/*
 *  Digital Audio (PCM) abstract layer
 *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
 *                   Abramo Bagnara <abramo@alsa-project.org>
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <sound/driver.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/timer.h>

/*
 * fill ring buffer with silence
 * runtime->silence_start: starting pointer to silence area
 * runtime->silence_filled: size filled with silence
 * runtime->silence_threshold: threshold from application
 * runtime->silence_size: maximal size from application
 *
 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
 */
void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	snd_pcm_uframes_t frames, ofs, transfer;

	if (runtime->silence_size < runtime->boundary) {
		snd_pcm_sframes_t noise_dist, n;
		if (runtime->silence_start != runtime->control->appl_ptr) {
			n = runtime->control->appl_ptr - runtime->silence_start;
			if (n < 0)
				n += runtime->boundary;
			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
				runtime->silence_filled -= n;
			else
				runtime->silence_filled = 0;
			runtime->silence_start = runtime->control->appl_ptr;
		}
		if (runtime->silence_filled >= runtime->buffer_size)
			return;
		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
			return;
		frames = runtime->silence_threshold - noise_dist;
		if (frames > runtime->silence_size)
			frames = runtime->silence_size;
	} else {
		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
			runtime->silence_filled = avail > 0 ? avail : 0;
			runtime->silence_start = (runtime->status->hw_ptr +
						  runtime->silence_filled) %
						 runtime->boundary;
		} else {
			ofs = runtime->status->hw_ptr;
			frames = new_hw_ptr - ofs;
			if ((snd_pcm_sframes_t)frames < 0)
				frames += runtime->boundary;
			runtime->silence_filled -= frames;
			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
				runtime->silence_filled = 0;
				runtime->silence_start = (ofs + frames) - runtime->buffer_size;
			} else {
				runtime->silence_start = ofs - runtime->silence_filled;
			}
			if ((snd_pcm_sframes_t)runtime->silence_start < 0)
				runtime->silence_start += runtime->boundary;
		}
		frames = runtime->buffer_size - runtime->silence_filled;
	}
	snd_assert(frames <= runtime->buffer_size, return);
	if (frames == 0)
		return;
	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
	while (frames > 0) {
		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
			if (substream->ops->silence) {
				int err;
				err = substream->ops->silence(substream, -1, ofs, transfer);
				snd_assert(err >= 0, );
			} else {
				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
			}
		} else {
			unsigned int c;
			unsigned int channels = runtime->channels;
			if (substream->ops->silence) {
				for (c = 0; c < channels; ++c) {
					int err;
					err = substream->ops->silence(substream, c, ofs, transfer);
					snd_assert(err >= 0, );
				}
			} else {
				size_t dma_csize = runtime->dma_bytes / channels;
				for (c = 0; c < channels; ++c) {
					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
				}
			}
		}
		runtime->silence_filled += transfer;
		frames -= transfer;
		ofs = 0;
	}
}

static void xrun(struct snd_pcm_substream *substream)
{
	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
#ifdef CONFIG_SND_DEBUG
	if (substream->pstr->xrun_debug) {
		snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
			   substream->pcm->card->number,
			   substream->pcm->device,
			   substream->stream ? 'c' : 'p');
		if (substream->pstr->xrun_debug > 1)
			dump_stack();
	}
#endif
}

static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
							  struct snd_pcm_runtime *runtime)
{
	snd_pcm_uframes_t pos;

	pos = substream->ops->pointer(substream);
	if (pos == SNDRV_PCM_POS_XRUN)
		return pos; /* XRUN */
	if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
		getnstimeofday((struct timespec *)&runtime->status->tstamp);
#ifdef CONFIG_SND_DEBUG
	if (pos >= runtime->buffer_size) {
		snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
	}
#endif
	pos -= pos % runtime->min_align;
	return pos;
}

static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
					     struct snd_pcm_runtime *runtime)
{
	snd_pcm_uframes_t avail;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		avail = snd_pcm_playback_avail(runtime);
	else
		avail = snd_pcm_capture_avail(runtime);
	if (avail > runtime->avail_max)
		runtime->avail_max = avail;
	if (avail >= runtime->stop_threshold) {
		if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
			snd_pcm_drain_done(substream);
		else
			xrun(substream);
		return -EPIPE;
	}
	if (avail >= runtime->control->avail_min)
		wake_up(&runtime->sleep);
	return 0;
}

static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	snd_pcm_uframes_t pos;
	snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
	snd_pcm_sframes_t delta;

	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
	if (pos == SNDRV_PCM_POS_XRUN) {
		xrun(substream);
		return -EPIPE;
	}
	if (runtime->period_size == runtime->buffer_size)
		goto __next_buf;
	new_hw_ptr = runtime->hw_ptr_base + pos;
	hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;

	delta = hw_ptr_interrupt - new_hw_ptr;
	if (delta > 0) {
		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
#ifdef CONFIG_SND_DEBUG
			if (runtime->periods > 1 && substream->pstr->xrun_debug) {
				snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
				if (substream->pstr->xrun_debug > 1)
					dump_stack();
			}
#endif
			return 0;
		}
	      __next_buf:
		runtime->hw_ptr_base += runtime->buffer_size;
		if (runtime->hw_ptr_base == runtime->boundary)
			runtime->hw_ptr_base = 0;
		new_hw_ptr = runtime->hw_ptr_base + pos;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
	    runtime->silence_size > 0)
		snd_pcm_playback_silence(substream, new_hw_ptr);

	runtime->status->hw_ptr = new_hw_ptr;
	runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;

	return snd_pcm_update_hw_ptr_post(substream, runtime);
}

/* CAUTION: call it with irq disabled */
int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	snd_pcm_uframes_t pos;
	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
	snd_pcm_sframes_t delta;

	old_hw_ptr = runtime->status->hw_ptr;
	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
	if (pos == SNDRV_PCM_POS_XRUN) {
		xrun(substream);
		return -EPIPE;
	}
	new_hw_ptr = runtime->hw_ptr_base + pos;

	delta = old_hw_ptr - new_hw_ptr;
	if (delta > 0) {
		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
#ifdef CONFIG_SND_DEBUG
			if (runtime->periods > 2 && substream->pstr->xrun_debug) {
				snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
				if (substream->pstr->xrun_debug > 1)
					dump_stack();
			}
#endif
			return 0;
		}
		runtime->hw_ptr_base += runtime->buffer_size;
		if (runtime->hw_ptr_base == runtime->boundary)
			runtime->hw_ptr_base = 0;
		new_hw_ptr = runtime->hw_ptr_base + pos;
	}
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
	    runtime->silence_size > 0)
		snd_pcm_playback_silence(substream, new_hw_ptr);

	runtime->status->hw_ptr = new_hw_ptr;

	return snd_pcm_update_hw_ptr_post(substream, runtime);
}

/**
 * snd_pcm_set_ops - set the PCM operators
 * @pcm: the pcm instance
 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 * @ops: the operator table
 *
 * Sets the given PCM operators to the pcm instance.
 */
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
{
	struct snd_pcm_str *stream = &pcm->streams[direction];
	struct snd_pcm_substream *substream;
	
	for (substream = stream->substream; substream != NULL; substream = substream->next)
		substream->ops = ops;
}


/**
 * snd_pcm_sync - set the PCM sync id
 * @substream: the pcm substream
 *
 * Sets the PCM sync identifier for the card.
 */
void snd_pcm_set_sync(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	
	runtime->sync.id32[0] = substream->pcm->card->number;
	runtime->sync.id32[1] = -1;
	runtime->sync.id32[2] = -1;
	runtime->sync.id32[3] = -1;
}

