/* * xfrm algorithm interface * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/pfkeyv2.h> #include <linux/crypto.h> #include <linux/scatterlist.h> #include <net/xfrm.h> #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE) #include <net/ah.h> #endif #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE) #include <net/esp.h> #endif /* * Algorithms supported by IPsec. These entries contain properties which * are used in key negotiation and xfrm processing, and are used to verify * that instantiated crypto transforms have correct parameters for IPsec * purposes. */ static struct xfrm_algo_desc aead_list[] = { { .name = "rfc4106(gcm(aes))", .uinfo = { .aead = { .icv_truncbits = 64, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4106(gcm(aes))", .uinfo = { .aead = { .icv_truncbits = 96, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4106(gcm(aes))", .uinfo = { .aead = { .icv_truncbits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4309(ccm(aes))", .uinfo = { .aead = { .icv_truncbits = 64, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4309(ccm(aes))", .uinfo = { .aead = { .icv_truncbits = 96, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4309(ccm(aes))", .uinfo = { .aead = { .icv_truncbits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, }; static struct xfrm_algo_desc aalg_list[] = { { .name = "digest_null", .uinfo = { .auth = { .icv_truncbits = 0, .icv_fullbits = 0, } }, .desc = { .sadb_alg_id = SADB_X_AALG_NULL, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 0, .sadb_alg_maxbits = 0 } }, { .name = "hmac(md5)", .compat = "md5", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 128, } }, .desc = { .sadb_alg_id = SADB_AALG_MD5HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 128 } }, { .name = "hmac(sha1)", .compat = "sha1", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 160, } }, .desc = { .sadb_alg_id = SADB_AALG_SHA1HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 160, .sadb_alg_maxbits = 160 } }, { .name = "hmac(sha256)", .compat = "sha256", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 256, } }, .desc = { .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 256, .sadb_alg_maxbits = 256 } }, { .name = "hmac(ripemd160)", .compat = "ripemd160", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 160, } }, .desc = { .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 160, .sadb_alg_maxbits = 160 } }, { .name = "xcbc(aes)", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 128, } }, .desc = { .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 128 } }, }; static struct xfrm_algo_desc ealg_list[] = { { .name = "ecb(cipher_null)", .compat = "cipher_null", .uinfo = { .encr = { .blockbits = 8, .defkeybits = 0, } }, .desc = { .sadb_alg_id = SADB_EALG_NULL, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 0, .sadb_alg_maxbits = 0 } }, { .name = "cbc(des)", .compat = "des", .uinfo = { .encr = { .blockbits = 64, .defkeybits = 64, } }, .desc = { .sadb_alg_id = SADB_EALG_DESCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 64, .sadb_alg_maxbits = 64 } }, { .name = "cbc(des3_ede)", .compat = "des3_ede", .uinfo = { .encr = { .blockbits = 64, .defkeybits = 192, } }, .desc = { .sadb_alg_id = SADB_EALG_3DESCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 192, .sadb_alg_maxbits = 192 } }, { .name = "cbc(cast128)", .compat = "cast128", .uinfo = { .encr = { .blockbits = 64, .defkeybits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_CASTCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 40, .sadb_alg_maxbits = 128 } }, { .name = "cbc(blowfish)", .compat = "blowfish", .uinfo = { .encr = { .blockbits = 64, .defkeybits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 40, .sadb_alg_maxbits = 448 } }, { .name = "cbc(aes)", .compat = "aes", .uinfo = { .encr = { .blockbits = 128, .defkeybits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_AESCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "cbc(serpent)", .compat = "serpent", .uinfo = { .encr = { .blockbits = 128, .defkeybits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_SERPENTCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256, } }, { .name = "cbc(camellia)", .uinfo = { .encr = { .blockbits = 128, .defkeybits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_CAMELLIACBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "cbc(twofish)", .compat = "twofish", .uinfo = { .encr = { .blockbits = 128, .defkeybits = 128, } }, .desc = { .sadb_alg_id = SADB_X_EALG_TWOFISHCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc3686(ctr(aes))", .uinfo = { .encr = { .blockbits = 128, .defkeybits = 160, /* 128-bit key + 32-bit nonce */ } }, .desc = { .sadb_alg_id = SADB_X_EALG_AESCTR, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, }; static struct xfrm_algo_desc calg_list[] = { { .name = "deflate", .uinfo = { .comp = { .threshold = 90, } }, .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE } }, { .name = "lzs", .uinfo = { .comp = { .threshold = 90, } }, .desc = { .sadb_alg_id = SADB_X_CALG_LZS } }, { .name = "lzjh", .uinfo = { .comp = { .threshold = 50, } }, .desc = { .sadb_alg_id = SADB_X_CALG_LZJH } }, }; static inline int aead_entries(void) { return ARRAY_SIZE(aead_list); } static inline int aalg_entries(void) { return ARRAY_SIZE(aalg_list); } static inline int ealg_entries(void) { return ARRAY_SIZE(ealg_list); } static inline int calg_entries(void) { return ARRAY_SIZE(calg_list); } struct xfrm_algo_list { struct xfrm_algo_desc *algs; int entries; u32 type; u32 mask; }; static const struct xfrm_algo_list xfrm_aead_list = { .algs = aead_list, .entries = ARRAY_SIZE(aead_list), .type = CRYPTO_ALG_TYPE_AEAD, .mask = CRYPTO_ALG_TYPE_MASK, }; static const struct xfrm_algo_list xfrm_aalg_list = { .algs = aalg_list, .entries = ARRAY_SIZE(aalg_list), .type = CRYPTO_ALG_TYPE_HASH, .mask = CRYPTO_ALG_TYPE_HASH_MASK, }; static const struct xfrm_algo_list xfrm_ealg_list = { .algs = ealg_list, .entries = ARRAY_SIZE(ealg_list), .type = CRYPTO_ALG_TYPE_BLKCIPHER, .