/* * cmpci.c -- C-Media PCI audio driver. * * Copyright (C) 1999 C-media support (support@cmedia.com.tw) * * Based on the PCI drivers by Thomas Sailer (sailer@ife.ee.ethz.ch) * * For update, visit: * http://www.cmedia.com.tw * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Special thanks to David C. Niemi, Jan Pfeifer * * * Module command line parameters: * none so far * * * Supported devices: * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible * /dev/midi simple MIDI UART interface, no ioctl * * The card has both an FM and a Wavetable synth, but I have to figure * out first how to drive them... * * Revision history * 06.05.98 0.1 Initial release * 10.05.98 0.2 Fixed many bugs, esp. ADC rate calculation * First stab at a simple midi interface (no bells&whistles) * 13.05.98 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of * set_dac_rate in the FMODE_WRITE case in cm_open * Fix hwptr out of bounds (now mpg123 works) * 14.05.98 0.4 Don't allow excessive interrupt rates * 08.06.98 0.5 First release using Alan Cox' soundcore instead of miscdevice * 03.08.98 0.6 Do not include modversions.h * Now mixer behaviour can basically be selected between * "OSS documented" and "OSS actual" behaviour * 31.08.98 0.7 Fix realplayer problems - dac.count issues * 10.12.98 0.8 Fix drain_dac trying to wait on not yet initialized DMA * 16.12.98 0.9 Fix a few f_file & FMODE_ bugs * 06.01.99 0.10 remove the silly SA_INTERRUPT flag. * hopefully killed the egcs section type conflict * 12.03.99 0.11 cinfo.blocks should be reset after GETxPTR ioctl. * reported by Johan Maes <joma@telindus.be> * 22.03.99 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK * read/write cannot be executed * 18.08.99 1.5 Only deallocate DMA buffer when unloading. * 02.09.99 1.6 Enable SPDIF LOOP * Change the mixer read back * 21.09.99 2.33 Use RCS version as driver version. * Add support for modem, S/PDIF loop and 4 channels. * (8738 only) * Fix bug cause x11amp cannot play. * * Fixes: * Arnaldo Carvalho de Melo <acme@conectiva.com.br> * 18/05/2001 - .bss nitpicks, fix a bug in set_dac_channels where it * was calling prog_dmabuf with s->lock held, call missing * unlock_kernel in cm_midi_release * 08/10/2001 - use set_current_state in some more places * * Carlos Eduardo Gorges <carlos@techlinux.com.br> * Fri May 25 2001 * - SMP support ( spin[un]lock* revision ) * - speaker mixer support * Mon Aug 13 2001 * - optimizations and cleanups * * 03/01/2003 - open_mode fixes from Georg Acher <acher@in.tum.de> * Simon Braunschmidt <brasimon@web.de> * Sat Jan 31 2004 * - provide support for opl3 FM by releasing IO range after initialization * * ChenLi Tien <cltien@cmedia.com.tw> * Mar 9 2004 * - Fix S/PDIF out if spdif_loop enabled * - Load opl3 driver if enabled (fmio in proper range) * - Load mpu401 if enabled (mpuio in proper range) * Apr 5 2004 * - Fix DUAL_DAC dma synchronization bug * - Check exist FM/MPU401 I/O before activate. * - Add AFTM_S16_BE format support, so MPlayer/Xine can play AC3/mutlichannel * on Mac * - Change to support kernel 2.6 so only small patch needed * - All parameters default to 0 * - Add spdif_out to send PCM through S/PDIF out jack * - Add hw_copy to get 4-spaker output for general PCM/analog output * * Stefan Thater <stefan.thaeter@gmx.de> * Apr 5 2004 * - Fix mute single channel for CD/Line-in/AUX-in */ /*****************************************************************************/ #include <linux/config.h> #include <linux/module.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/sound.h> #include <linux/slab.h> #include <linux/soundcard.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/spinlock.h> #include <linux/smp_lock.h> #include <linux/bitops.h> #include <linux/wait.h> #include <linux/dma-mapping.h> #include <asm/io.h> #include <asm/page.h> #include <asm/uaccess.h> #ifdef CONFIG_SOUND_CMPCI_MIDI #include "sound_config.h" #include "mpu401.h" #endif #ifdef CONFIG_SOUND_CMPCI_FM #include "opl3.h" #endif #ifdef CONFIG_SOUND_CMPCI_JOYSTICK #include <linux/gameport.h> #include <linux/mutex.h> #endif /* --------------------------------------------------------------------- */ #undef OSS_DOCUMENTED_MIXER_SEMANTICS #undef DMABYTEIO #define DBG(x) {} /* --------------------------------------------------------------------- */ #define CM_MAGIC ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A) /* CM8338 registers definition ****************/ #define CODEC_CMI_FUNCTRL0 (0x00) #define CODEC_CMI_FUNCTRL1 (0x04) #define CODEC_CMI_CHFORMAT (0x08) #define CODEC_CMI_INT_HLDCLR (0x0C) #define CODEC_CMI_INT_STATUS (0x10) #define CODEC_CMI_LEGACY_CTRL (0x14) #define CODEC_CMI_MISC_CTRL (0x18) #define CODEC_CMI_TDMA_POS (0x1C) #define CODEC_CMI_MIXER (0x20) #define CODEC_SB16_DATA (0x22) #define CODEC_SB16_ADDR (0x23) #define CODEC_CMI_MIXER1 (0x24) #define CODEC_CMI_MIXER2 (0x25) #define CODEC_CMI_AUX_VOL (0x26) #define CODEC_CMI_MISC (0x27) #define CODEC_CMI_AC97 (0x28) #define CODEC_CMI_CH0_FRAME1 (0x80) #define CODEC_CMI_CH0_FRAME2 (0x84) #define CODEC_CMI_CH1_FRAME1 (0x88) #define CODEC_CMI_CH1_FRAME2 (0x8C) #define CODEC_CMI_SPDIF_CTRL (0x90) #define CODEC_CMI_MISC_CTRL2 (0x92) #define CODEC_CMI_EXT_REG (0xF0) /* Mixer registers for SB16 ******************/ #define DSP_MIX_DATARESETIDX ((unsigned char)(0x00)) #define DSP_MIX_MASTERVOLIDX_L ((unsigned char)(0x30)) #define DSP_MIX_MASTERVOLIDX_R ((unsigned char)(0x31)) #define DSP_MIX_VOICEVOLIDX_L ((unsigned char)(0x32)) #define DSP_MIX_VOICEVOLIDX_R ((unsigned char)(0x33)) #define DSP_MIX_FMVOLIDX_L ((unsigned char)(0x34)) #define DSP_MIX_FMVOLIDX_R ((unsigned char)(0x35)) #define DSP_MIX_CDVOLIDX_L ((unsigned char)(0x36)) #define DSP_MIX_CDVOLIDX_R ((unsigned char)(0x37)) #define DSP_MIX_LINEVOLIDX_L ((unsigned char)(0x38)) #define DSP_MIX_LINEVOLIDX_R ((unsigned char)(0x39)) #define DSP_MIX_MICVOLIDX ((unsigned char)(0x3A)) #define DSP_MIX_SPKRVOLIDX ((unsigned char)(0x3B)) #define DSP_MIX_OUTMIXIDX ((unsigned char)(0x3C)) #define DSP_MIX_ADCMIXIDX_L ((unsigned char)(0x3D)) #define DSP_MIX_ADCMIXIDX_R ((unsigned char)(0x3E)) #define DSP_MIX_INGAINIDX_L ((unsigned char)(0x3F)) #define DSP_MIX_INGAINIDX_R ((unsigned char)(0x40)) #define DSP_MIX_OUTGAINIDX_L ((unsigned char)(0x41)) #define DSP_MIX_OUTGAINIDX_R ((unsigned char)(0x42)) #define DSP_MIX_AGCIDX ((unsigned char)(0x43)) #define DSP_MIX_TREBLEIDX_L ((unsigned char)(0x44)) #define DSP_MIX_TREBLEIDX_R ((unsigned char)(0x45)) #define DSP_MIX_BASSIDX_L ((unsigned char)(0x46)) #define DSP_MIX_BASSIDX_R ((unsigned char)(0x47)) #define DSP_MIX_EXTENSION ((unsigned char)(0xf0)) // pseudo register for AUX #define DSP_MIX_AUXVOL_L ((unsigned char)(0x50)) #define DSP_MIX_AUXVOL_R ((unsigned char)(0x51)) // I/O length #define CM_EXTENT_CODEC 0x100 #define CM_EXTENT_MIDI 0x2 #define CM_EXTENT_SYNTH 0x4 #define CM_EXTENT_GAME 0x8 // Function Control Register 0 (00h) #define CHADC0 0x01 #define CHADC1 0x02 #define PAUSE0 0x04 #define PAUSE1 0x08 // Function Control Register 0+2 (02h) #define CHEN0 0x01 #define CHEN1 0x02 #define RST_CH0 0x04 #define RST_CH1 0x08 // Function Control Register 1 (04h) #define JYSTK_EN 0x02 #define UART_EN 0x04 #define SPDO2DAC 0x40 #define SPDFLOOP 0x80 // Function Control Register 1+1 (05h) #define SPDF_0 0x01 #define SPDF_1 0x02 #define ASFC 0x1c #define DSFC 0xe0 #define SPDIF2DAC (SPDF_1 << 8 | SPDO2DAC) // Channel Format Register (08h) #define CM_CFMT_STEREO 0x01 #define CM_CFMT_16BIT 0x02 #define CM_CFMT_MASK 0x03 #define POLVALID 0x20 #define INVSPDIFI 0x80 // Channel Format Register+2 (0ah) #define SPD24SEL 0x20 // Channel Format Register+3 (0bh) #define CHB3D 0x20 #define CHB3D5C 0x80 // Interrupt Hold/Clear Register+2 (0eh) #define CH0_INT_EN 0x01 #define CH1_INT_EN 0x02 // Interrupt Register (10h) #define CHINT0 0x01 #define CHINT1 0x02 #define CH0BUSY 0x04 #define CH1BUSY 0x08 // Legacy Control/Status Register+1 (15h) #define EXBASEN 0x10 #define BASE2LIN 0x20 #define CENTR2LIN 0x40 #define CB2LIN (BASE2LIN | CENTR2LIN) #define CHB3D6C 0x80 // Legacy Control/Status Register+2 (16h) #define DAC2SPDO 0x20 #define SPDCOPYRHT 0x40 #define ENSPDOUT 0x80 // Legacy Control/Status Register+3 (17h) #define FMSEL 0x03 #define VSBSEL 0x0c #define VMPU 0x60 #define NXCHG 0x80 // Miscellaneous Control Register (18h) #define REAR2LIN 0x20 #define MUTECH1 0x40 #define ENCENTER 0x80 // Miscellaneous Control Register+1 (19h) #define SELSPDIFI2 0x01 #define SPDF_AC97 0x80 // Miscellaneous Control Register+2 (1ah) #define AC3_EN 0x04 #define FM_EN 0x08 #define SPD32SEL 0x20 #define XCHGDAC 0x40 #define ENDBDAC 0x80 // Miscellaneous Control Register+3 (1bh) #define SPDIFI48K 0x01 #define SPDO5V 0x02 #define N4SPK3D 0x04 #define RESET 0x40 #define PWD 0x80 #define SPDIF48K (SPDIFI48K << 24 | SPDF_AC97 << 8) // Mixer1 (24h) #define CDPLAY 0x01 #define X3DEN 0x02 #define REAR2FRONT 0x10 #define SPK4 0x20 #define WSMUTE 0x40 #define FMMUTE 0x80 // Miscellaneous Register (27h) #define SPDVALID 0x02 #define CENTR2MIC 0x04 // Miscellaneous Register2 (92h) #define SPD32KFMT 0x10 #define CM_CFMT_DACSHIFT 2 #define CM_CFMT_ADCSHIFT 0 #define CM_FREQ_DACSHIFT 5 #define CM_FREQ_ADCSHIFT 2 #define RSTDAC RST_CH1 #define RSTADC RST_CH0 #define ENDAC CHEN1 #define ENADC CHEN0 #define PAUSEDAC PAUSE1 #define PAUSEADC PAUSE0 #define CODEC_CMI_ADC_FRAME1 CODEC_CMI_CH0_FRAME1 #define CODEC_CMI_ADC_FRAME2 CODEC_CMI_CH0_FRAME2 #define CODEC_CMI_DAC_FRAME1 CODEC_CMI_CH1_FRAME1 #define CODEC_CMI_DAC_FRAME2 CODEC_CMI_CH1_FRAME2 #define DACINT CHINT1 #define ADCINT CHINT0 #define DACBUSY CH1BUSY #define ADCBUSY CH0BUSY #define ENDACINT CH1_INT_EN #define ENADCINT CH0_INT_EN static const unsigned sample_size[] = { 1, 2, 2, 4 }; static const unsigned sample_shift[] = { 0, 1, 1, 2 }; #define