/*
 *  Standard ioctl routine
 */

/* Code taken from alsa-lib */
#define assert(a) snd_assert((a), return -EINVAL)

static inline unsigned int div32(unsigned int a, unsigned int b, 
				 unsigned int *r)
{
	if (b == 0) {
		*r = 0;
		return UINT_MAX;
	}
	*r = a % b;
	return a / b;
}

static inline unsigned int div_down(unsigned int a, unsigned int b)
{
	if (b == 0)
		return UINT_MAX;
	return a / b;
}

static inline unsigned int div_up(unsigned int a, unsigned int b)
{
	unsigned int r;
	unsigned int q;
	if (b == 0)
		return UINT_MAX;
	q = div32(a, b, &r);
	if (r)
		++q;
	return q;
}

static inline unsigned int mul(unsigned int a, unsigned int b)
{
	if (a == 0)
		return 0;
	if (div_down(UINT_MAX, a) < b)
		return UINT_MAX;
	return a * b;
}

static inline unsigned int muldiv32(unsigned int a, unsigned int b,
				    unsigned int c, unsigned int *r)
{
	u_int64_t n = (u_int64_t) a * b;
	if (c == 0) {
		snd_assert(n > 0, );
		*r = 0;
		return UINT_MAX;
	}
	div64_32(&n, c, r);
	if (n >= UINT_MAX) {
		*r = 0;
		return UINT_MAX;
	}
	return n;
}

static int snd_interval_refine_min(struct snd_interval *i, unsigned int min, int openmin)
{
	int changed = 0;
	assert(!snd_interval_empty(i));
	if (i->min < min) {
		i->min = min;
		i->openmin = openmin;
		changed = 1;
	} else if (i->min == min && !i->openmin && openmin) {
		i->openmin = 1;
		changed = 1;
	}
	if (i->integer) {
		if (i->openmin) {
			i->min++;
			i->openmin = 0;
		}
	}
	if (snd_interval_checkempty(i)) {
		snd_interval_none(i);
		return -EINVAL;
	}
	return changed;
}

static int snd_interval_refine_max(struct snd_interval *i, unsigned int max, int openmax)
{
	int changed = 0;
	assert(!snd_interval_empty(i));
	if (i->max > max) {
		i->max = max;
		i->openmax = openmax;
		changed = 1;
	} else if (i->max == max && !i->openmax && openmax) {
		i->openmax = 1;
		changed = 1;
	}
	if (i->integer) {
		if (i->openmax) {
			i->max--;
			i->openmax = 0;
		}
	}
	if (snd_interval_checkempty(i)) {
		snd_interval_none(i);
		return -EINVAL;
	}
	return changed;
}

/**
 * snd_interval_refine - refine the interval value of configurator
 * @i: the interval value to refine
 * @v: the interval value to refer to
 *
 * Refines the interval value with the reference value.
 * The interval is changed to the range satisfying both intervals.
 * The interval status (min, max, integer, etc.) are evaluated.
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
{
	int changed = 0;
	assert(!snd_interval_empty(i));
	if (i->min < v->min) {
		i->min = v->min;
		i->openmin = v->openmin;
		changed = 1;
	} else if (i->min == v->min && !i->openmin && v->openmin) {
		i->openmin = 1;
		changed = 1;
	}
	if (i->max > v->max) {
		i->max = v->max;
		i->openmax = v->openmax;
		changed = 1;
	} else if (i->max == v->max && !i->openmax && v->openmax) {
		i->openmax = 1;
		changed = 1;
	}
	if (!i->integer && v->integer) {
		i->integer = 1;
		changed = 1;
	}
	if (i->integer) {
		if (i->openmin) {
			i->min++;
			i->openmin = 0;
		}
		if (i->openmax) {
			i->max--;
			i->openmax = 0;
		}
	} else if (!i->openmin && !i->openmax && i->min == i->max)
		i->integer = 1;
	if (snd_interval_checkempty(i)) {
		snd_interval_none(i);
		return -EINVAL;
	}
	return changed;
}

static int snd_interval_refine_first(struct snd_interval *i)
{
	assert(!snd_interval_empty(i));
	if (snd_interval_single(i))
		return 0;
	i->max = i->min;
	i->openmax = i->openmin;
	if (i->openmax)
		i->max++;
	return 1;
}

static int snd_interval_refine_last(struct snd_interval *i)
{
	assert(!snd_interval_empty(i));
	if (snd_interval_single(i))
		return 0;
	i->min = i->max;
	i->openmin = i->openmax;
	if (i->openmin)
		i->min--;
	return 1;
}

static int snd_interval_refine_set(struct snd_interval *i, unsigned int val)
{
	struct snd_interval t;
	t.empty = 0;
	t.min = t.max = val;
	t.openmin = t.openmax = 0;
	t.integer = 1;
	return snd_interval_refine(i, &t);
}

void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
	if (a->empty || b->empty) {
		snd_interval_none(c);
		return;
	}
	c->empty = 0;
	c->min = mul(a->min, b->min);
	c->openmin = (a->openmin || b->openmin);
	c->max = mul(a->max,  b->max);
	c->openmax = (a->openmax || b->openmax);
	c->integer = (a->integer && b->integer);
}

/**
 * snd_interval_div - refine the interval value with division
 * @a: dividend
 * @b: divisor
 * @c: quotient
 *
 * c = a / b
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
	unsigned int r;
	if (a->empty || b->empty) {
		snd_interval_none(c);
		return;
	}
	c->empty = 0;
	c->min = div32(a->min, b->max, &r);
	c->openmin = (r || a->openmin || b->openmax);
	if (b->min > 0) {
		c->max = div32(a->max, b->min, &r);
		if (r) {
			c->max++;
			c->openmax = 1;
		} else
			c->openmax = (a->openmax || b->openmin);
	} else {
		c->max = UINT_MAX;
		c->openmax = 0;
	}
	c->integer = 0;
}

/**
 * snd_interval_muldivk - refine the interval value
 * @a: dividend 1
 * @b: dividend 2
 * @k: divisor (as integer)
 * @c: result
  *
 * c = a * b / k
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
		      unsigned int k, struct snd_interval *c)
{
	unsigned int r;
	if (a->empty || b->empty) {
		snd_interval_none(c);
		return;
	}
	c->empty = 0;
	c->min = muldiv32(a->min, b->min, k, &r);
	c->openmin = (r || a->openmin || b->openmin);
	c->max = muldiv32(a->max, b->max, k, &r);
	if (r) {
		c->max++;
		c->openmax = 1;
	} else
		c->openmax = (a->openmax || b->openmax);
	c->integer = 0;
}

/**
 * snd_interval_mulkdiv - refine the interval value
 * @a: dividend 1
 * @k: dividend 2 (as integer)
 * @b: divisor
 * @c: result
 *
 * c = a * k / b
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
		      const struct snd_interval *b, struct snd_interval *c)
{
	unsigned int r;
	if (a->empty || b->empty) {
		snd_interval_none(c);
		return;
	}
	c->empty = 0;
	c->min = muldiv32(a->min, k, b->max, &r);
	c->openmin = (r || a->openmin || b->openmax);
	if (b->min > 0) {
		c->max = muldiv32(a->max, k, b->min, &r);
		if (r) {
			c->max++;
			c->openmax = 1;
		} else
			c->openmax = (a->openmax || b->openmin);
	} else {
		c->max = UINT_MAX;
		c->openmax = 0;
	}
	c->integer = 0;
}

#undef assert
/* ---- */


/**
 * snd_interval_ratnum - refine the interval value
 * @i: interval to refine
 * @rats_count: number of ratnum_t 
 * @rats: ratnum_t array
 * @nump: pointer to store the resultant numerator
 * @denp: pointer to store the resultant denominator
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
int snd_interval_ratnum(struct snd_interval *i,
			unsigned int rats_count, struct snd_ratnum *rats,
			unsigned int *nump, unsigned int *denp)
{
	unsigned int best_num, best_diff, best_den;
	unsigned int k;
	struct snd_interval t;
	int err;

	best_num = best_den = best_diff = 0;
	for (k = 0; k < rats_count; ++k) {
		unsigned int num = rats[k].num;
		unsigned int den;
		unsigned int q = i->min;
		int diff;
		if (q == 0)
			q = 1;
		den = div_down(num, q);
		if (den < rats[k].den_min)
			continue;
		if (den > rats[k].den_max)
			den = rats[k].den_max;
		else {
			unsigned int r;
			r = (den - rats[k].den_min) % rats[k].den_step;
			if (r != 0)
				den -= r;
		}
		diff = num - q * den;
		if (best_num == 0 ||
		    diff * best_den < best_diff * den) {
			best_diff = diff;
			best_den = den;
			best_num = num;
		}
	}
	if (best_den == 0) {
		i->empty = 1;
		return -EINVAL;
	}
	t.min = div_down(best_num, best_den);
	t.openmin = !!(best_num % best_den);
	