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK, }; static const struct xfrm_algo_list xfrm_calg_list = { .algs = calg_list, .entries = ARRAY_SIZE(calg_list), .type = CRYPTO_ALG_TYPE_COMPRESS, .mask = CRYPTO_ALG_TYPE_MASK, }; static struct xfrm_algo_desc *xfrm_find_algo( const struct xfrm_algo_list *algo_list, int match(const struct xfrm_algo_desc *entry, const void *data), const void *data, int probe) { struct xfrm_algo_desc *list = algo_list->algs; int i, status; for (i = 0; i < algo_list->entries; i++) { if (!match(list + i, data)) continue; if (list[i].available) return &list[i]; if (!probe) break; status = crypto_has_alg(list[i].name, algo_list->type, algo_list->mask); if (!status) break; list[i].available = status; return &list[i]; } return NULL; } static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry, const void *data) { return entry->desc.sadb_alg_id == (unsigned long)data; } struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id) { return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match, (void *)(unsigned long)alg_id, 1); } EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid); struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id) { return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match, (void *)(unsigned long)alg_id, 1); } EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid); struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id) { return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match, (void *)(unsigned long)alg_id, 1); } EXPORT_SYMBOL_GPL(xfrm_calg_get_byid); static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry, const void *data) { const char *name = data; return name && (!strcmp(name, entry->name) || (entry->compat && !strcmp(name, entry->compat))); } struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe) { return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name, probe); } EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname); struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe) { return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name, probe); } EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname); struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe) { return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name, probe); } EXPORT_SYMBOL_GPL(xfrm_calg_get_byname); struct xfrm_aead_name { const char *name; int icvbits; }; static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry, const void *data) { const struct xfrm_aead_name *aead = data; const char *name = aead->name; return aead->icvbits == entry->uinfo.aead.icv_truncbits && name && !strcmp(name, entry->name); } struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe) { struct xfrm_aead_name data = { .name = name, .icvbits = icv_len, }; return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data, probe); } EXPORT_SYMBOL_GPL(xfrm_aead_get_byname); struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx) { if (idx >= aalg_entries()) return NULL; return &aalg_list[idx]; } EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx); struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx) { if (idx >= ealg_entries()) return NULL; return &ealg_list[idx]; } EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx); /* * Probe for the availability of crypto algorithms, and set the available * flag for any algorithms found on the system. This is typically called by * pfkey during userspace SA add, update or register. */ void xfrm_probe_algs(void) { int i, status; BUG_ON(in_softirq()); for (i = 0; i < aalg_entries(); i++) { status = crypto_has_hash(aalg_list[i].name, 0, CRYPTO_ALG_ASYNC); if (aalg_list[i].available != status) aalg_list[i].available = status; } for (i = 0; i < ealg_entries(); i++) { status = crypto_has_blkcipher(ealg_list[i].name, 0, CRYPTO_ALG_ASYNC); if (ealg_list[i].available != status) ealg_list[i].available = status; } for (i = 0; i < calg_entries(); i++) { status = crypto_has_comp(calg_list[i].name, 0, CRYPTO_ALG_ASYNC); if (calg_list[i].available != status) calg_list[i].available = status; } } EXPORT_SYMBOL_GPL(xfrm_probe_algs); int xfrm_count_auth_supported(void) { int i, n; for (i = 0, n = 0; i < aalg_entries(); i++) if (aalg_list[i].available) n++; return n; } EXPORT_SYMBOL_GPL(xfrm_count_auth_supported); int xfrm_count_enc_supported(void) { int i, n; for (i = 0, n = 0; i < ealg_entries(); i++) if (ealg_list[i].available) n++; return n; } EXPORT_SYMBOL_GPL(xfrm_count_enc_supported); /* Move to common area: it is shared with AH. */ int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc, int offset, int len, icv_update_fn_t icv_update) { int start = skb_headlen(skb); int i, copy = start - offset; int err; struct scatterlist sg; /* Checksum header. */ if (copy > 0) { if (copy > len) copy = len; sg_init_one(&sg, skb->data + offset, copy); err = icv_update(desc, &sg, copy); if (unlikely(err)) return err; if ((len -= copy) == 0) return 0; offset += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; BUG_TRAP(start <= offset + len); end = start + skb_shinfo(skb)->frags[i].size; if ((copy = end - offset) > 0) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (copy > len) copy = len; sg_init_table(&sg, 1); sg_set_page(&sg, frag->page, copy, frag->page_offset + offset-start); err = icv_update(desc, &sg, copy); if (unlikely(err)) return err; if (!(len -= copy)) return 0; offset += copy; } start = end; } if (skb_shinfo(skb)->frag_list) { struct sk_buff *list = skb_shinfo(skb)->frag_list; for (; list; list = list->next) { int end; BUG_TRAP(start <= offset + len); end = start + list->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; err = skb_icv_walk(list, desc, offset-start, copy, icv_update); if (unlikely(err)) return err; if ((len -= copy) == 0) return 0; offset += copy; } start = end; } } BUG_ON(len); return 0; } EXPORT_SYMBOL_GPL(skb_icv_walk); #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE) void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) { if (tail != skb) { skb->data_len += len; skb->len += len; } return skb_put(tail, len); } EXPORT_SYMBOL_GPL(pskb_put); #endif