SND_DEV_DSP16 5 #define NR_DEVICE 3 /* maximum number of devices */ #define set_dac1_rate set_adc_rate #define set_dac1_rate_unlocked set_adc_rate_unlocked #define stop_dac1 stop_adc #define stop_dac1_unlocked stop_adc_unlocked #define get_dmadac1 get_dmaadc static unsigned int devindex = 0; //*********************************************/ struct cm_state { /* magic */ unsigned int magic; /* list of cmedia devices */ struct list_head devs; /* the corresponding pci_dev structure */ struct pci_dev *dev; int dev_audio; /* soundcore stuff */ int dev_mixer; unsigned int iosb, iobase, iosynth, iomidi, iogame, irq; /* hardware resources */ unsigned short deviceid; /* pci_id */ struct { /* mixer stuff */ unsigned int modcnt; unsigned short vol[13]; } mix; unsigned int rateadc, ratedac; /* wave stuff */ unsigned char fmt, enable; spinlock_t lock; struct mutex open_mutex; mode_t open_mode; wait_queue_head_t open_wait; struct dmabuf { void *rawbuf; dma_addr_t dmaaddr; unsigned buforder; unsigned numfrag; unsigned fragshift; unsigned hwptr, swptr; unsigned total_bytes; int count; unsigned error; /* over/underrun */ wait_queue_head_t wait; unsigned fragsize; /* redundant, but makes calculations easier */ unsigned dmasize; unsigned fragsamples; unsigned dmasamples; unsigned mapped:1; /* OSS stuff */ unsigned ready:1; unsigned endcleared:1; unsigned enabled:1; unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } dma_dac, dma_adc; #ifdef CONFIG_SOUND_CMPCI_MIDI int midi_devc; struct address_info mpu_data; #endif #ifdef CONFIG_SOUND_CMPCI_JOYSTICK struct gameport *gameport; #endif int chip_version; int max_channels; int curr_channels; int capability; /* HW capability, various for chip versions */ int status; /* HW or SW state */ int spdif_counter; /* spdif frame counter */ }; /* flags used for capability */ #define CAN_AC3_HW 0x00000001 /* 037 or later */ #define CAN_AC3_SW 0x00000002 /* 033 or later */ #define CAN_AC3 (CAN_AC3_HW | CAN_AC3_SW) #define CAN_DUAL_DAC 0x00000004 /* 033 or later */ #define CAN_MULTI_CH_HW 0x00000008 /* 039 or later */ #define CAN_MULTI_CH (CAN_MULTI_CH_HW | CAN_DUAL_DAC) #define CAN_LINE_AS_REAR 0x00000010 /* 033 or later */ #define CAN_LINE_AS_BASS 0x00000020 /* 039 or later */ #define CAN_MIC_AS_BASS 0x00000040 /* 039 or later */ /* flags used for status */ #define DO_AC3_HW 0x00000001 #define DO_AC3_SW 0x00000002 #define DO_AC3 (DO_AC3_HW | DO_AC3_SW) #define DO_DUAL_DAC 0x00000004 #define DO_MULTI_CH_HW 0x00000008 #define DO_MULTI_CH (DO_MULTI_CH_HW | DO_DUAL_DAC) #define DO_LINE_AS_REAR 0x00000010 /* 033 or later */ #define DO_LINE_AS_BASS 0x00000020 /* 039 or later */ #define DO_MIC_AS_BASS 0x00000040 /* 039 or later */ #define DO_SPDIF_OUT 0x00000100 #define DO_SPDIF_IN 0x00000200 #define DO_SPDIF_LOOP 0x00000400 #define DO_BIGENDIAN_W 0x00001000 /* used in PowerPC */ #define DO_BIGENDIAN_R 0x00002000 /* used in PowerPC */ static LIST_HEAD(devs); static int mpuio; static int fmio; static int joystick; static int spdif_inverse; static int spdif_loop; static int spdif_out; static int use_line_as_rear; static int use_line_as_bass; static int use_mic_as_bass; static int mic_boost; static int hw_copy; module_param(mpuio, int, 0); module_param(fmio, int, 0); module_param(joystick, bool, 0); module_param(spdif_inverse, bool, 0); module_param(spdif_loop, bool, 0); module_param(spdif_out, bool, 0); module_param(use_line_as_rear, bool, 0); module_param(use_line_as_bass, bool, 0); module_param(use_mic_as_bass, bool, 0); module_param(mic_boost, bool, 0); module_param(hw_copy, bool, 0); MODULE_PARM_DESC(mpuio, "(0x330, 0x320, 0x310, 0x300) Base of MPU-401, 0 to disable"); MODULE_PARM_DESC(fmio, "(0x388, 0x3C8, 0x3E0) Base of OPL3, 0 to disable"); MODULE_PARM_DESC(joystick, "(1/0) Enable joystick interface, still need joystick driver"); MODULE_PARM_DESC(spdif_inverse, "(1/0) Invert S/PDIF-in signal"); MODULE_PARM_DESC(spdif_loop, "(1/0) Route S/PDIF-in to S/PDIF-out directly"); MODULE_PARM_DESC(spdif_out, "(1/0) Send PCM to S/PDIF-out (PCM volume will not function)"); MODULE_PARM_DESC(use_line_as_rear, "(1/0) Use line-in jack as rear-out"); MODULE_PARM_DESC(use_line_as_bass, "(1/0) Use line-in jack as bass/center"); MODULE_PARM_DESC(use_mic_as_bass, "(1/0) Use mic-in jack as bass/center"); MODULE_PARM_DESC(mic_boost, "(1/0) Enable microphone boost"); MODULE_PARM_DESC(hw_copy, "Copy front channel to surround channel"); /* --------------------------------------------------------------------- */ static inline unsigned ld2(unsigned int x) { unsigned exp=16,l=5,r=0; static const unsigned num[]={0x2,0x4,0x10,0x100,0x10000}; /* num: 2, 4, 16, 256, 65536 */ /* exp: 1, 2, 4, 8, 16 */ while(l--) { if( x >= num[l] ) { if(num[l]>2) x >>= exp; r+=exp; } exp>>=1; } return r; } /* --------------------------------------------------------------------- */ static void maskb(unsigned int addr, unsigned int