen_thread *t = seq->private; struct pktgen_dev *pkt_dev; BUG_ON(!t); seq_printf(seq, "Name: %s max_before_softirq: %d\n", t->tsk->comm, t->max_before_softirq); seq_printf(seq, "Running: "); if_lock(t); list_for_each_entry(pkt_dev, &t->if_list, list) if (pkt_dev->running) seq_printf(seq, "%s ", pkt_dev->odev->name); seq_printf(seq, "\nStopped: "); list_for_each_entry(pkt_dev, &t->if_list, list) if (!pkt_dev->running) seq_printf(seq, "%s ", pkt_dev->odev->name); if (t->result[0]) seq_printf(seq, "\nResult: %s\n", t->result); else seq_printf(seq, "\nResult: NA\n"); if_unlock(t); return 0; } static ssize_t pktgen_thread_write(struct file *file, const char __user * user_buffer, size_t count, loff_t * offset) { struct seq_file *seq = (struct seq_file *)file->private_data; struct pktgen_thread *t = seq->private; int i = 0, max, len, ret; char name[40]; char *pg_result; unsigned long value = 0; if (count < 1) { // sprintf(pg_result, "Wrong command format"); return -EINVAL; } max = count - i; len = count_trail_chars(&user_buffer[i], max); if (len < 0) return len; i += len; /* Read variable name */ len = strn_len(&user_buffer[i], sizeof(name) - 1); if (len < 0) return len; memset(name, 0, sizeof(name)); if (copy_from_user(name, &user_buffer[i], len)) return -EFAULT; i += len; max = count - i; len = count_trail_chars(&user_buffer[i], max); if (len < 0) return len; i += len; if (debug) printk("pktgen: t=%s, count=%lu\n", name, (unsigned long)count); if (!t) { printk("pktgen: ERROR: No thread\n"); ret = -EINVAL; goto out; } pg_result = &(t->result[0]); if (!strcmp(name, "add_device")) { char f[32]; memset(f, 0, 32); len = strn_len(&user_buffer[i], sizeof(f) - 1); if (len < 0) { ret = len; goto out; } if (copy_from_user(f, &user_buffer[i], len)) return -EFAULT; i += len; mutex_lock(&pktgen_thread_lock); pktgen_add_device(t, f); mutex_unlock(&pktgen_thread_lock); ret = count; sprintf(pg_result, "OK: add_device=%s", f); goto out; } if (!strcmp(name, "rem_device_all")) { mutex_lock(&pktgen_thread_lock); t->control |= T_REMDEVALL; mutex_unlock(&pktgen_thread_lock); schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */ ret = count; sprintf(pg_result, "OK: rem_device_all"); goto out; } if (!strcmp(name, "max_before_softirq")) { len = num_arg(&user_buffer[i], 10, &value); mutex_lock(&pktgen_thread_lock); t->max_before_softirq = value; mutex_unlock(&pktgen_thread_lock); ret = count; sprintf(pg_result, "OK: max_before_softirq=%lu", value); goto out; } ret = -EINVAL; out: return ret; } static int pktgen_thread_open(struct inode *inode, struct file *file) { return single_open(file, pktgen_thread_show, PDE(inode)->data); } static const struct file_operations pktgen_thread_fops = { .owner = THIS_MODULE, .open = pktgen_thread_open, .read = seq_read, .llseek = seq_lseek, .write = pktgen_thread_write, .release = single_release, }; /* Think find or remove for NN */ static struct pktgen_dev *__pktgen_NN_threads(const char *ifname, int remove) { struct pktgen_thread *t; struct pktgen_dev *pkt_dev = NULL; list_for_each_entry(t, &pktgen_threads, th_list) { pkt_dev = pktgen_find_dev(t, ifname); if (pkt_dev) { if (remove) { if_lock(t); pkt_dev->removal_mark = 1; t->control |= T_REMDEV; if_unlock(t); } break; } } return pkt_dev; } /* * mark a device for removal */ static void pktgen_mark_device(const char *ifname) { struct pktgen_dev *pkt_dev = NULL; const int max_tries = 10, msec_per_try = 125; int i = 0; mutex_lock(&pktgen_thread_lock); pr_debug("pktgen: pktgen_mark_device marking %s for removal\n", ifname); while (1) { pkt_dev = __pktgen_NN_threads(ifname, REMOVE); if (pkt_dev == NULL) break; /* success */ mutex_unlock(&pktgen_thread_lock); pr_debug("pktgen: pktgen_mark_device waiting for %s " "to disappear....\n", ifname); schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try)); mutex_lock(&pktgen_thread_lock); if (++i >= max_tries) { printk("pktgen_mark_device: timed out after waiting " "%d msec for device %s to be removed\n", msec_per_try * i, ifname); break; } } mutex_unlock(&pktgen_thread_lock); } static void pktgen_change_name(struct net_device *dev) { struct pktgen_thread *t; list_for_each_entry(t, &pktgen_threads, th_list) { struct pktgen_dev *pkt_dev; list_for_each_entry(pkt_dev, &t->if_list, list) { if (pkt_dev->odev != dev) continue; remove_proc_entry(pkt_dev->entry->name, pg_proc_dir); pkt_dev->entry = create_proc_entry(dev->name, 0600, pg_proc_dir); if (!pkt_dev->entry) printk(KERN_ERR "pktgen: can't move proc " " entry for '%s'\n", dev->name); break; } } } static int pktgen_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = ptr; /* It is OK that we do not hold the group lock right now, * as we run under the RTNL lock. */ switch (event) { case NETDEV_CHANGENAME: pktgen_change_name(dev); break; case NETDEV_UNREGISTER: pktgen_mark_device(dev->name); break; }; return NOTIFY_DONE; } /* Associate pktgen_dev with a device. */ static int pktgen_setup_dev(struct pktgen_dev *pkt_dev, const char *ifname) { struct net_device *odev; int err; /* Clean old setups */ if (pkt_dev->odev) { dev_put(pkt_dev->odev); pkt_dev->odev = NULL; } odev = dev_get_by_name(ifname); if (!odev) { printk("pktgen: no such netdevice: \"%s\"\n", ifname); return -ENODEV; } if (odev->type != ARPHRD_ETHER) { printk("pktgen: not an ethernet device: \"%s\"\n", ifname); err = -EINVAL; } else if (!netif_running(odev)) { printk("pktgen: device is down: \"%s\"\n", ifname); err = -ENETDOWN; } else { pkt_dev->odev = odev; return 0; } dev_put(odev); return err; } /* Read pkt_dev from the interface and set up internal pktgen_dev * structure to have the right information to create/send packets */ static void pktgen_setup_inject(struct pktgen_dev *pkt_dev) { if (!pkt_dev->odev) { printk("pktgen: ERROR: pkt_dev->odev == NULL in setup_inject.