	best_num = best_den = best_diff = 0;
	for (k = 0; k < rats_count; ++k) {
		unsigned int num = rats[k].num;
		unsigned int den;
		unsigned int q = i->max;
		int diff;
		if (q == 0) {
			i->empty = 1;
			return -EINVAL;
		}
		den = div_up(num, q);
		if (den > rats[k].den_max)
			continue;
		if (den < rats[k].den_min)
			den = rats[k].den_min;
		else {
			unsigned int r;
			r = (den - rats[k].den_min) % rats[k].den_step;
			if (r != 0)
				den += rats[k].den_step - r;
		}
		diff = q * den - num;
		if (best_num == 0 ||
		    diff * best_den < best_diff * den) {
			best_diff = diff;
			best_den = den;
			best_num = num;
		}
	}
	if (best_den == 0) {
		i->empty = 1;
		return -EINVAL;
	}
	t.max = div_up(best_num, best_den);
	t.openmax = !!(best_num % best_den);
	t.integer = 0;
	err = snd_interval_refine(i, &t);
	if (err < 0)
		return err;

	if (snd_interval_single(i)) {
		if (nump)
			*nump = best_num;
		if (denp)
			*denp = best_den;
	}
	return err;
}

/**
 * snd_interval_ratden - refine the interval value
 * @i: interval to refine
 * @rats_count: number of struct ratden
 * @rats: struct ratden array
 * @nump: pointer to store the resultant numerator
 * @denp: pointer to store the resultant denominator
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
static int snd_interval_ratden(struct snd_interval *i,
			       unsigned int rats_count, struct snd_ratden *rats,
			       unsigned int *nump, unsigned int *denp)
{
	unsigned int best_num, best_diff, best_den;
	unsigned int k;
	struct snd_interval t;
	int err;

	best_num = best_den = best_diff = 0;
	for (k = 0; k < rats_count; ++k) {
		unsigned int num;
		unsigned int den = rats[k].den;
		unsigned int q = i->min;
		int diff;
		num = mul(q, den);
		if (num > rats[k].num_max)
			continue;
		if (num < rats[k].num_min)
			num = rats[k].num_max;
		else {
			unsigned int r;
			r = (num - rats[k].num_min) % rats[k].num_step;
			if (r != 0)
				num += rats[k].num_step - r;
		}
		diff = num - q * den;
		if (best_num == 0 ||
		    diff * best_den < best_diff * den) {
			best_diff = diff;
			best_den = den;
			best_num = num;
		}
	}
	if (best_den == 0) {
		i->empty = 1;
		return -EINVAL;
	}
	t.min = div_down(best_num, best_den);
	t.openmin = !!(best_num % best_den);
	
	best_num = best_den = best_diff = 0;
	for (k = 0; k < rats_count; ++k) {
		unsigned int num;
		unsigned int den = rats[k].den;
		unsigned int q = i->max;
		int diff;
		num = mul(q, den);
		if (num < rats[k].num_min)
			continue;
		if (num > rats[k].num_max)
			num = rats[k].num_max;
		else {
			unsigned int r;
			r = (num - rats[k].num_min) % rats[k].num_step;
			if (r != 0)
				num -= r;
		}
		diff = q * den - num;
		if (best_num == 0 ||
		    diff * best_den < best_diff * den) {
			best_diff = diff;
			best_den = den;
			best_num = num;
		}
	}
	if (best_den == 0) {
		i->empty = 1;
		return -EINVAL;
	}
	t.max = div_up(best_num, best_den);
	t.openmax = !!(best_num % best_den);
	t.integer = 0;
	err = snd_interval_refine(i, &t);
	if (err < 0)
		return err;

	if (snd_interval_single(i)) {
		if (nump)
			*nump = best_num;
		if (denp)
			*denp = best_den;
	}
	return err;
}

/**
 * snd_interval_list - refine the interval value from the list
 * @i: the interval value to refine
 * @count: the number of elements in the list
 * @list: the value list
 * @mask: the bit-mask to evaluate
 *
 * Refines the interval value from the list.
 * When mask is non-zero, only the elements corresponding to bit 1 are
 * evaluated.
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
{
        unsigned int k;
	int changed = 0;
        for (k = 0; k < count; k++) {
		if (mask && !(mask & (1 << k)))
			continue;
                if (i->min == list[k] && !i->openmin)
                        goto _l1;
                if (i->min < list[k]) {
                        i->min = list[k];
			i->openmin = 0;
			changed = 1;
                        goto _l1;
                }
        }
        i->empty = 1;
        return -EINVAL;
 _l1:
        for (k = count; k-- > 0;) {
		if (mask && !(mask & (1 << k)))
			continue;
                if (i->max == list[k] && !i->openmax)
                        goto _l2;
                if (i->max > list[k]) {
                        i->max = list[k];
			i->openmax = 0;
			changed = 1;
                        goto _l2;
                }
        }
        i->empty = 1;
        return -EINVAL;
 _l2:
	if (snd_interval_checkempty(i)) {
		i->empty = 1;
		return -EINVAL;
	}
        return changed;
}

static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
{
	unsigned int n;
	int changed = 0;
	n = (i->min - min) % step;
	if (n != 0 || i->openmin) {
		i->min += step - n;
		changed = 1;
	}
	n = (i->max - min) % step;
	if (n != 0 || i->openmax) {
		i->max -= n;
		changed = 1;
	}
	if (snd_interval_checkempty(i)) {
		i->empty = 1;
		return -EINVAL;
	}
	return changed;
}

/* Info constraints helpers */

/**
 * snd_pcm_hw_rule_add - add the hw-constraint rule
 * @runtime: the pcm runtime instance
 * @cond: condition bits
 * @var: the variable to evaluate
 * @func: the evaluation function
 * @private: the private data pointer passed to function
 * @dep: the dependent variables
 *
 * Returns zero if successful, or a negative error code on failure.
 */
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
			int var,
			snd_pcm_hw_rule_func_t func, void *private,
			int dep, ...)
{
	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
	struct snd_pcm_hw_rule *c;
	unsigned int k;
	va_list args;
	va_start(args, dep);
	if (constrs->rules_num >= constrs->rules_all) {
		struct snd_pcm_hw_rule *new;
		unsigned int new_rules = constrs->rules_all + 16;
		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
		if (!new)
			return -ENOMEM;
		if (constrs->rules) {
			memcpy(new, constrs->rules,
			       constrs->rules_num * sizeof(*c));
			kfree(constrs->rules);
		}
		constrs->rules = new;
		constrs->rules_all = new_rules;
	}
	c = &constrs->rules[constrs->rules_num];
	c->cond = cond;
	c->func = func;
	c->var = var;
	c->private = private;
	k = 0;
	while (1) {
		snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
		c->deps[k++] = dep;
		if (dep < 0)
			break;
		dep = va_arg(args, int);
	}
	constrs->rules_num++;
	va_end(args);
	return 0;
}				    

/**
 * snd_pcm_hw_constraint_mask
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the mask
 * @mask: the bitmap mask
 *
 * Apply the constraint of the given bitmap mask to a mask parameter.
 */
int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
			       u_int32_t mask)
{
	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
	struct snd_mask *maskp = constrs_mask(constrs, var);
	*maskp->bits &= mask;
	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
	if (*maskp->bits == 0)
		return -EINVAL;
	return 0;
}

/**
 * snd_pcm_hw_constraint_mask64
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the mask
 * @mask: the 64bit bitmap mask
 *
 * Apply the constraint of the given bitmap mask to a mask parameter.
 */
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
				 u_int64_t mask)
{
	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
	struct snd_mask *maskp = constrs_mask(constrs, var);
	maskp->bits[0] &= (u_int32_t)mask;
	maskp->bits[1] &= (u_int32_t)(mask >> 32);
	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
	if (! maskp->bits[0] && ! maskp->bits[1])
		return -EINVAL;
	return 0;
}