mask, unsigned int value) { outb((inb(addr) & mask) | value, addr); } static void maskw(unsigned int addr, unsigned int mask, unsigned int value) { outw((inw(addr) & mask) | value, addr); } static void maskl(unsigned int addr, unsigned int mask, unsigned int value) { outl((inl(addr) & mask) | value, addr); } static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count) { if (addr) outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1); outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2); maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC0, 0); } static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count) { outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1); outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2); maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, CHADC0); } static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count) { outl(addr, s->iobase + CODEC_CMI_DAC_FRAME1); outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2); maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, 0); if (s->status & DO_DUAL_DAC) set_dmadac1(s, 0, count); } static void set_countadc(struct cm_state *s, unsigned count) { outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2 + 2); } static void set_countdac(struct cm_state *s, unsigned count) { outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2 + 2); if (s->status & DO_DUAL_DAC) set_countadc(s, count); } static unsigned get_dmadac(struct cm_state *s) { unsigned int curr_addr; curr_addr = inw(s->iobase + CODEC_CMI_DAC_FRAME2) + 1; curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]; curr_addr = s->dma_dac.dmasize - curr_addr; return curr_addr; } static unsigned get_dmaadc(struct cm_state *s) { unsigned int curr_addr; curr_addr = inw(s->iobase + CODEC_CMI_ADC_FRAME2) + 1; curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK]; curr_addr = s->dma_adc.dmasize - curr_addr; return curr_addr; } static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data) { unsigned char regval, pseudo; // pseudo register if (idx == DSP_MIX_AUXVOL_L) { data >>= 4; data &= 0x0f; regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0x0f; outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL); return; } if (idx == DSP_MIX_AUXVOL_R) { data &= 0xf0; regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0xf0; outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL); return; } outb(idx, s->iobase + CODEC_SB16_ADDR); udelay(10); // pseudo bits if (idx == DSP_MIX_OUTMIXIDX) { pseudo = data & ~0x1f; pseudo >>= 1; regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x30; outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2); } if (idx == DSP_MIX_ADCMIXIDX_L) { pseudo = data & 0x80; pseudo >>= 1; regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x40; outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2); } if (idx == DSP_MIX_ADCMIXIDX_R) { pseudo = data & 0x80; regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x80; outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2); } outb(data, s->iobase + CODEC_SB16_DATA); udelay(10); } static unsigned char rdmixer(struct cm_state *s, unsigned char idx) { unsigned char v, pseudo; // pseudo register if (idx == DSP_MIX_AUXVOL_L) { v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0x0f; v <<= 4; return v; } if (idx == DSP_MIX_AUXVOL_L) { v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0xf0; return v; } outb(idx, s->iobase + CODEC_SB16_ADDR); udelay(10); v = inb(s->iobase + CODEC_SB16_DATA); udelay(10); // pseudo bits if (idx == DSP_MIX_OUTMIXIDX) { pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x30; pseudo <<= 1; v |= pseudo; } if (idx == DSP_MIX_ADCMIXIDX_L) { pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x40; pseudo <<= 1; v |= pseudo; } if (idx == DSP_MIX_ADCMIXIDX_R) { pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x80; v |= pseudo; } return v; } static void set_fmt_unlocked(struct cm_state *s, unsigned char mask, unsigned char data) { if (mask && s->chip_version > 0) { /* 8338 cannot keep this */ s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT); udelay(10); } s->fmt = (s->fmt & mask) | data; outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT); udelay(10); } static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_fmt_unlocked(s,mask,data); spin_unlock_irqrestore(&s->lock, flags); } static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data) { outb(idx, s->iobase + CODEC_SB16_ADDR); udelay(10); outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA); udelay(10); } static struct { unsigned rate; unsigned lower; unsigned upper; unsigned char freq; } rate_lookup[] = { { 5512, (0 + 5512) / 2, (5512 + 8000) / 2, 0 }, { 8000, (5512 + 8000) / 2, (8000 + 11025) / 2, 4 }, { 11025, (8000 + 11025) / 2, (11025 + 16000) / 2, 1 }, { 16000, (11025 + 16000) / 2, (16000 + 22050) / 2, 5 }, { 