\n"); sprintf(pkt_dev->result, "ERROR: pkt_dev->odev == NULL in setup_inject.\n"); return; } /* Default to the interface's mac if not explicitly set. */ if (is_zero_ether_addr(pkt_dev->src_mac)) memcpy(&(pkt_dev->hh[6]), pkt_dev->odev->dev_addr, ETH_ALEN); /* Set up Dest MAC */ memcpy(&(pkt_dev->hh[0]), pkt_dev->dst_mac, ETH_ALEN); /* Set up pkt size */ pkt_dev->cur_pkt_size = pkt_dev->min_pkt_size; if (pkt_dev->flags & F_IPV6) { /* * Skip this automatic address setting until locks or functions * gets exported */ #ifdef NOTNOW int i, set = 0, err = 1; struct inet6_dev *idev; for (i = 0; i < IN6_ADDR_HSIZE; i++) if (pkt_dev->cur_in6_saddr.s6_addr[i]) { set = 1; break; } if (!set) { /* * Use linklevel address if unconfigured. * * use ipv6_get_lladdr if/when it's get exported */ rcu_read_lock(); if ((idev = __in6_dev_get(pkt_dev->odev)) != NULL) { struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp = idev->addr_list; ifp; ifp = ifp->if_next) { if (ifp->scope == IFA_LINK && !(ifp-> flags & IFA_F_TENTATIVE)) { ipv6_addr_copy(&pkt_dev-> cur_in6_saddr, &ifp->addr); err = 0; break; } } read_unlock_bh(&idev->lock); } rcu_read_unlock(); if (err) printk("pktgen: ERROR: IPv6 link address not availble.\n"); } #endif } else { pkt_dev->saddr_min = 0; pkt_dev->saddr_max = 0; if (strlen(pkt_dev->src_min) == 0) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(pkt_dev->odev); if (in_dev) { if (in_dev->ifa_list) { pkt_dev->saddr_min = in_dev->ifa_list->ifa_address; pkt_dev->saddr_max = pkt_dev->saddr_min; } } rcu_read_unlock(); } else { pkt_dev->saddr_min = in_aton(pkt_dev->src_min); pkt_dev->saddr_max = in_aton(pkt_dev->src_max); } pkt_dev->daddr_min = in_aton(pkt_dev->dst_min); pkt_dev->daddr_max = in_aton(pkt_dev->dst_max); } /* Initialize current values. */ pkt_dev->cur_dst_mac_offset = 0; pkt_dev->cur_src_mac_offset = 0; pkt_dev->cur_saddr = pkt_dev->saddr_min; pkt_dev->cur_daddr = pkt_dev->daddr_min; pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min; pkt_dev->cur_udp_src = pkt_dev->udp_src_min; pkt_dev->nflows = 0; } static void spin(struct pktgen_dev *pkt_dev, __u64 spin_until_us) { __u64 start; __u64 now; start = now = getCurUs(); printk(KERN_INFO "sleeping for %d\n", (int)(spin_until_us - now)); while (now < spin_until_us) { /* TODO: optimize sleeping behavior */ if (spin_until_us - now > jiffies_to_usecs(1) + 1) schedule_timeout_interruptible(1); else if (spin_until_us - now > 100) { do_softirq(); if (!pkt_dev->running) return; if (need_resched()) schedule(); } now = getCurUs(); } pkt_dev->idle_acc += now - start; } /* Increment/randomize headers according to flags and current values * for IP src/dest, UDP src/dst port, MAC-Addr src/dst */ static void mod_cur_headers(struct pktgen_dev *pkt_dev) { __u32 imn; __u32 imx; int flow = 0; if (pkt_dev->cflows) { flow = random32() % pkt_dev->cflows; if (pkt_dev->flows[flow].count > pkt_dev->lflow) pkt_dev->flows[flow].count = 0; } /* Deal with source MAC */ if (pkt_dev->src_mac_count > 1) { __u32 mc; __u32 tmp; if (pkt_dev->flags & F_MACSRC_RND) mc = random32() % pkt_dev->src_mac_count; else { mc = pkt_dev->cur_src_mac_offset++; if (pkt_dev->cur_src_mac_offset > pkt_dev->src_mac_count) pkt_dev->cur_src_mac_offset = 0; } tmp = pkt_dev->src_mac[5] + (mc & 0xFF); pkt_dev->hh[11] = tmp; tmp = (pkt_dev->src_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8)); pkt_dev->hh[10] = tmp; tmp = (pkt_dev->src_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8)); pkt_dev->hh[9] = tmp; tmp = (pkt_dev->src_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8)); pkt_dev->hh[8] = tmp; tmp = (pkt_dev->src_mac[1] + (tmp >> 8)); pkt_dev->hh[7] = tmp; } /* Deal with Destination MAC */ if (pkt_dev->dst_mac_count > 1) { __u32 mc; __u32 tmp; if (pkt_dev->flags & F_MACDST_RND) mc = random32() % pkt_dev->dst_mac_count; else { mc = pkt_dev->cur_dst_mac_offset++; if (pkt_dev->cur_dst_mac_offset > pkt_dev->dst_mac_count) { pkt_dev->cur_dst_mac_offset = 0; } } tmp = pkt_dev->dst_mac[5] + (mc & 0xFF); pkt_dev->hh[5] = tmp; tmp = (pkt_dev->dst_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8)); pkt_dev->hh[4] = tmp; tmp = (pkt_dev->dst_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8)); pkt_dev->hh[3] = tmp; tmp = (pkt_dev->dst_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8)); pkt_dev->hh[2] = tmp; tmp = (pkt_dev->dst_mac[1] + (tmp >> 8)); pkt_dev->hh[1] = tmp; } if (pkt_dev->flags & F_MPLS_RND) { unsigned i; for (i = 0; i < pkt_dev->nr_labels; i++) if (pkt_dev->labels[i] & MPLS_STACK_BOTTOM) pkt_dev->labels[i] = MPLS_STACK_BOTTOM | ((__force __be32)random32() & htonl(0x000fffff)); } if ((pkt_dev->flags & F_VID_RND) && (pkt_dev->vlan_id != 0xffff)) { pkt_dev->vlan_id = random32() & (4096-1); } if ((pkt_dev->flags & F_SVID_RND) && (pkt_dev->svlan_id != 0xffff)) { pkt_dev->svlan_id = random32() & (4096 - 1); } if (pkt_dev->udp_src_min < pkt_dev->udp_src_max) { if (pkt_dev->flags & F_UDPSRC_RND) pkt_dev->cur_udp_src = random32() % (pkt_dev->udp_src_max - pkt_dev->udp_src_min) + pkt_dev->udp_src_min; else { pkt_dev->cur_udp_src++; if (pkt_dev->cur_udp_src >= pkt_dev->udp_src_max) pkt_dev->cur_udp_src = pkt_dev->udp_src_min; } } if (pkt_dev->udp_dst_min < pkt_dev->udp_dst_max) { if (pkt_dev->flags & F_UDPDST_RND) { pkt_dev->cur_udp_dst = random32() % (pkt_dev->udp_dst_max - pkt_dev->udp_dst_min) + pkt_dev->udp_dst_min; } else { pkt_dev->cur_udp_dst++; if (pkt_dev->cur_udp_dst >= pkt_dev->udp_dst_max) pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min; } } if (!(pkt_dev->flags & F_IPV6)) { if ((imn = ntohl(pkt_dev->saddr_min)) < (imx = ntohl(pkt_dev-> saddr_max))) { __u32 t; if (pkt_dev->flags & F_IPSRC_RND) t = random32() % (imx - imn) + imn; else { t = ntohl(pkt_dev->cur_saddr); t++; if (t > imx) { t = imn; } } pkt_dev->cur_saddr = htonl(t); } if (pkt_dev->cflows && pkt_dev->flows[flow].count != 0) { pkt_dev->cur_daddr = pkt_dev->flows[flow].cur_daddr; } else { imn = ntohl(pkt_dev->daddr_min); imx = ntohl(pkt_dev->daddr_max); if (imn < imx) { __u32 t; __be32 s; if (pkt_dev->flags & F_IPDST_RND) { t = random32() % (imx - imn) + imn; s = htonl(t); while (LOOPBACK(s) || MULTICAST(s) || BADCLASS(s) || ZERONET(s) || LOCAL_MCAST(s)) { t = random32() % (imx - imn) + imn; s = htonl(t); } pkt_dev->cur_daddr = s; } else { t = ntohl(pkt_dev->cur_daddr); t++; if (t > imx) { t = imn; } pkt_dev->cur_daddr = htonl(t); } } if (pkt_dev->cflows) { pkt_dev->flows[flow].cur_daddr = pkt_dev->cur_daddr; pkt_dev->nflows++; } } } else { /* IPV6 * */ if (pkt_dev->min_in6_daddr.s6_addr32[0] == 0 && pkt_dev->min_in6_daddr.s6_addr32[1] == 0 && pkt_dev->min_in6_daddr.s6_addr32[2] == 0 && pkt_dev->min_in6_daddr.s6_addr32[3] == 0) ; else { int i; /* Only random destinations yet */ for (i = 0; i < 4; i++) { pkt_dev->cur_in6_daddr.s6_addr32[i] = (((__force __be32)random32() | pkt_dev->min_in6_daddr.s6_addr32[i]) & pkt_dev->max_in6_daddr.s6_addr32[i]); } } } if (pkt_dev->min_pkt_size < pkt_dev->max_pkt_size) { __u32 t; if (pkt_dev->flags & F_TXSIZE_RND) { t = random32() % (pkt_dev->max_pkt_size - pkt_dev->min_pkt_size) + pkt_dev->min_pkt_size; } else { t = pkt_dev->cur_pkt_size + 1; if (t > pkt_dev->max_pkt_size) t = pkt_dev->min_pkt_size; } pkt_dev->cur_pkt_size = t; } pkt_dev->flows[flow].count++; } static void mpls_push(__be32 *mpls, struct pktgen_dev *pkt_dev) { unsigned i; for (i = 0; i < pkt_dev->nr_labels; i++) { *mpls++ = pkt_dev->labels[i] & ~MPLS_STACK_BOTTOM; } mpls--; *mpls |= MPLS_STACK_BOTTOM; } static inline __be16 build_tci(unsigned int id, unsigned int cfi, unsigned int prio) { return htons(id | (cfi << 12) | (prio << 13)); } static struct sk_buff *fill_packet_ipv4(struct net_device *odev, struct pktgen_dev *pkt_dev) { struct sk_buff *skb = NULL; __u8 *eth; struct udphdr *udph; int datalen, iplen; struct iphdr *iph; struct pktgen_hdr *pgh = NULL; __be16 protocol = htons(ETH_P_IP); __be32 *mpls; __be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */ __be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */ __be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */ __be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */ if (pkt_dev->nr_labels) protocol = htons(ETH_P_MPLS_UC); if (pkt_dev->vlan_id != 0xffff) protocol = htons(ETH_P_8021Q); /* Update any of the values, used when we're incrementing various * fields. */ mod_cur_headers(pkt_dev); datalen = (odev->hard_header_len + 16) & ~0xf; skb = alloc_skb(pkt_dev->cur_pkt_size + 64 + datalen + pkt_dev->nr_labels*sizeof(u32) + VLAN_TAG_SIZE(pkt_dev) + SVLAN_TAG_SIZE(pkt_dev), GFP_ATOMIC); if (!skb) { sprintf(pkt_dev->result, "No memory"); return NULL; } skb_reserve(skb, datalen); /* Reserve for ethernet and IP header */ eth = (__u8 *) skb_push(skb, 14); mpls = (__be32 *)skb_put(skb, pkt_dev->nr_labels*sizeof(__u32)); if (pkt_dev->nr_labels) mpls_push(mpls, pkt_dev); if (pkt_dev->vlan_id != 0xffff) { if (pkt_dev->svlan_id != 0xffff) { svlan_tci = (__be16 *)skb_put(skb, sizeof(__be16)); *svlan_tci = build_tci(pkt_dev->svlan_id, pkt_dev->svlan_cfi, pkt_dev->svlan_p); svlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16)); *svlan_encapsulated_proto = htons(ETH_P_8021Q); } vlan_tci = (__be16 *)skb_put(skb, sizeof(__be16)); *vlan_tci = build_tci(pkt_dev->vlan_id, pkt_dev->vlan_cfi, pkt_dev->vlan_p); vlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16)); *vlan_encapsulated_proto = htons(ETH_P_IP); } iph = (struct iphdr *)skb_put(skb, sizeof(struct iphdr)); udph = (struct udphdr *)skb_put(skb, sizeof(struct udphdr)); memcpy(eth, pkt_dev->hh, 12); *(__be16 *) & eth[12] = protocol; /* Eth + IPh + UDPh + mpls */ datalen = pkt_dev->cur_pkt_size - 14 - 20 - 8 - pkt_dev->nr_labels*sizeof(u32) - VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev); if (datalen < sizeof(struct pktgen_hdr)) datalen = sizeof(struct pktgen_hdr); udph->source = htons(pkt_dev->cur_udp_src); udph->dest = htons(pkt_dev->cur_udp_dst); udph->len = htons(datalen + 8); /* DATA + udphdr */ udph->check = 0; /* No checksum */ iph->ihl = 5; iph->version = 4; iph->ttl = 32; iph->tos = pkt_dev->tos; iph->protocol = IPPROTO_UDP; /* UDP */ iph->saddr = pkt_dev->cur_saddr; iph->daddr = pkt_dev->cur_daddr; iph->frag_off = 0; iplen = 20 + 8 + datalen; iph->tot_len = htons(iplen); iph->check = 0; iph->check = ip_fast_csum((void *)iph, iph->ihl); skb->protocol = protocol; skb->mac.raw = ((u8 *) iph) - 14 - pkt_dev->nr_labels*sizeof(u32) - VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev); skb->dev = odev; skb->pkt_type = PACKET_HOST; skb->nh.raw = (unsigned char *)iph; skb->h.uh = udph; if (pkt_dev->nfrags <= 0) pgh = (struct pktgen_hdr *)skb_put(skb, datalen); else { int frags = pkt_dev->nfrags; int i; pgh = (struct pktgen_hdr *)(((char *)(udph)) + 8); if (frags > MAX_SKB_FRAGS) frags = MAX_SKB_FRAGS; if (datalen > frags * PAGE_SIZE) { skb_put(skb, datalen - frags * PAGE_SIZE); datalen = frags * PAGE_SIZE; } i = 0; while (datalen > 0) { struct page *page = alloc_pages(GFP_KERNEL, 0); skb_shinfo(skb)->frags[i].page = page; skb_shinfo(skb)->frags[i].page_offset = 0; skb_shinfo(skb)->frags[i].size = (datalen < PAGE_SIZE ? datalen : PAGE_SIZE); datalen -= skb_shinfo(skb)->frags[i].size; skb->len += skb_shinfo(skb)->frags[i].size; skb->data_len += skb_shinfo(skb)->frags[i].size; i++; skb_shinfo(skb)->nr_frags = i; } while (i < frags) { int rem; if (i == 0) break; rem = skb_shinfo(skb)->frags[i - 1].size / 2; if (rem == 0) break; skb_shinfo(skb)->frags[i - 1].size -= rem; skb_shinfo(skb)->frags[i] = skb_shinfo(skb)->frags[i - 1]; get_page(skb_shinfo(skb)->frags[i].page); skb_shinfo(skb)->frags[i].page = skb_shinfo(skb)->frags[i - 1].page; skb_shinfo(skb)->frags[i].page_offset += skb_shinfo(skb)->frags[i - 1].size; skb_shinfo(skb)->frags[i].size = rem; i++; skb_shinfo(skb)->nr_frags = i; } } /* Stamp the time, and sequence number, convert them to network byte order */ if (pgh) { struct timeval timestamp; pgh->pgh_magic = htonl(PKTGEN_MAGIC); pgh->seq_num = htonl(pkt_dev->seq_num); do_gettimeofday(×tamp); pgh->tv_sec = htonl(timestamp.tv_sec); pgh->tv_usec = htonl(timestamp.tv_usec); } return skb; } /* * scan_ip6, fmt_ip taken from dietlibc-0.21 * Author Felix von Leitner * * Slightly modified for kernel. * Should be candidate for net/ipv4/utils.c * --ro */ static unsigned int scan_ip6(const char *s, char ip[16]) { unsigned int i; unsigned int len = 0; unsigned long u; char suffix[16]; unsigned int prefixlen = 0; unsigned int suffixlen = 0; __be32 tmp; for (i = 0; i < 16; i++) ip[i] = 0; for (;;) { if (*s == ':') { len++; if (s[1] == ':') { /* Found "::", skip to part 2 */ s += 2; len++; break; } s++; } { char *tmp; u = simple_strtoul(s, &tmp, 16); i = tmp - s; } if (!i) return 0; if (prefixlen == 12 && s[i] == '.') { /* the last 4 bytes may be written as IPv4 address */ tmp = in_aton(s); memcpy((struct in_addr *)(ip + 12), &tmp, sizeof(tmp)); return i + len; } ip[prefixlen++] = (u >> 8); ip[prefixlen++] = (u & 255); s += i; len += i; if (prefixlen == 16) return len; } /* part 2, after "::" */ for (;;) { if (*s == ':') { if (suffixlen == 0) break; s++; len++; } else if (suffixlen != 0) break; { char *tmp; u = simple_strtol(s, &tmp, 16); i = tmp - s; } if (!i) { if (*s) len--; break; } if (suffixlen + prefixlen <= 12 && s[i] == '.') { tmp = in_aton(s); memcpy((struct in_addr *)(suffix + suffixlen), &tmp, sizeof(tmp)); suffixlen += 4; len += strlen(s); break; } suffix[suffixlen++] = (u >> 8); suffix[suffixlen++] = (u & 255); s += i; len += i; if (prefixlen + suffixlen == 16) break; } for (i = 0; i < suffixlen; i++) ip[16 - suffixlen + i] = suffix[i]; return len; } static char tohex(char hexdigit) { return hexdigit > 9 ? hexdigit + 'a' - 10 : hexdigit + '0'; } static int fmt_xlong(char *s, unsigned int i) { char *bak = s; *s = tohex((i >> 12) & 0xf); if (s != bak || *s != '0') ++s; *s = tohex((i >> 8) & 0xf); if (s != bak || *s != '0') ++s; *s = tohex((i >> 4) & 0xf); if (s != bak || *s != '0') ++s; *s = tohex(i & 0xf); return s - bak + 1; } static unsigned int fmt_ip6(char *s, const char ip[16]) { unsigned int len; unsigned int i; unsigned int temp; unsigned int compressing; int j; len = 0; compressing = 0; for (j = 0; j < 16; j += 2) { #ifdef V4MAPPEDPREFIX if (j == 12 && !memcmp(ip, V4mappedprefix, 12)) { inet_ntoa_r(*(struct in_addr *)(ip + 12), s); temp = strlen(s); return len + temp; } #endif temp = ((unsigned long)(unsigned char)ip[j] << 8) + (unsigned long)(unsigned char)ip[j + 1]; if (temp == 0) { if (!compressing) { compressing = 1; if (j == 0) { *s++ = ':'; ++len; } } } else { if (compressing) { compressing = 0; *s++ = ':'; ++len; } i = fmt_xlong(s, temp); len += i; s += i; if (j < 14) { *s++ = ':'; ++len; } } } if (compressing) { *s++ = ':'; ++len; } *s = 0; return len; } static struct sk_buff *fill_packet_ipv6(struct net_device *odev, struct pktgen_dev *pkt_dev) { struct sk_buff *skb = NULL; __u8 *eth; struct udphdr *udph; int datalen; struct ipv6hdr *iph; struct pktgen_hdr *pgh = NULL; __be16 protocol = htons(ETH_P_IPV6); __be32 *mpls; __be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */ __be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */ __be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */ __be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */ if (pkt_dev->nr_labels) protocol = htons(ETH_P_MPLS_UC); if (pkt_dev->vlan_id != 0xffff) protocol = htons(ETH_P_8021Q); /* Update any of the values, used when we're incrementing various * fields. */ mod_cur_headers(pkt_dev); skb = alloc_skb(pkt_dev->cur_pkt_size + 64 + 16 + pkt_dev->nr_labels*sizeof(u32) + VLAN_TAG_SIZE(pkt_dev) + SVLAN_TAG_SIZE(pkt_dev), GFP_ATOMIC); if (!skb) { sprintf(pkt_dev->result, "No memory"); return NULL; } skb_reserve(skb, 16); /* Reserve for ethernet and IP header */ eth = (__u8 *) skb_push(skb, 14); mpls = (__be32 *)skb_put(skb, pkt_dev->nr_labels*sizeof(__u32)); if (pkt_dev->nr_labels) mpls_push(mpls, pkt_dev); if (pkt_dev->vlan_id != 0xffff) { if (pkt_dev->svlan_id != 0xffff) { svlan_tci = (__be16 *)skb_put(skb, sizeof(__be16)); *svlan_tci = build_tci(pkt_dev->svlan_id, pkt_dev->svlan_cfi, pkt_dev->svlan_p); svlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16)); *svlan_encapsulated_proto = htons(ETH_P_8021Q); } vlan_tci = (__be16 *)skb_put(skb, sizeof(__be16)); *vlan_tci = build_tci(pkt_dev->vlan_id, pkt_dev->vlan_cfi, pkt_dev->vlan_p); vlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16)); *vlan_encapsulated_proto = htons(ETH_P_IPV6); } iph = (struct ipv6hdr *)skb_put(skb, sizeof(struct ipv6hdr)); udph = (struct udphdr *)skb_put(skb, sizeof(struct udphdr)); memcpy(eth, pkt_dev->hh, 12); *(__be16 *) & eth[12] = protocol; /* Eth + IPh + UDPh + mpls */ datalen = pkt_dev->cur_pkt_size - 14 - sizeof(struct ipv6hdr) - sizeof(struct udphdr) - pkt_dev->nr_labels*sizeof(u32) - VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev); if (datalen < sizeof(struct pktgen_hdr)) { datalen = sizeof(struct pktgen_hdr); if (net_ratelimit()) printk(KERN_INFO "pktgen: increased datalen to %d\n", datalen); } udph->source = htons(pkt_dev->cur_udp_src); udph->dest = htons(pkt_dev->cur_udp_dst); udph->len = htons(datalen + sizeof(struct udphdr)); udph->check = 0; /* No checksum */ *(__be32 *) iph = htonl(0x60000000); /* Version + flow */ if (pkt_dev->traffic_class) { /* Version + traffic class + flow (0) */ *(__be32 *)iph |= htonl(0x60000000 | (pkt_dev->traffic_class << 20)); } iph->hop_limit = 32; iph->payload_len = htons(sizeof(struct udphdr) + datalen); iph->nexthdr = IPPROTO_UDP; ipv6_addr_copy(&iph->daddr, &pkt_dev->cur_in6_daddr); ipv6_addr_copy(&iph->saddr, &pkt_dev->cur_in6_saddr); skb->mac.raw = ((u8 *) iph) - 14 - pkt_dev->nr_labels*sizeof(u32) - VLAN_TAG_SIZE(pkt_dev) - SVLAN_TAG_SIZE(pkt_dev); skb->protocol = protocol; skb->dev = odev; skb->pkt_type = PACKET_HOST; skb->nh.ipv6h = iph; skb->h.uh = udph; if (pkt_dev->nfrags <= 0) pgh = (struct pktgen_hdr *)skb_put(skb, datalen); else { int frags = pkt_dev->nfrags; int i; pgh = (struct pktgen_hdr *)(((char *)(udph)) + 8); if (frags > MAX_SKB_FRAGS) frags = MAX_SKB_FRAGS; if (datalen > frags * PAGE_SIZE) { skb_put(skb, datalen - frags * PAGE_SIZE); datalen = frags * PAGE_SIZE; } i = 0; while (datalen > 0) { struct page *page = alloc_pages(GFP_KERNEL, 0); skb_shinfo(skb)->frags[i].page = page; skb_shinfo(skb)->frags[i].page_offset = 0; skb_shinfo(skb)->frags[i].size = (datalen < PAGE_SIZE ? datalen : PAGE_SIZE); datalen -= skb_shinfo(skb)->frags[i].size; skb->len += skb_shinfo(skb)->frags[i].size; skb->data_len += skb_shinfo(skb)->frags[i].size; i++; skb_shinfo(skb)->nr_frags = i; } while (i < frags) { int rem; if (i == 0) break; rem = skb_shinfo(skb)->frags[i - 1].size / 2; if (rem == 0) break; skb_shinfo(skb)->frags[i - 1].size -= rem; skb_shinfo(skb)->frags[i] = skb_shinfo(skb)->frags[i - 1]; get_page(skb_shinfo(skb)->frags[i].page); skb_shinfo(skb)->frags[i].page = skb_shinfo(skb)->frags[i - 1].page; skb_shinfo(skb)->frags[i].page_offset += skb_shinfo(skb)->frags[i - 1].size; skb_shinfo(skb)->frags[i].size = rem; i++; skb_shinfo(skb)->nr_frags = i; } } /* Stamp the time, and sequence number, convert them to network byte order */ /* should we update cloned packets too ? */ if (pgh) { struct timeval timestamp; pgh->pgh_magic = htonl(PKTGEN_MAGIC); pgh->seq_num = htonl(pkt_dev->seq_num); do_gettimeofday(×tamp); pgh->tv_sec = htonl(timestamp.tv_sec); pgh->tv_usec = htonl(timestamp.tv_usec); } /* pkt_dev->seq_num++; FF: you really mean this? */ return skb; } static inline struct sk_buff *fill_packet(struct net_device *odev, struct pktgen_dev *pkt_dev) { if (pkt_dev->flags & F_IPV6) return fill_packet_ipv6(odev, pkt_dev); else return fill_packet_ipv4(odev, pkt_dev); } static void pktgen_clear_counters(struct pktgen_dev *pkt_dev) { pkt_dev->seq_num = 1; pkt_dev->idle_acc = 0; pkt_dev->sofar = 0; pkt_dev->tx_bytes = 0; pkt_dev->errors = 0; } /* Set up structure for sending pkts, clear counters */ static void pktgen_run(struct pktgen_thread *t) { struct pktgen_dev *pkt_dev; int started = 0; pr_debug("pktgen: entering pktgen_run. %p\n", t); if_lock(t); list_for_each_entry(pkt_dev, &t->if_list, list) { /* * setup odev and create initial packet. */ pktgen_setup_inject(pkt_dev); if (pkt_dev->odev) { pktgen_clear_counters(pkt_dev); pkt_dev->running = 1; /* Cranke yeself! */ pkt_dev->skb = NULL; pkt_dev->started_at = getCurUs(); pkt_dev->next_tx_us = getCurUs(); /* Transmit immediately */ pkt_dev->next_tx_ns = 0; strcpy(pkt_dev->result, "Starting"); started++; } else strcpy(pkt_dev->result, "Error starting"); } if_unlock(t); if (started) t->control &= ~(T_STOP); } static void pktgen_stop_all_threads_ifs(void) { struct pktgen_thread *t; pr_debug("pktgen: entering pktgen_stop_all_threads_ifs.\n"); mutex_lock(&pktgen_thread_lock); list_for_each_entry(t, &pktgen_threads, th_list) t->control |= T_STOP; mutex_unlock(&pktgen_thread_lock); } static int thread_is_running(struct pktgen_thread *t) { struct pktgen_dev *pkt_dev; int res = 0; list_for_each_entry(pkt_dev, &t->if_list, list) if (pkt_dev->running) { res = 1; break; } return res; } static int pktgen_wait_thread_run(struct pktgen_thread *t) { if_lock(t); while (thread_is_running(t)) { if_unlock(t); msleep_interruptible(100); if (signal_pending(current)) goto signal; if_lock(t); } if_unlock(t); return 1; signal: return 0; } static int pktgen_wait_all_threads_run(void) { struct pktgen_thread *t; int sig = 1; mutex_lock(&pktgen_thread_lock); list_for_each_entry(t, &pktgen_threads, th_list) { sig = pktgen_wait_thread_run(t); if (sig == 0) break; } if (sig == 0) list_for_each_entry(t, &pktgen_threads, th_list) t->control |= (T_STOP); mutex_unlock(&pktgen_thread_lock); return sig; } static void pktgen_run_all_threads(void) { struct pktgen_thread *t; pr_debug("pktgen: entering pktgen_run_all_threads.\n"); mutex_lock(&pktgen_thread_lock); list_for_each_entry(t, &pktgen_threads, th_list) t->control |= (T_RUN); mutex_unlock(&pktgen_thread_lock); schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */ pktgen_wait_all_threads_run(); } static void show_results(struct pktgen_dev *pkt_dev, int nr_frags) { __u64 total_us, bps, mbps, pps, idle; char *p = pkt_dev->result; total_us = pkt_dev->stopped_at - pkt_dev->started_at; idle = pkt_dev->idle_acc; p += sprintf(p, "OK: %llu(c%llu+d%llu) usec, %llu (%dbyte,%dfrags)\n", (unsigned long long)total_us, (unsigned long long)(total_us - idle), (unsigned long long)idle, (unsigned long long)pkt_dev->sofar, pkt_dev->cur_pkt_size, nr_frags); pps = pkt_dev->sofar * USEC_PER_SEC; while ((total_us >> 32) != 0) { pps >>= 1; total_us >>= 1; } do_div(pps, total_us); bps = pps * 8 * pkt_dev->cur_pkt_size; mbps = bps; do_div(mbps, 1000000); p += sprintf(p, " %llupps %lluMb/sec (%llubps) errors: %llu", (unsigned long long)pps, (unsigned long long)mbps, (unsigned long long)bps, (unsigned long long)pkt_dev->errors); } /* Set stopped-at timer, remove from running list, do counters & statistics */ static int pktgen_stop_device(struct pktgen_dev *pkt_dev) { int nr_frags = pkt_dev->skb ? skb_shinfo(pkt_dev->skb)->nr_frags : -1; if (!pkt_dev->running) { printk("pktgen: interface: %s is already stopped\n", pkt_dev->odev->name); return -EINVAL; } pkt_dev->stopped_at = getCurUs(); pkt_dev->running = 0; show_results(pkt_dev, nr_frags); return 0; } static struct pktgen_dev *next_to_run(struct pktgen_thread *t) { struct pktgen_dev *pkt_dev, *best = NULL; if_lock(t); list_for_each_entry(pkt_dev, &t->if_list, list) { if (!pkt_dev->running) continue; if (best == NULL) best = pkt_dev; else if (pkt_dev->next_tx_us < best->next_tx_us) best = pkt_dev; } if_unlock(t); return best; } static void pktgen_stop(struct pktgen_thread *t) { struct pktgen_dev *pkt_dev; pr_debug("pktgen: entering pktgen_stop\n"); if_lock(t); list_for_each_entry(pkt_dev, &t->if_list, list) { pktgen_stop_device(pkt_dev); if (pkt_dev->skb) kfree_skb(pkt_dev->skb); pkt_dev->skb = NULL; } if_unlock(t); } /* * one of our devices needs to be removed - find it * and remove it */ static void pktgen_rem_one_if(struct pktgen_thread *t) { struct list_head *q, *n; struct pktgen_dev *cur; pr_debug("pktgen: entering pktgen_rem_one_if\n"); if_lock(t); list_for_each_safe(q, n, &t->if_list) { cur = list_entry(q, struct pktgen_dev, list); if (!cur->removal_mark) continue; if (cur->skb) kfree_skb(cur->skb); cur->skb = NULL; pktgen_remove_device(t, cur); break; } if_unlock(t); } static void pktgen_rem_all_ifs(struct pktgen_thread *t) { struct list_head *q, *n; struct pktgen_dev *cur; /* Remove all devices, free mem */ pr_debug("pktgen: entering pktgen_rem_all_ifs\n"); if_lock(t); list_for_each_safe(q, n, &t->if_list) { cur = list_entry(q, struct pktgen_dev, list); if (cur->skb) kfree_skb(cur->skb); cur->skb = NULL; pktgen_remove_device(t, cur); } if_unlock(t); } static void pktgen_rem_thread(struct pktgen_thread *t) { /* Remove from the thread list */ remove_proc_entry(t->tsk->comm, pg_proc_dir); mutex_lock(&pktgen_thread_lock); list_del(&t->th_list); mutex_unlock(&pktgen_thread_lock); } static __inline__ void pktgen_xmit(struct pktgen_dev *pkt_dev) { struct net_device *odev = NULL; __u64 idle_start = 0; int ret; odev = pkt_dev->odev; if (pkt_dev->delay_us || pkt_dev->delay_ns) { u64 now; now = getCurUs(); if (now < pkt_dev->next_tx_us) spin(pkt_dev, pkt_dev->next_tx_us); /* This is max DELAY, this has special meaning of * "never transmit" */ if (pkt_dev->delay_us == 0x7FFFFFFF) { pkt_dev->next_tx_us = getCurUs() + pkt_dev->delay_us; pkt_dev->next_tx_ns = pkt_dev->delay_ns; goto out; } } if (netif_queue_stopped(odev) || need_resched()) { idle_start = getCurUs(); if (!netif_running(odev)) { pktgen_stop_device(pkt_dev); if (pkt_dev->skb) kfree_skb(pkt_dev->skb); pkt_dev->skb = NULL; goto out; } if (need_resched()) schedule(); pkt_dev->idle_acc += getCurUs() - idle_start; if (netif_queue_stopped(odev)) { pkt_dev->next_tx_us = getCurUs(); /* TODO */ pkt_dev->next_tx_ns = 0; goto out; /* Try the next interface */ } } if (pkt_dev->last_ok || !pkt_dev->skb) { if ((++pkt_dev->clone_count >= pkt_dev->clone_skb) || (!pkt_dev->skb)) { /* build a new pkt */ if (pkt_dev->skb) kfree_skb(pkt_dev->skb); pkt_dev->skb = fill_packet(odev, pkt_dev); if (pkt_dev->skb == NULL) { printk("pktgen: ERROR: couldn't allocate skb in fill_packet.\n"); schedule(); pkt_dev->clone_count--; /* back out increment, OOM */ goto out; } pkt_dev->allocated_skbs++; pkt_dev->clone_count = 0; /* reset counter */ } } netif_tx_lock_bh(odev); if (!netif_queue_stopped(odev)) { atomic_inc(&(pkt_dev->skb->users)); retry_now: ret = odev->hard_start_xmit(pkt_dev->skb, odev); if (likely(ret == NETDEV_TX_OK)) { pkt_dev->last_ok = 1; pkt_dev->sofar++; pkt_dev->seq_num++; pkt_dev->tx_bytes += pkt_dev->cur_pkt_size; } else if (ret == NETDEV_TX_LOCKED && (odev->features & NETIF_F_LLTX)) { cpu_relax(); goto retry_now; } else { /* Retry it next time */ atomic_dec(&(pkt_dev->skb->users)); if (debug && net_ratelimit()) printk(KERN_INFO "pktgen: Hard xmit error\n"); pkt_dev->errors++; pkt_dev->last_ok = 0; } pkt_dev->next_tx_us = getCurUs(); pkt_dev->next_tx_ns = 0; pkt_dev->next_tx_us += pkt_dev->delay_us; pkt_dev->next_tx_ns += pkt_dev->delay_ns; if (pkt_dev->next_tx_ns > 1000) { pkt_dev->next_tx_us++; pkt_dev->next_tx_ns -= 1000; } } else { /* Retry it next time */ pkt_dev->last_ok = 0; pkt_dev->next_tx_us = getCurUs(); /* TODO */ pkt_dev->next_tx_ns = 0; } netif_tx_unlock_bh(odev); /* If pkt_dev->count is zero, then run forever */ if ((pkt_dev->count != 0) && (pkt_dev->sofar >= pkt_dev->count)) { if (atomic_read(&(pkt_dev->skb->users)) != 1) { idle_start = getCurUs(); while (atomic_read(&(pkt_dev->skb->users)) != 1) { if (signal_pending(current)) { break; } schedule(); } pkt_dev->idle_acc += getCurUs() - idle_start; } /* Done with this */ pktgen_stop_device(pkt_dev); if (pkt_dev->skb) kfree_skb(pkt_dev->skb); pkt_dev->skb = NULL; } out:; } /* * Main loop of the thread goes here */ static int pktgen_thread_worker(void *arg) { DEFINE_WAIT(wait); struct pktgen_thread *t = arg; struct pktgen_dev *pkt_dev = NULL; int cpu = t->cpu; u32 max_before_softirq; u32 tx_since_softirq = 0; BUG_ON(smp_processor_id() != cpu); init_waitqueue_head(&t->queue); t->pid = current->pid; pr_debug("pktgen: starting pktgen/%d: pid=%d\n", cpu, current->pid); max_before_softirq = t->max_before_softirq; set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { pkt_dev = next_to_run(t); if (!pkt_dev && (t->control & (T_STOP | T_RUN | T_REMDEVALL | T_REMDEV)) == 0) { prepare_to_wait(&(t->queue), &wait, TASK_INTERRUPTIBLE); schedule_timeout(HZ / 10); finish_wait(&(t->queue), &wait); } __set_current_state(TASK_RUNNING); if (pkt_dev) { pktgen_xmit(pkt_dev); /* * We like to stay RUNNING but must also give * others fair share. */ tx_since_softirq += pkt_dev->last_ok; if (tx_since_softirq > max_before_softirq) { if (local_softirq_pending()) do_softirq(); tx_since_softirq = 0; } } if (t->control & T_STOP) { pktgen_stop(t); t->control &= ~(T_STOP); } if (t->control & T_RUN) { pktgen_run(t); t->control &= ~(T_RUN); } if (t->control & T_REMDEVALL) { pktgen_rem_all_ifs(t); t->control &= ~(T_REMDEVALL); } if (t->control & T_REMDEV) { pktgen_rem_one_if(t); t->control &= ~(T_REMDEV); } try_to_freeze(); set_current_state(TASK_INTERRUPTIBLE); } pr_debug("pktgen: %s stopping all device\n", t->tsk->comm); pktgen_stop(t); pr_debug("pktgen: %s removing all device\n", t->tsk->comm); pktgen_rem_all_ifs(t); pr_debug("pktgen: %s removing thread.\n", t->tsk->comm); pktgen_rem_thread(t); return 0; } static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t, const char *ifname) { struct pktgen_dev *p, *pkt_dev = NULL; if_lock(t); list_for_each_entry(p, &t->if_list, list) if (strncmp(p->odev->name, ifname, IFNAMSIZ) == 0) { pkt_dev = p; break; } if_unlock(t); pr_debug("pktgen: find_dev(%s) returning %p\n", ifname, pkt_dev); return pkt_dev; } /* * Adds a dev at front of if_list. */ static int add_dev_to_thread(struct pktgen_thread *t, struct pktgen_dev *pkt_dev) { int rv = 0; if_lock(t); if (pkt_dev->pg_thread) { printk("pktgen: ERROR: already assigned to a thread.