/**
 * snd_pcm_hw_constraint_integer
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the integer constraint
 *
 * Apply the constraint of integer to an interval parameter.
 */
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
{
	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
	return snd_interval_setinteger(constrs_interval(constrs, var));
}

/**
 * snd_pcm_hw_constraint_minmax
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the range
 * @min: the minimal value
 * @max: the maximal value
 * 
 * Apply the min/max range constraint to an interval parameter.
 */
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
				 unsigned int min, unsigned int max)
{
	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
	struct snd_interval t;
	t.min = min;
	t.max = max;
	t.openmin = t.openmax = 0;
	t.integer = 0;
	return snd_interval_refine(constrs_interval(constrs, var), &t);
}

static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
				struct snd_pcm_hw_rule *rule)
{
	struct snd_pcm_hw_constraint_list *list = rule->private;
	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
}		


/**
 * snd_pcm_hw_constraint_list
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the list constraint
 * @l: list
 * 
 * Apply the list of constraints to an interval parameter.
 */
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
			       unsigned int cond,
			       snd_pcm_hw_param_t var,
			       struct snd_pcm_hw_constraint_list *l)
{
	return snd_pcm_hw_rule_add(runtime, cond, var,
				   snd_pcm_hw_rule_list, l,
				   var, -1);
}

static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
				   struct snd_pcm_hw_rule *rule)
{
	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
	unsigned int num = 0, den = 0;
	int err;
	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
				  r->nrats, r->rats, &num, &den);
	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
		params->rate_num = num;
		params->rate_den = den;
	}
	return err;
}

/**
 * snd_pcm_hw_constraint_ratnums
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the ratnums constraint
 * @r: struct snd_ratnums constriants
 */
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
				  unsigned int cond,
				  snd_pcm_hw_param_t var,
				  struct snd_pcm_hw_constraint_ratnums *r)
{
	return snd_pcm_hw_rule_add(runtime, cond, var,
				   snd_pcm_hw_rule_ratnums, r,
				   var, -1);
}

static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
				   struct snd_pcm_hw_rule *rule)
{
	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
	unsigned int num = 0, den = 0;
	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
				  r->nrats, r->rats, &num, &den);
	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
		params->rate_num = num;
		params->rate_den = den;
	}
	return err;
}

/**
 * snd_pcm_hw_constraint_ratdens
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the ratdens constraint
 * @r: struct snd_ratdens constriants
 */
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
				  unsigned int cond,
				  snd_pcm_hw_param_t var,
				  struct snd_pcm_hw_constraint_ratdens *r)
{
	return snd_pcm_hw_rule_add(runtime, cond, var,
				   snd_pcm_hw_rule_ratdens, r,
				   var, -1);
}

static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
				  struct snd_pcm_hw_rule *rule)
{
	unsigned int l = (unsigned long) rule->private;
	int width = l & 0xffff;
	unsigned int msbits = l >> 16;
	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
	if (snd_interval_single(i) && snd_interval_value(i) == width)
		params->msbits = msbits;
	return 0;
}

/**
 * snd_pcm_hw_constraint_msbits
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @width: sample bits width
 * @msbits: msbits width
 */
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
				 unsigned int cond,
				 unsigned int width,
				 unsigned int msbits)
{
	unsigned long l = (msbits << 16) | width;
	return snd_pcm_hw_rule_add(runtime, cond, -1,
				    snd_pcm_hw_rule_msbits,
				    (void*) l,
				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
}

static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
				struct snd_pcm_hw_rule *rule)
{
	unsigned long step = (unsigned long) rule->private;
	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
}

/**
 * snd_pcm_hw_constraint_step
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the step constraint
 * @step: step size
 */
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
			       unsigned int cond,
			       snd_pcm_hw_param_t var,
			       unsigned long step)
{
	return snd_pcm_hw_rule_add(runtime, cond, var, 
				   snd_pcm_hw_rule_step, (void *) step,
				   var, -1);
}

static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
	static int pow2_sizes[] = {
		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
	};
	return snd_interval_list(hw_param_interval(params, rule->var),
				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
}		

/**
 * snd_pcm_hw_constraint_pow2
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the power-of-2 constraint
 */
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
			       unsigned int cond,
			       snd_pcm_hw_param_t var)
{
	return snd_pcm_hw_rule_add(runtime, cond, var, 
				   snd_pcm_hw_rule_pow2, NULL,
				   var, -1);
}

/* To use the same code we have in alsa-lib */
#define assert(i) snd_assert((i), return -EINVAL)
#ifndef INT_MIN
#define INT_MIN ((int)((unsigned int)INT_MAX+1))
#endif

static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
				  snd_pcm_hw_param_t var)
{
	if (hw_is_mask(var)) {
		snd_mask_any(hw_param_mask(params, var));
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
		return;
	}
	if (hw_is_interval(var)) {
		snd_interval_any(hw_param_interval(params, var));
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
		return;
	}
	snd_BUG();
}

#if 0
/*
 * snd_pcm_hw_param_any
 */
int snd_pcm_hw_param_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
			 snd_pcm_hw_param_t var)
{
	_snd_pcm_hw_param_any(params, var);
	return snd_pcm_hw_refine(pcm, params);
}
#endif  /*  0  */

void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
{
	unsigned int k;
	memset(params, 0, sizeof(*params));
	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
		_snd_pcm_hw_param_any(params, k);
	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
		_snd_pcm_hw_param_any(params, k);
	params->info = ~0U;
}

#if 0
/*
 * snd_pcm_hw_params_any
 *
 * Fill PARAMS with full configuration space boundaries
 */
int snd_pcm_hw_params_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params)
{
	_snd_pcm_hw_params_any(params);
	return snd_pcm_hw_refine(pcm, params);
}
#endif  /*  0  */

/**
 * snd_pcm_hw_param_value
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Return the value for field PAR if it's fixed in configuration space 
 *  defined by PARAMS. Return -EINVAL otherwise
 */
static int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
				  snd_pcm_hw_param_t var, int *dir)
{
	if (hw_is_mask(var)) {
		const struct snd_mask *mask = hw_param_mask_c(params, var);
		if (!snd_mask_single(mask))
			return -EINVAL;
		if (dir)
			*dir = 0;
		return snd_mask_value(mask);
	}
	if (hw_is_interval(var)) {
		const struct snd_interval *i = hw_param_interval_c(params, var);
		if (!snd_interval_single(i))
			return -EINVAL;
		if (dir)
			*dir = i->openmin;
		return snd_interval_value(i);
	}
	assert(0);
	return -EINVAL;
}

/**
 * snd_pcm_hw_param_value_min
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Return the minimum value for field PAR.
 */
unsigned int snd_pcm_hw_param_value_min(const struct snd_pcm_hw_params *params,
					snd_pcm_hw_param_t var, int *dir)
{
	if (hw_is_mask(var)) {
		if (dir)
			*dir = 0;
		return snd_mask_min(hw_param_mask_c(params, var));
	}
	if (hw_is_interval(var)) {
		const struct snd_interval *i = hw_param_interval_c(params, var);
		if (dir)
			*dir = i->openmin;
		return snd_interval_min(i);
	}
	assert(0);
	return -EINVAL;
}

/**
 * snd_pcm_hw_param_value_max
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Return the maximum value for field PAR.
 */
unsigned int snd_pcm_hw_param_value_max(const struct snd_pcm_hw_params *params,
					snd_pcm_hw_param_t var, int *dir)
{
	if (hw_is_mask(var)) {
		if (dir)
			*dir = 0;
		return snd_mask_max(hw_param_mask_c(params, var));
	}
	if (hw_is_interval(var)) {
		const struct snd_interval *i = hw_param_interval_c(params, var);
		if (dir)
			*dir = - (int) i->openmax;
		return snd_interval_max(i);
	}
	assert(0);
	return -EINVAL;
}

void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
				snd_pcm_hw_param_t var)
{
	if (hw_is_mask(var)) {
		snd_mask_none(hw_param_mask(params, var));
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	} else if (hw_is_interval(var)) {
		snd_interval_none(hw_param_interval(params, var));
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	} else {
		snd_BUG();
	}
}

int _snd_pcm_hw_param_setinteger(struct snd_pcm_hw_params *params,
				 snd_pcm_hw_param_t var)
{
	int changed;
	assert(hw_is_interval(var));
	changed = snd_interval_setinteger(hw_param_interval(params, var));
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}
	
#if 0
/*
 * snd_pcm_hw_param_setinteger
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * non integer values. Reduce configuration space accordingly.
 * Return -EINVAL if the configuration space is empty
 */
int snd_pcm_hw_param_setinteger(struct snd_pcm_substream *pcm, 
				struct snd_pcm_hw_params *params,
				snd_pcm_hw_param_t var)
{
	int changed = _snd_pcm_hw_param_setinteger(params, var);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		if (err < 0)
			return err;
	}
	return 0;
}
#endif  /*  0  */

static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
				   snd_pcm_hw_param_t var)
{
	int changed;
	if (hw_is_mask(var))
		changed = snd_mask_refine_first(hw_param_mask(params, var));
	else if (hw_is_interval(var))
		changed = snd_interval_refine_first(hw_param_interval(params, var));
	else {
		assert(0);
		return -EINVAL;
	}
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}


/**
 * snd_pcm_hw_param_first
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * values > minimum. Reduce configuration space accordingly.
 * Return the minimum.
 */
static int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
				  struct snd_pcm_hw_params *params, 
				  snd_pcm_hw_param_t var, int *dir)
{
	int changed = _snd_pcm_hw_param_first(params, var);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		assert(err >= 0);
	}
	return snd_pcm_hw_param_value(params, var, dir);
}

static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
				  snd_pcm_hw_param_t var)
{
	int changed;
	if (hw_is_mask(var))
		changed = snd_mask_refine_last(hw_param_mask(params, var));
	else if (hw_is_interval(var))
		changed = snd_interval_refine_last(hw_param_interval(params, var));
	else {
		assert(0);
		return -EINVAL;
	}
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}


/**
 * snd_pcm_hw_param_last
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * values < maximum. Reduce configuration space accordingly.
 * Return the maximum.
 */
static int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
				 struct snd_pcm_hw_params *params,
				 snd_pcm_hw_param_t var, int *dir)
{
	int changed = _snd_pcm_hw_param_last(params, var);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		assert(err >= 0);
	}
	return snd_pcm_hw_param_value(params, var, dir);
}

int _snd_pcm_hw_param_min(struct snd_pcm_hw_params *params,
			  snd_pcm_hw_param_t var, unsigned int val, int dir)
{
	int changed;
	int open = 0;
	if (dir) {
		if (dir > 0) {
			open = 1;
		} else if (dir < 0) {
			if (val > 0) {
				open = 1;
				val--;
			}
		}
	}
	if (hw_is_mask(var))
		changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
	else if (hw_is_interval(var))
		changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
	else {
		assert(0);
		return -EINVAL;
	}
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}

/**
 * snd_pcm_hw_param_min
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @val: minimal value
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * values < VAL. Reduce configuration space accordingly.
 * Return new minimum or -EINVAL if the configuration space is empty
 */
static int snd_pcm_hw_param_min(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
				snd_pcm_hw_param_t var, unsigned int val,
				int *dir)
{
	int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		if (err < 0)
			return err;
	}
	return snd_pcm_hw_param_value_min(params, var, dir);
}

static int _snd_pcm_hw_param_max(struct snd_pcm_hw_params *params,
				 snd_pcm_hw_param_t var, unsigned int val,
				 int dir)
{
	int changed;
	int open = 0;
	if (dir) {
		if (dir < 0) {
			open = 1;
		} else if (dir > 0) {
			open = 1;
			val++;
		}
	}
	if (hw_is_mask(var)) {
		if (val == 0 && open) {
			snd_mask_none(hw_param_mask(params, var));
			changed = -EINVAL;
		} else
			changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
	} else if (hw_is_interval(var))
		changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
	else {
		assert(0);
		return -EINVAL;
	}
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}

/**
 * snd_pcm_hw_param_max
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @val: maximal value
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 *  values >= VAL + 1. Reduce configuration space accordingly.
 *  Return new maximum or -EINVAL if the configuration space is empty
 */
static int snd_pcm_hw_param_max(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
				snd_pcm_hw_param_t var, unsigned int val,
				int *dir)
{
	int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		if (err < 0)
			return err;
	}
	return snd_pcm_hw_param_value_max(params, var, dir);
}

int _snd_pcm_hw_param_set(struct snd_pcm_hw_params *params,
			  snd_pcm_hw_param_t var, unsigned int val, int dir)
{
	int changed;
	if (hw_is_mask(var)) {
		struct snd_mask *m = hw_param_mask(params, var);
		if (val == 0 && dir < 0) {
			changed = -EINVAL;
			snd_mask_none(m);
		} else {
			if (dir > 0)
				val++;
			else if (dir < 0)
				val--;
			changed = snd_mask_refine_set(hw_param_mask(params, var), val);
		}
	} else if (hw_is_interval(var)) {
		struct snd_interval *i = hw_param_interval(params, var);
		if (val == 0 && dir < 0) {
			changed = -EINVAL;
			snd_interval_none(i);
		} else if (dir == 0)
			changed = snd_interval_refine_set(i, val);
		else {
			struct snd_interval t;
			t.openmin = 1;
			t.openmax = 1;
			t.empty = 0;
			t.integer = 0;
			if (dir < 0) {
				t.min = val - 1;
				t.max = val;
			} else {
				t.min = val;
				t.max = val+1;
			}
			changed = snd_interval_refine(i, &t);
		}
	} else {
		assert(0);
		return -EINVAL;
	}
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}

/**
 * snd_pcm_hw_param_set
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @val: value to set
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * values != VAL. Reduce configuration space accordingly.
 *  Return VAL or -EINVAL if the configuration space is empty
 */
int snd_pcm_hw_param_set(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
			 snd_pcm_hw_param_t var, unsigned int val, int dir)
{
	int changed = _snd_pcm_hw_param_set(params, var, val, dir);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		if (err < 0)
			return err;
	}
	return snd_pcm_hw_param_value(params, var, NULL);
}

static int _snd_pcm_hw_param_mask(struct snd_pcm_hw_params *params,
				  snd_pcm_hw_param_t var, const struct snd_mask *val)
{
	int changed;
	assert(hw_is_mask(var));
	changed = snd_mask_refine(hw_param_mask(params, var), val);
	if (changed) {
		params->cmask |= 1 << var;
		params->rmask |= 1 << var;
	}
	return changed;
}

/**
 * snd_pcm_hw_param_mask
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @val: mask to apply
 *
 * Inside configuration space defined by PARAMS remove from PAR all values
 * not contained in MASK. Reduce configuration space accordingly.
 * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
 * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
 * Return 0 on success or -EINVAL
 * if the configuration space is empty
 */
int snd_pcm_hw_param_mask(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
			  snd_pcm_hw_param_t var, const struct snd_mask *val)
{
	int changed = _snd_pcm_hw_param_mask(params, var, val);
	if (changed < 0)
		return changed;
	if (params->rmask) {
		int err = snd_pcm_hw_refine(pcm, params);
		if (err < 0)
			return err;
	}
	return 0;
}

static int boundary_sub(int a, int adir,
			int b, int bdir,
			int *c, int *cdir)
{
	adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
	bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
	*c = a - b;
	*cdir = adir - bdir;
	if (*cdir == -2) {
		assert(*c > INT_MIN);
		(*c)--;
	} else if (*cdir == 2) {
		assert(*c < INT_MAX);
		(*c)++;
	}
	return 0;
}

static int boundary_lt(unsigned int a, int adir,
		       unsigned int b, int bdir)
{
	assert(a > 0 || adir >= 0);
	assert(b > 0 || bdir >= 0);
	if (adir < 0) {
		a--;
		adir = 1;
	} else if (adir > 0)
		adir = 1;
	if (bdir < 0) {
		b--;
		bdir = 1;
	} else if (bdir > 0)
		bdir = 1;
	return a < b || (a == b && adir < bdir);
}