\n"); rv = -EBUSY; goto out; } list_add(&pkt_dev->list, &t->if_list); pkt_dev->pg_thread = t; pkt_dev->running = 0; out: if_unlock(t); return rv; } /* Called under thread lock */ static int pktgen_add_device(struct pktgen_thread *t, const char *ifname) { struct pktgen_dev *pkt_dev; int err; /* We don't allow a device to be on several threads */ pkt_dev = __pktgen_NN_threads(ifname, FIND); if (pkt_dev) { printk("pktgen: ERROR: interface already used.\n"); return -EBUSY; } pkt_dev = kzalloc(sizeof(struct pktgen_dev), GFP_KERNEL); if (!pkt_dev) return -ENOMEM; pkt_dev->flows = vmalloc(MAX_CFLOWS * sizeof(struct flow_state)); if (pkt_dev->flows == NULL) { kfree(pkt_dev); return -ENOMEM; } memset(pkt_dev->flows, 0, MAX_CFLOWS * sizeof(struct flow_state)); pkt_dev->removal_mark = 0; pkt_dev->min_pkt_size = ETH_ZLEN; pkt_dev->max_pkt_size = ETH_ZLEN; pkt_dev->nfrags = 0; pkt_dev->clone_skb = pg_clone_skb_d; pkt_dev->delay_us = pg_delay_d / 1000; pkt_dev->delay_ns = pg_delay_d % 1000; pkt_dev->count = pg_count_d; pkt_dev->sofar = 0; pkt_dev->udp_src_min = 9; /* sink port */ pkt_dev->udp_src_max = 9; pkt_dev->udp_dst_min = 9; pkt_dev->udp_dst_max = 9; pkt_dev->vlan_p = 0; pkt_dev->vlan_cfi = 0; pkt_dev->vlan_id = 0xffff; pkt_dev->svlan_p = 0; pkt_dev->svlan_cfi = 0; pkt_dev->svlan_id = 0xffff; err = pktgen_setup_dev(pkt_dev, ifname); if (err) goto out1; pkt_dev->entry = create_proc_entry(ifname, 0600, pg_proc_dir); if (!pkt_dev->entry) { printk("pktgen: cannot create %s/%s procfs entry.\n", PG_PROC_DIR, ifname); err = -EINVAL; goto out2; } pkt_dev->entry->proc_fops = &pktgen_if_fops; pkt_dev->entry->data = pkt_dev; return add_dev_to_thread(t, pkt_dev); out2: dev_put(pkt_dev->odev); out1: if (pkt_dev->flows) vfree(pkt_dev->flows); kfree(pkt_dev); return err; } static int __init pktgen_create_thread(int cpu) { struct pktgen_thread *t; struct proc_dir_entry *pe; struct task_struct *p; t = kzalloc(sizeof(struct pktgen_thread), GFP_KERNEL); if (!t) { printk("pktgen: ERROR: out of memory, can't create new thread.\n"); return -ENOMEM; } spin_lock_init(&t->if_lock); t->cpu = cpu; INIT_LIST_HEAD(&t->if_list); list_add_tail(&t->th_list, &pktgen_threads); p = kthread_create(pktgen_thread_worker, t, "kpktgend_%d", cpu); if (IS_ERR(p)) { printk("pktgen: kernel_thread() failed for cpu %d\n", t->cpu); list_del(&t->th_list); kfree(t); return PTR_ERR(p); } kthread_bind(p, cpu); t->tsk = p; pe = create_proc_entry(t->tsk->comm, 0600, pg_proc_dir); if (!pe) { printk("pktgen: cannot create %s/%s procfs entry.\n", PG_PROC_DIR, t->tsk->comm); kthread_stop(p); list_del(&t->th_list); kfree(t); return -EINVAL; } pe->proc_fops = &pktgen_thread_fops; pe->data = t; wake_up_process(p); return 0; } /* * Removes a device from the thread if_list. */ static void _rem_dev_from_if_list(struct pktgen_thread *t, struct pktgen_dev *pkt_dev) { struct list_head *q, *n; struct pktgen_dev *p; list_for_each_safe(q, n, &t->if_list) { p = list_entry(q, struct pktgen_dev, list); if (p == pkt_dev) list_del(&p->list); } } static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *pkt_dev) { pr_debug("pktgen: remove_device pkt_dev=%p\n", pkt_dev); if (pkt_dev->running) { printk("pktgen:WARNING: trying to remove a running interface, stopping it now.\n"); pktgen_stop_device(pkt_dev); } /* Dis-associate from the interface */ if (pkt_dev->odev) { dev_put(pkt_dev->odev); pkt_dev->odev = NULL; } /* And update the thread if_list */ _rem_dev_from_if_list(t, pkt_dev); if (pkt_dev->entry) remove_proc_entry(pkt_dev->entry->name, pg_proc_dir); if (pkt_dev->flows) vfree(pkt_dev->flows); kfree(pkt_dev); return 0; } static int __init pg_init(void) { int cpu; struct proc_dir_entry *pe; printk(version); pg_proc_dir = proc_mkdir(PG_PROC_DIR, proc_net); if (!pg_proc_dir) return -ENODEV; pg_proc_dir->owner = THIS_MODULE; pe = create_proc_entry(PGCTRL, 0600, pg_proc_dir); if (pe == NULL) { printk("pktgen: ERROR: cannot create %s procfs entry.\n", PGCTRL); proc_net_remove(PG_PROC_DIR); return -EINVAL; } pe->proc_fops = &pktgen_fops; pe->data = NULL; /* Register us to receive netdevice events */ register_netdevice_notifier(&pktgen_notifier_block); for_each_online_cpu(cpu) { int err; err = pktgen_create_thread(cpu); if (err) printk("pktgen: WARNING: Cannot create thread for cpu %d (%d)\n", cpu, err); } if (list_empty(&pktgen_threads)) { printk("pktgen: ERROR: Initialization failed for all threads\n"); unregister_netdevice_notifier(&pktgen_notifier_block); remove_proc_entry(PGCTRL, pg_proc_dir); proc_net_remove(PG_PROC_DIR); return -ENODEV; } return 0; } static void __exit pg_cleanup(void) { struct pktgen_thread *t; struct list_head *q, *n; wait_queue_head_t queue; init_waitqueue_head(&queue); /* Stop all interfaces & threads */ list_for_each_safe(q, n, &pktgen_threads) { t = list_entry(q, struct pktgen_thread, th_list); kthread_stop(t->tsk); kfree(t); } /* Un-register us from receiving netdevice events */ unregister_netdevice_notifier(&pktgen_notifier_block); /* Clean up proc file system */ remove_proc_entry(PGCTRL, pg_proc_dir); proc_net_remove(PG_PROC_DIR); } module_init(pg_init); module_exit(pg_cleanup); MODULE_AUTHOR("Robert Olsson