/* Return 1 if min is nearer to best than max */
static int boundary_nearer(int min, int mindir,
			   int best, int bestdir,
			   int max, int maxdir)
{
	int dmin, dmindir;
	int dmax, dmaxdir;
	boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
	boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
	return boundary_lt(dmin, dmindir, dmax, dmaxdir);
}

/**
 * snd_pcm_hw_param_near
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @best: value to set
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS set PAR to the available value
 * nearest to VAL. Reduce configuration space accordingly.
 * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
 * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
 * Return the value found.
  */
int snd_pcm_hw_param_near(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
			  snd_pcm_hw_param_t var, unsigned int best, int *dir)
{
	struct snd_pcm_hw_params *save = NULL;
	int v;
	unsigned int saved_min;
	int last = 0;
	int min, max;
	int mindir, maxdir;
	int valdir = dir ? *dir : 0;
	/* FIXME */
	if (best > INT_MAX)
		best = INT_MAX;
	min = max = best;
	mindir = maxdir = valdir;
	if (maxdir > 0)
		maxdir = 0;
	else if (maxdir == 0)
		maxdir = -1;
	else {
		maxdir = 1;
		max--;
	}
	save = kmalloc(sizeof(*save), GFP_KERNEL);
	if (save == NULL)
		return -ENOMEM;
	*save = *params;
	saved_min = min;
	min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
	if (min >= 0) {
		struct snd_pcm_hw_params *params1;
		if (max < 0)
			goto _end;
		if ((unsigned int)min == saved_min && mindir == valdir)
			goto _end;
		params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
		if (params1 == NULL) {
			kfree(save);
			return -ENOMEM;
		}
		*params1 = *save;
		max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
		if (max < 0) {
			kfree(params1);
			goto _end;
		}
		if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
			*params = *params1;
			last = 1;
		}
		kfree(params1);
	} else {
		*params = *save;
		max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
		assert(max >= 0);
		last = 1;
	}
 _end:
 	kfree(save);
	if (last)
		v = snd_pcm_hw_param_last(pcm, params, var, dir);
	else
		v = snd_pcm_hw_param_first(pcm, params, var, dir);
	assert(v >= 0);
	return v;
}

/**
 * snd_pcm_hw_param_choose
 * @pcm: PCM instance
 * @params: the hw_params instance
 *
 * Choose one configuration from configuration space defined by PARAMS
 * The configuration chosen is that obtained fixing in this order:
 * first access, first format, first subformat, min channels,
 * min rate, min period time, max buffer size, min tick time
 */
int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params)
{
	int err;

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
	assert(err >= 0);

	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
	assert(err >= 0);

	return 0;
}

#undef assert

static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
				   void *arg)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	unsigned long flags;
	snd_pcm_stream_lock_irqsave(substream, flags);
	if (snd_pcm_running(substream) &&
	    snd_pcm_update_hw_ptr(substream) >= 0)
		runtime->status->hw_ptr %= runtime->buffer_size;
	else
		runtime->status->hw_ptr = 0;
	snd_pcm_stream_unlock_irqrestore(substream, flags);
	return 0;
}

static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
					  void *arg)
{
	struct snd_pcm_channel_info *info = arg;
	struct snd_pcm_runtime *runtime = substream->runtime;
	int width;
	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
		info->offset = -1;
		return 0;
	}
	width = snd_pcm_format_physical_width(runtime->format);
	if (width < 0)
		return width;
	info->offset = 0;
	switch (runtime->access) {
	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
		info->first = info->channel * width;
		info->step = runtime->channels * width;
		break;
	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
	{
		size_t size = runtime->dma_bytes / runtime->channels;
		info->first = info->channel * size * 8;
		info->step = width;
		break;
	}
	default:
		snd_BUG();
		break;
	}
	return 0;
}

/**
 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
 * @substream: the pcm substream instance
 * @cmd: ioctl command
 * @arg: ioctl argument
 *
 * Processes the generic ioctl commands for PCM.
 * Can be passed as the ioctl callback for PCM ops.
 *
 * Returns zero if successful, or a negative error code on failure.
 */
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
		      unsigned int cmd, void *arg)
{
	switch (cmd) {
	case SNDRV_PCM_IOCTL1_INFO:
		return 0;
	case SNDRV_PCM_IOCTL1_RESET:
		return snd_pcm_lib_ioctl_reset(substream, arg);
	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
		return snd_pcm_lib_ioctl_channel_info(substream, arg);
	}
	return -ENXIO;
}

/*
 *  Conditions
 */

static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 
				    unsigned long ticks)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	if (ticks == 0)
		del_timer(&runtime->tick_timer);
	else {
		ticks += (1000000 / HZ) - 1;
		ticks /= (1000000 / HZ);
		mod_timer(&runtime->tick_timer, jiffies + ticks);
	}
}

/* Temporary alias */
void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
{
	snd_pcm_system_tick_set(substream, ticks);
}

void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	snd_pcm_uframes_t frames = ULONG_MAX;
	snd_pcm_uframes_t avail, dist;
	unsigned int ticks;
	u_int64_t n;
	u_int32_t r;
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (runtime->silence_size >= runtime->boundary) {
			frames = 1;
		} else if (runtime->silence_size > 0 &&
			   runtime->silence_filled < runtime->buffer_size) {
			snd_pcm_sframes_t noise_dist;
			noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
			if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
				frames = noise_dist - runtime->silence_threshold;
		}
		avail = snd_pcm_playback_avail(runtime);
	} else {
		avail = snd_pcm_capture_avail(runtime);
	}
	if (avail < runtime->control->avail_min) {
		snd_pcm_sframes_t n = runtime->control->avail_min - avail;
		if (n > 0 && frames > (snd_pcm_uframes_t)n)
			frames = n;
	}
	if (avail < runtime->buffer_size) {
		snd_pcm_sframes_t n = runtime->buffer_size - avail;
		if (n > 0 && frames > (snd_pcm_uframes_t)n)
			frames = n;
	}
	if (frames == ULONG_MAX) {
		snd_pcm_tick_set(substream, 0);
		return;
	}
	dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
	/* Distance to next interrupt */
	dist = runtime->period_size - dist % runtime->period_size;
	if (dist <= frames) {
		snd_pcm_tick_set(substream, 0);
		return;
	}
	/* the base time is us */
	n = frames;
	n *= 1000000;
	div64_32(&n, runtime->tick_time * runtime->rate, &r);
	ticks = n + (r > 0 ? 1 : 0);
	if (ticks < runtime->sleep_min)
		ticks = runtime->sleep_min;
	snd_pcm_tick_set(substream, (unsigned long) ticks);
}

void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime;
	unsigned long flags;
	
	snd_assert(substream != NULL, return);
	runtime = substream->runtime;
	snd_assert(runtime != NULL, return);

	snd_pcm_stream_lock_irqsave(substream, flags);
	if (!snd_pcm_running(substream) ||
	    snd_pcm_update_hw_ptr(substream) < 0)
		goto _end;
	if (runtime->sleep_min)
		snd_pcm_tick_prepare(substream);
 _end:
	snd_pcm_stream_unlock_irqrestore(substream, flags);
}

/**
 * snd_pcm_period_elapsed - update the pcm status for the next period
 * @substream: the pcm substream instance
 *
 * This function is called from the interrupt handler when the
 * PCM has processed the period size.  It will update the current
 * pointer, set up the tick, wake up sleepers, etc.
 *
 * Even if more than one periods have elapsed since the last call, you
 * have to call this only once.
 */
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime;
	unsigned long flags;

	snd_assert(substream != NULL, return);
	runtime = substream->runtime;
	snd_assert(runtime != NULL, return);

	if (runtime->transfer_ack_begin)
		runtime->transfer_ack_begin(substream);

	snd_pcm_stream_lock_irqsave(substream, flags);
	if (!snd_pcm_running(substream) ||
	    snd_pcm_update_hw_ptr_interrupt(substream) < 0)
		goto _end;

	if (substream->timer_running)
		snd_timer_interrupt(substream->timer, 1);
	if (runtime->sleep_min)
		snd_pcm_tick_prepare(substream);
 _end:
	snd_pcm_stream_unlock_irqrestore(substream, flags);
	if (runtime->transfer_ack_end)
		runtime->transfer_ack_end(substream);
	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
}

static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
				      unsigned int hwoff,
				      unsigned long data, unsigned int off,
				      snd_pcm_uframes_t frames)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;
	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
	if (substream->ops->copy) {
		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
			return err;
	} else {
		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
		snd_assert(runtime->dma_area, return -EFAULT);
		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
			return -EFAULT;
	}
	return 0;
}
 
typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
			  unsigned long data, unsigned int off,
			  snd_pcm_uframes_t size);

static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
					    unsigned long data,
					    snd_pcm_uframes_t size,
					    int nonblock,
					    transfer_f transfer)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	snd_pcm_uframes_t xfer = 0;
	snd_pcm_uframes_t offset = 0;
	int err = 0;

	if (size == 0)
		return 0;
	if (size > runtime->xfer_align)
		size -= size % runtime->xfer_align;

	snd_pcm_stream_lock_irq(substream);
	switch (runtime->status->state) {
	case SNDRV_PCM_STATE_PREPARED:
	case SNDRV_PCM_STATE_RUNNING:
	case SNDRV_PCM_STATE_PAUSED:
		break;
	case SNDRV_PCM_STATE_XRUN:
		err = -EPIPE;
		goto _end_unlock;
	case SNDRV_PCM_STATE_SUSPENDED:
		err = -ESTRPIPE;
		goto _end_unlock;
	default:
		err = -EBADFD;
		goto _end_unlock;
	}

	while (size > 0) {
		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
		snd_pcm_uframes_t avail;
		snd_pcm_uframes_t cont;
		if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
			snd_pcm_update_hw_ptr(substream);
		avail = snd_pcm_playback_avail(runtime);
		if (((avail < runtime->control->avail_min && size > avail) ||
		   (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
			wait_queue_t wait;
			enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
			long tout;

			if (nonblock) {
				err = -EAGAIN;
				goto _end_unlock;
			}

			init_waitqueue_entry(&wait, current);
			add_wait_queue(&runtime->sleep, &wait);
			while (1) {
				if (signal_pending(current)) {
					state = SIGNALED;
					break;
				}
				set_current_state(TASK_INTERRUPTIBLE);
				snd_pcm_stream_unlock_irq(substream);
				tout = schedule_timeout(10 * HZ);
				snd_pcm_stream_lock_irq(substream);
				if (tout == 0) {
					if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
					    runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
						state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
						break;
					}
				}
				switch (runtime->status->state) {
				case SNDRV_PCM_STATE_XRUN:
				case SNDRV_PCM_STATE_DRAINING:
					state = ERROR;
					goto _end_loop;
				case SNDRV_PCM_STATE_SUSPENDED:
					state = SUSPENDED;
					goto _end_loop;
				case SNDRV_PCM_STATE_SETUP:
					state = DROPPED;
					goto _end_loop;
				default:
					break;
				}
				avail = snd_pcm_playback_avail(runtime);
				if (avail >= runtime->control->avail_min) {
					state = READY;
					break;
				}
			}
		       _end_loop:
			remove_wait_queue(&runtime->sleep, &wait);

			switch (state) {
			case ERROR:
				err = -EPIPE;
				goto _end_unlock;
			case SUSPENDED:
				err = -ESTRPIPE;
				goto _end_unlock;
			case SIGNALED:
				err = -ERESTARTSYS;
				goto _end_unlock;
			case EXPIRED:
				snd_printd("playback write error (DMA or IRQ trouble?)\n");
				err = -EIO;
				goto _end_unlock;
			case DROPPED:
				err = -EBADFD;
				goto _end_unlock;
			default:
				break;
			}
		}
		if (avail > runtime->xfer_align)
			avail -= avail % runtime->xfer_align;
		frames = size > avail ? avail : size;
		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
		if (frames > cont)
			frames = cont;
		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
		appl_ptr = runtime->control->appl_ptr;
		appl_ofs = appl_ptr % runtime->buffer_size;
		snd_pcm_stream_unlock_irq(substream);
		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
			goto _end;
		snd_pcm_stream_lock_irq(substream);
		switch (runtime->status->state) {
		case SNDRV_PCM_STATE_XRUN:
			err = -EPIPE;
			goto _end_unlock;
		case SNDRV_PCM_STATE_SUSPENDED:
			err = -ESTRPIPE;
			goto _end_unlock;
		default:
			break;
		}
		appl_ptr += frames;
		if (appl_ptr >= runtime->boundary)
			appl_ptr -= runtime->boundary;
		runtime->control->appl_ptr = appl_ptr;
		if (substream->ops->ack)
			substream->ops->ack(substream);

		offset += frames;
		size -= frames;
		xfer += frames;
		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
			err = snd_pcm_start(substream);
			if (err < 0)
				goto _end_unlock;
		}
		if (runtime->sleep_min &&
		    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
			snd_pcm_tick_prepare(substream);
	}
 _end_unlock:
	snd_pcm_stream_unlock_irq(substream);
 _end:
	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}

snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
{
	struct snd_pcm_runtime *runtime;
	int nonblock;

	snd_assert(substream != NULL, return -ENXIO);
	runtime = substream->runtime;
	snd_assert(runtime != NULL, return -ENXIO);
	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
		return -EBADFD;

	snd_assert(substream->ffile != NULL, return -ENXIO);
	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
	if (substream->oss.oss) {
		struct snd_pcm_oss_setup *setup = substream->oss.setup;
		if (setup != NULL) {
			if (setup->nonblock)
				nonblock = 1;
			else if (setup->block)
				nonblock = 0;
		}
	}
#endif

	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
	    runtime->channels > 1)
		return -EINVAL;
	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
				  snd_pcm_lib_write_transfer);
}

static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
				       unsigned int hwoff,
				       unsigned long data, unsigned int off,
				       snd_pcm_uframes_t frames)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;
	void __user **bufs = (void __user **)data;
	int channels = runtime->channels;
	int c;
	if (substream->ops->copy) {
		snd_assert(substream->ops->silence != NULL, return -EINVAL);
		for (c = 0; c < channels; ++c, ++bufs) {
			if (*bufs == NULL) {
				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
					return err;
			} else {
				char __user *buf = *bufs + samples_to_bytes(runtime, off);
				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
					return err;
			}
		}
	} else {
		/* default transfer behaviour */
		size_t dma_csize = runtime->dma_bytes / channels;
		snd_assert(runtime->dma_area, return -EFAULT);
		for (c = 0; c < channels; ++c, ++bufs) {
			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
			if (*bufs == NULL) {
				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
			} else {
				char __user *buf = *bufs + samples_to_bytes(runtime, off);
				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
					return -EFAULT;
			}
		}
	}
	return 0;
}
 
snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
				     void __user **bufs,
				     snd_pcm_uframes_t frames)
{
	struct snd_pcm_runtime *runtime;
	int nonblock;

	snd_assert(substream != NULL, return -ENXIO);
	runtime = substream->runtime;
	snd_assert(runtime != NULL, return -ENXIO);
	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
		return -EBADFD;

	snd_assert(substream->ffile != NULL, return -ENXIO);
	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
	if (substream->oss.oss) {
		struct snd_pcm_oss_setup *setup = substream->oss.setup;
		if (setup != NULL) {
			if (setup->nonblock)
				nonblock = 1;
			else if (setup->block)
				nonblock = 0;
		}
	}
#endif

	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
		return -EINVAL;
	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
				  nonblock, snd_pcm_lib_writev_transfer);
}

static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
				     unsigned int hwoff,
				     unsigned long data, unsigned int off,
				     snd_pcm_uframes_t frames)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;
	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
	if (substream->ops->copy) {
		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
			return err;
	} else {
		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
		snd_assert(runtime->dma_area, return -EFAULT);
		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
			return -EFAULT;
	}
	return 0;
}

static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
					   unsigned long data,
					   snd_pcm_uframes_t size,
					   int nonblock,
					   transfer_f transfer)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	snd_pcm_uframes_t xfer = 0;
	snd_pcm_uframes_t offset = 0;
	int err = 0;

	if (size == 0)
		return 0;
	if (size > runtime->xfer_align)
		size -= size % runtime->xfer_align;

	snd_pcm_stream_lock_irq(substream);
	switch (runtime->status->state) {
	case SNDRV_PCM_STATE_PREPARED:
		if (size >= runtime->start_threshold) {
			err = snd_pcm_start(substream);
			if (err < 0)
				goto _end_unlock;
		}
		break;
	case SNDRV_PCM_STATE_DRAINING:
	case SNDRV_PCM_STATE_RUNNING:
	case SNDRV_PCM_STATE_PAUSED:
		break;
	case SNDRV_PCM_STATE_XRUN:
		err = -EPIPE;
		goto _end_unlock;
	case SNDRV_PCM_STATE_SUSPENDED:
		err = -ESTRPIPE;
		goto _end_unlock;
	default:
		err = -EBADFD;
		goto _end_unlock;
	}

	while (size > 0) {
		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
		snd_pcm_uframes_t avail;
		snd_pcm_uframes_t cont;
		if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
			snd_pcm_update_hw_ptr(substream);
	      __draining:
		avail = snd_pcm_capture_avail(runtime);
		if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
			if (avail < runtime->xfer_align) {
				err = -EPIPE;
				goto _end_unlock;
			}
		} else if ((avail < runtime->control->avail_min && size > avail) ||
			   (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
			wait_queue_t wait;
			enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
			long tout;

			if (nonblock) {
				err = -EAGAIN;
				goto _end_unlock;
			}

			init_waitqueue_entry(&wait, current);
			add_wait_queue(&runtime->sleep, &wait);
			while (1) {
				if (signal_pending(current)) {
					state = SIGNALED;
					break;
				}
				set_current_state(TASK_INTERRUPTIBLE);
				snd_pcm_stream_unlock_irq(substream);
				tout = schedule_timeout(10 * HZ);
				snd_pcm_stream_lock_irq(substream);
				if (tout == 0) {
					if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
					    runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
						state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
						break;
					}
				}
				switch (runtime->status->state) {
				case SNDRV_PCM_STATE_XRUN:
					state = ERROR;
					goto _end_loop;
				case SNDRV_PCM_STATE_SUSPENDED:
					state = SUSPENDED;
					goto _end_loop;
				case SNDRV_PCM_STATE_DRAINING:
					goto __draining;
				case SNDRV_PCM_STATE_SETUP:
					state = DROPPED;
					goto _end_loop;
				default:
					break;
				}
				avail = snd_pcm_capture_avail(runtime);
				if (avail >= runtime->control->avail_min) {
					state = READY;
					break;
				}
			}
		       _end_loop:
			remove_wait_queue(&runtime->sleep, &wait);

			switch (state) {
			case ERROR:
				err = -EPIPE;
				goto _end_unlock;
			case SUSPENDED:
				err = -ESTRPIPE;
				goto _end_unlock;
			case SIGNALED:
				err = -ERESTARTSYS;
				goto _end_unlock;
			case EXPIRED:
				snd_printd("capture read error (DMA or IRQ trouble?)\n");
				err = -EIO;
				goto _end_unlock;
			case DROPPED:
				err = -EBADFD;
				goto _end_unlock;
			default:
				break;
			}
		}
		if (avail > runtime->xfer_align)
			avail -= avail % runtime->xfer_align;
		frames = size > avail ? avail : size;
		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
		if (frames > cont)
			frames = cont;
		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
		appl_ptr = runtime->control->appl_ptr;
		appl_ofs = appl_ptr % runtime->buffer_size;
		snd_pcm_stream_unlock_irq(substream);
		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
			goto _end;
		snd_pcm_stream_lock_irq(substream);
		switch (runtime->status->state) {
		case SNDRV_PCM_STATE_XRUN:
			err = -EPIPE;
			goto _end_unlock;
		case SNDRV_PCM_STATE_SUSPENDED:
			err = -ESTRPIPE;
			goto _end_unlock;
		default:
			break;
		}
		appl_ptr += frames;
		if (appl_ptr >= runtime->boundary)
			appl_ptr -= runtime->boundary;
		runtime->control->appl_ptr = appl_ptr;
		if (substream->ops->ack)
			substream->ops->ack(substream);

		offset += frames;
		size -= frames;
		xfer += frames;
		if (runtime->sleep_min &&
		    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
			snd_pcm_tick_prepare(substream);
	}
 _end_unlock:
	snd_pcm_stream_unlock_irq(substream);
 _end:
	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}

snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
{
	struct snd_pcm_runtime *runtime;
	int nonblock;
	
	snd_assert(substream != NULL, return -ENXIO);
	runtime = substream->runtime;
	snd_assert(runtime != NULL, return -ENXIO);
	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
		return -EBADFD;

	snd_assert(substream->ffile != NULL, return -ENXIO);
	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
	if (substream->oss.oss) {
		struct snd_pcm_oss_setup *setup = substream->oss.setup;
		if (setup != NULL) {
			if (setup->nonblock)
				nonblock = 1;
			else if (setup->block)
				nonblock = 0;
		}
	}
#endif
	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
		return -EINVAL;
	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
}

static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
				      unsigned int hwoff,
				      unsigned long data, unsigned int off,
				      snd_pcm_uframes_t frames)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;
	void __user **bufs = (void __user **)data;
	int channels = runtime->channels;
	int c;
	if (substream->ops->copy) {
		for (c = 0; c < channels; ++c, ++bufs) {
			char __user *buf;
			if (*bufs == NULL)
				continue;
			buf = *bufs + samples_to_bytes(runtime, off);
			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
				return err;
		}
	} else {
		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
		snd_assert(runtime->dma_area, return -EFAULT);
		for (c = 0; c < channels; ++c, ++bufs) {
			char *hwbuf;
			char __user *buf;
			if (*bufs == NULL)
				continue;

			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
			buf = *bufs + samples_to_bytes(runtime, off);
			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
				return -EFAULT;
		}
	}
	return 0;
}
 
snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
				    void __user **bufs,
				    snd_pcm_uframes_t frames)
{
	struct snd_pcm_runtime *runtime;
	int nonblock;

	snd_assert(substream != NULL, return -ENXIO);
	runtime = substream->runtime;
	snd_assert(runtime != NULL, return -ENXIO);
	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
		return -EBADFD;

	snd_assert(substream->ffile != NULL, return -ENXIO);
	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
	if (substream->oss.oss) {
		struct snd_pcm_oss_setup *setup = substream->oss.setup;
		if (setup != NULL) {
			if (setup->nonblock)
				nonblock = 1;
			else if (setup->block)
				nonblock = 0;
		}
	}
#endif

	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
		return -EINVAL;
	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
}

/*
 *  Exported symbols
 */

EXPORT_SYMBOL(snd_interval_refine);
EXPORT_SYMBOL(snd_interval_list);
EXPORT_SYMBOL(snd_interval_ratnum);
EXPORT_SYMBOL(_snd_pcm_hw_params_any);
EXPORT_SYMBOL(_snd_pcm_hw_param_min);
EXPORT_SYMBOL(_snd_pcm_hw_param_set);
EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
EXPORT_SYMBOL(snd_pcm_hw_param_mask);
EXPORT_SYMBOL(snd_pcm_hw_param_first);
EXPORT_SYMBOL(snd_pcm_hw_param_last);
EXPORT_SYMBOL(snd_pcm_hw_param_near);
EXPORT_SYMBOL(snd_pcm_hw_param_set);
EXPORT_SYMBOL(snd_pcm_hw_refine);
EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
EXPORT_SYMBOL(snd_pcm_hw_rule_add);
EXPORT_SYMBOL(snd_pcm_set_ops);
EXPORT_SYMBOL(snd_pcm_set_sync);
EXPORT_SYMBOL(snd_pcm_lib_ioctl);
EXPORT_SYMBOL(snd_pcm_stop);
EXPORT_SYMBOL(snd_pcm_period_elapsed);
EXPORT_SYMBOL(snd_pcm_lib_write);
EXPORT_SYMBOL(snd_pcm_lib_read);
EXPORT_SYMBOL(snd_pcm_lib_writev);
EXPORT_SYMBOL(snd_pcm_lib_readv);
EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
/* pcm_memory.c */
EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
EXPORT_SYMBOL(snd_pcm_lib_free_pages);