22050, (16000 + 22050) / 2, (22050 + 32000) / 2, 2 }, { 32000, (22050 + 32000) / 2, (32000 + 44100) / 2, 6 }, { 44100, (32000 + 44100) / 2, (44100 + 48000) / 2, 3 }, { 48000, (44100 + 48000) / 2, 48000, 7 } }; static void set_spdif_copyright(struct cm_state *s, int spdif_copyright) { /* enable SPDIF-in Copyright */ maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~SPDCOPYRHT, spdif_copyright ? SPDCOPYRHT : 0); } static void set_spdif_loop(struct cm_state *s, int spdif_loop) { /* enable SPDIF loop */ if (spdif_loop) { s->status |= DO_SPDIF_LOOP; /* turn on spdif-in to spdif-out */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, SPDFLOOP); } else { s->status &= ~DO_SPDIF_LOOP; /* turn off spdif-in to spdif-out */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDFLOOP, 0); } } static void set_spdif_monitor(struct cm_state *s, int channel) { // SPDO2DAC maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDO2DAC, channel == 2 ? SPDO2DAC : 0); // CDPLAY if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, channel ? CDPLAY : 0); } static void set_spdifout_level(struct cm_state *s, int level5v) { /* SPDO5V */ if (s->chip_version > 0) maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~SPDO5V, level5v ? SPDO5V : 0); } static void set_spdifin_inverse(struct cm_state *s, int spdif_inverse) { if (s->chip_version == 0) /* 8338 has not this feature */ return; if (spdif_inverse) { /* turn on spdif-in inverse */ if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_CHFORMAT, ~0, INVSPDIFI); else maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 1); } else { /* turn off spdif-ininverse */ if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_CHFORMAT, ~INVSPDIFI, 0); else maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~1, 0); } } static void set_spdifin_channel2(struct cm_state *s, int channel2) { /* SELSPDIFI2 */ if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MISC_CTRL + 1, ~SELSPDIFI2, channel2 ? SELSPDIFI2 : 0); } static void set_spdifin_valid(struct cm_state *s, int valid) { /* SPDVALID */ maskb(s->iobase + CODEC_CMI_MISC, ~SPDVALID, valid ? SPDVALID : 0); } static void set_spdifout_unlocked(struct cm_state *s, unsigned rate) { if (rate != 48000 && rate != 44100) rate = 0; if (rate == 48000 || rate == 44100) { set_spdif_loop(s, 0); // SPDF_1 maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1); // SPDIFI48K SPDF_AC97 maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0); if (s->chip_version >= 55) // SPD32KFMT maskb(s->iobase + CODEC_CMI_MISC_CTRL2, ~SPD32KFMT, rate == 48000 ? SPD32KFMT : 0); if (s->chip_version > 0) // ENSPDOUT maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0, ENSPDOUT); // monitor SPDIF out set_spdif_monitor(s, 2); s->status |= DO_SPDIF_OUT; } else { maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0); maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~ENSPDOUT, 0); // monitor none set_spdif_monitor(s, 0); s->status &= ~DO_SPDIF_OUT; } } static void set_spdifout(struct cm_state *s, unsigned rate) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_spdifout_unlocked(s,rate); spin_unlock_irqrestore(&s->lock, flags); } static void set_spdifin_unlocked(struct cm_state *s, unsigned rate) { if (rate == 48000 || rate == 44100) { // SPDF_1 maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1); // SPDIFI48K SPDF_AC97 maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0); s->status |= DO_SPDIF_IN; } else { maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0); s->status &= ~DO_SPDIF_IN; } } static void set_spdifin(struct cm_state *s, unsigned rate) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_spdifin_unlocked(s,rate); spin_unlock_irqrestore(&s->lock, flags); } /* find parity for bit 4~30 */ static unsigned parity(unsigned data) { unsigned parity = 0; int counter = 4; data >>= 4; // start from bit 4 while (counter <= 30) { if (data & 1) parity++; data >>= 1; counter++; } return parity & 1; } static void set_ac3_unlocked(struct cm_state *s, unsigned rate) { if (!(s->capability & CAN_AC3)) return; /* enable AC3 */ if (rate && rate != 44100) rate = 48000; if (rate == 48000 || rate == 44100) { // mute DAC maskb(s->iobase + CODEC_CMI_MIXER1, ~0, WSMUTE); if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~0, MUTECH1); // AC3EN for 039, 0x04 if (s->chip_version >= 39) { maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, AC3_EN); if (s->chip_version == 55) maskb(s->iobase + CODEC_CMI_SPDIF_CTRL, ~2, 0); // AC3EN for 037, 0x10 } else if (s->chip_version == 37) maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x10); if (s->capability & CAN_AC3_HW) { // SPD24SEL for 039, 0x20, but cannot be set if (s->chip_version == 39) maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, SPD24SEL); // SPD24SEL for 037, 0x02 else if (s->chip_version == 37) maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x02); if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, 0); s->status |= DO_AC3_HW; } else { // SPD32SEL for 037 & 039 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, SPD32SEL); // set 176K sample rate to fix 033 HW bug if (s->chip_version == 33) { if (rate == 48000) maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0, 0x08); else maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0); } s->status |= DO_AC3_SW; } } else { maskb(s->iobase + CODEC_CMI_MIXER1, ~WSMUTE, 0); if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~MUTECH1, 0); maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~(SPD24SEL|0x12), 0); maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~(SPD32SEL|AC3_EN), 0); if (s->chip_version == 33) maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0); if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~0, CDPLAY); s->status &= ~DO_AC3; } s->spdif_counter = 0; } static void set_line_as_rear(struct cm_state *s, int use_line_as_rear) { if (!(s->capability & CAN_LINE_AS_REAR)) return; if (use_line_as_rear) { maskb(s->iobase + CODEC_CMI_MIXER1, ~0, SPK4); s->status |= DO_LINE_AS_REAR; } else { maskb(s->iobase + CODEC_CMI_MIXER1, ~SPK4, 0); s->status &= ~DO_LINE_AS_REAR; } } static void set_line_as_bass(struct cm_state *s, int use_line_as_bass) { if (!(s->capability & CAN_LINE_AS_BASS)) return; if (use_line_as_bass) { maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0, CB2LIN); s->status |= DO_LINE_AS_BASS; } else { maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CB2LIN, 0); s->status &= ~DO_LINE_AS_BASS; } } static void set_mic_as_bass(struct cm_state *s, int use_mic_as_bass) { if (!(s->capability & CAN_MIC_AS_BASS)) return; if (use_mic_as_bass) { maskb(s->iobase + CODEC_CMI_MISC, ~0, 0x04); s->status |= DO_MIC_AS_BASS; } else { maskb(s->iobase + CODEC_CMI_MISC, ~0x04, 0); s->status &= ~DO_MIC_AS_BASS; } } static void set_hw_copy(struct cm_state *s, int hw_copy) { if (s->max_channels > 2 && hw_copy) maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0, N4SPK3D); else maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~N4SPK3D, 0); } static void set_ac3(struct cm_state *s, unsigned rate) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_spdifout_unlocked(s, rate); set_ac3_unlocked(s, rate); spin_unlock_irqrestore(&s->lock, flags); } static int trans_ac3(struct cm_state *s, void *dest, const char __user *source, int size) { int i = size / 2; unsigned long data; unsigned short data16; unsigned long *dst = (unsigned long *) dest; unsigned short __user *src = (unsigned short __user *)source; int err; do { if ((err = __get_user(data16, src++))) return err; data = (unsigned long)le16_to_cpu(data16); data <<= 12; // ok for 16-bit data if (s->spdif_counter == 2 || s->spdif_counter == 3) data |= 0x40000000; // indicate AC-3 raw data if (parity(data)) data |= 0x80000000; // parity if (s->spdif_counter == 0) data |= 3; // preamble 'M' else if (s->spdif_counter & 1) data |= 5; // odd, 'W' else data |= 9; // even, 'M' *dst++ = cpu_to_le32(data); s->spdif_counter++; if (s->spdif_counter == 384) s->spdif_counter = 0; } while (--i); return 0; } static void set_adc_rate_unlocked(struct cm_state *s, unsigned rate) { unsigned char freq = 4; int i; if (rate > 48000) rate = 48000; if (rate < 8000) rate = 8000; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->rateadc = rate; freq <<= CM_FREQ_ADCSHIFT; maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq); } static void set_adc_rate(struct cm_state *s, unsigned rate) { unsigned long flags; unsigned char freq = 4; int i; if (rate > 48000) rate = 48000; if (rate < 8000) rate = 8000; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->rateadc = rate; freq <<= CM_FREQ_ADCSHIFT; spin_lock_irqsave(&s->lock, flags); maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq); spin_unlock_irqrestore(&s->lock, flags); } static void set_dac_rate(struct cm_state *s, unsigned rate) { unsigned long flags; unsigned char freq = 4; int i; if (rate > 48000) rate = 48000; if (rate < 8000) rate = 8000; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->ratedac = rate; freq <<= CM_FREQ_DACSHIFT; spin_lock_irqsave(&s->lock, flags); maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~DSFC, freq); spin_unlock_irqrestore(&s->lock, flags); if (s->curr_channels <= 2 && spdif_out) set_spdifout(s, rate); if (s->status & DO_DUAL_DAC) set_dac1_rate(s, rate); } /* --------------------------------------------------------------------- */ static inline void reset_adc(struct cm_state *s) { /* reset bus master */ outb(s->enable | RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2); udelay(10); outb(s->enable & ~RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } static inline void reset_dac(struct cm_state *s) { /* reset bus master */ outb(s->enable | RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2); udelay(10); outb(s->enable & ~RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2); if (s->status & DO_DUAL_DAC) reset_adc(s); } static inline void pause_adc(struct cm_state *s) { maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEADC); } static inline void pause_dac(struct cm_state *s) { maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEDAC); if (s->status & DO_DUAL_DAC) pause_adc(s); } static inline void disable_adc(struct cm_state *s) { /* disable channel */ s->enable &= ~ENADC; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); reset_adc(s); } static inline void disable_dac(struct cm_state *s) { /* disable channel */ s->enable &= ~ENDAC; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); reset_dac(s); if (s->status & DO_DUAL_DAC) disable_adc(s); } static inline void enable_adc(struct cm_state *s) { if (!(s->enable & ENADC)) { /* enable channel */ s->enable |= ENADC; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEADC, 0); } static inline void enable_dac_unlocked(struct cm_state *s) { if (!(s->enable & ENDAC)) { /* enable channel */ s->enable |= ENDAC; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEDAC, 0); if (s->status & DO_DUAL_DAC) enable_adc(s); } static inline void stop_adc_unlocked(struct cm_state *s) { if (s->enable & ENADC) { /* disable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENADCINT, 0); disable_adc(s); } } static inline void stop_adc(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); stop_adc_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static inline void stop_dac_unlocked(struct cm_state *s) { if (s->enable & ENDAC) { /* disable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENDACINT, 0); disable_dac(s); } if (s->status & DO_DUAL_DAC) stop_dac1_unlocked(s); } static inline void stop_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); stop_dac_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static inline void start_adc_unlocked(struct cm_state *s) { if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize)) && s->dma_adc.ready) { /* enable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT); enable_adc(s); } } static void start_adc(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); start_adc_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static void start_dac1_unlocked(struct cm_state *s) { if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) { /* enable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT); enable_dac_unlocked(s); } } static void start_dac_unlocked(struct cm_state *s) { if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) { /* enable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENDACINT); enable_dac_unlocked(s); } if (s->status & DO_DUAL_DAC) start_dac1_unlocked(s); } static void start_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); start_dac_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static int prog_dmabuf(struct cm_state *s, unsigned rec); static int set_dac_channels(struct cm_state *s, int channels) { unsigned long flags; static unsigned int fmmute = 0; spin_lock_irqsave(&s->lock, flags); if ((channels > 2) && (channels <= s->max_channels) && (((s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK) == (CM_CFMT_STEREO | CM_CFMT_16BIT))) { set_spdifout_unlocked(s, 0); if (s->capability & CAN_MULTI_CH_HW) { // NXCHG maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0, NXCHG); // CHB3D or CHB3D5C maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), channels > 4 ? CHB3D5C : CHB3D); // CHB3D6C maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, channels == 6 ? CHB3D6C : 0); // ENCENTER maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~ENCENTER, channels == 6 ? ENCENTER : 0); s->status |= DO_MULTI_CH_HW; } else if (s->capability & CAN_DUAL_DAC) { unsigned char fmtm = ~0, fmts = 0; ssize_t ret; // ENDBDAC, turn on double DAC mode // XCHGDAC, CH0 -> back, CH1->front maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, ENDBDAC|XCHGDAC); // mute FM fmmute = inb(s->iobase + CODEC_CMI_MIXER1) & FMMUTE; maskb(s->iobase + CODEC_CMI_MIXER1, ~0, FMMUTE); s->status |= DO_DUAL_DAC; // prepare secondary buffer spin_unlock_irqrestore(&s->lock, flags); ret = prog_dmabuf(s, 1); if (ret) return ret; spin_lock_irqsave(&s->lock, flags); // copy the hw state fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT); // the HW only support 16-bit stereo fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; set_fmt_unlocked(s, fmtm, fmts); set_adc_rate_unlocked(s, s->ratedac); } // disable 4 speaker mode (analog duplicate) set_hw_copy(s, 0); s->curr_channels = channels; // enable jack redirect set_line_as_rear(s, use_line_as_rear); if (channels > 4) { set_line_as_bass(s, use_line_as_bass); set_mic_as_bass(s, use_mic_as_bass); } } else { if (s->status & DO_MULTI_CH_HW) { maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~NXCHG, 0); maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), 0); maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, 0); } else if (s->status & DO_DUAL_DAC) { maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~ENDBDAC, 0); maskb(s->iobase + CODEC_CMI_MIXER1, ~FMMUTE, fmmute); } // enable 4 speaker mode (analog duplicate) set_hw_copy(s, hw_copy); s->status &= ~DO_MULTI_CH; s->curr_channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1; // disable jack redirect set_line_as_rear(s, hw_copy ? use_line_as_rear : 0); set_line_as_bass(s, 0); set_mic_as_bass(s, 0); } spin_unlock_irqrestore(&s->lock, flags); return s->curr_channels; } /* --------------------------------------------------------------------- */ #define DMABUF_DEFAULTORDER (16-PAGE_SHIFT) #define DMABUF_MINORDER 1 static void dealloc_dmabuf(struct cm_state *s, struct dmabuf *db) { struct page *pstart, *pend; if (db->rawbuf) { /* undo marking the pages as reserved */ pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++) ClearPageReserved(pstart); pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr); } db->rawbuf = NULL; db->mapped = db->ready = 0; } /* Ch1 is used for playback, Ch0 is used for recording */ static int prog_dmabuf(struct cm_state *s, unsigned rec) { struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac; unsigned rate = rec ? s->rateadc : s->ratedac; int order; unsigned bytepersec; unsigned bufs; struct page *pstart, *pend; unsigned char fmt; unsigned long flags; fmt = s->fmt; if (rec) { stop_adc(s); fmt >>= CM_CFMT_ADCSHIFT; } else { stop_dac(s); fmt >>= CM_CFMT_DACSHIFT; } fmt &= CM_CFMT_MASK; db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0; if (!db->rawbuf) { db->ready = db->mapped = 0; for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr))) break; if (!db->rawbuf || !db->dmaaddr) return -ENOMEM; db->buforder = order; /* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */ pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++) SetPageReserved(pstart); } bytepersec = rate << sample_shift[fmt]; bufs = PAGE_SIZE << db->buforder; if (db->ossfragshift) { if ((1000 << db->ossfragshift) < bytepersec) db->fragshift = ld2(bytepersec/1000); else db->fragshift = db->ossfragshift; } else { db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1)); if (db->fragshift < 3) db->fragshift = 3; } db->numfrag = bufs >> db->fragshift; while (db->numfrag < 4 && db->fragshift > 3) { db->fragshift--; db->numfrag = bufs >> db->fragshift; } db->fragsize = 1 << db->fragshift; if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag) db->numfrag = db->ossmaxfrags; /* to make fragsize >= 4096 */ db->fragsamples = db->fragsize >> sample_shift[fmt]; db->dmasize = db->numfrag << db->fragshift; db->dmasamples = db->dmasize >> sample_shift[fmt]; memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize); spin_lock_irqsave(&s->lock, flags); if (rec) { if (s->status & DO_DUAL_DAC) set_dmadac1(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]); else set_dmaadc(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]); /* program sample counts */ set_countdac(s, db->fragsamples); } else { set_dmadac(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]); /* program sample counts */ set_countdac(s, db->fragsamples); } spin_unlock_irqrestore(&s->lock, flags); db->enabled = 1; db->ready = 1; return 0; } static inline void clear_advance(struct cm_state *s) { unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80; unsigned char *buf = s->dma_dac.rawbuf; unsigned char *buf1 = s->dma_adc.rawbuf; unsigned bsize = s->dma_dac.dmasize; unsigned bptr = s->dma_dac.swptr; unsigned len = s->dma_dac.fragsize; if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(buf + bptr, c, x); if (s->status & DO_DUAL_DAC) memset(buf1 + bptr, c, x); bptr = 0; len -= x; } memset(buf + bptr, c, len); if (s->status & DO_DUAL_DAC) memset(buf1 + bptr, c, len); } /* call with spinlock held! */ static void cm_update_ptr(struct cm_state *s) { unsigned hwptr; int diff; /* update ADC pointer */ if (s->dma_adc.ready) { if (s->status & DO_DUAL_DAC) { /* the dac part will finish for this */ } else { hwptr = get_dmaadc(s) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; s->dma_adc.count += diff; if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); if (!s->dma_adc.mapped) { if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) { pause_adc(s); s->dma_adc.error++; } } } } /* update DAC pointer */ if (s->dma_dac.ready) { hwptr = get_dmadac(s) % s->dma_dac.dmasize; diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize; s->dma_dac.hwptr = hwptr; s->dma_dac.total_bytes += diff; if (s->status & DO_DUAL_DAC) { s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; } if (s->dma_dac.mapped) { s->dma_dac.count += diff; if (s->status & DO_DUAL_DAC) s->dma_adc.count += diff; if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) wake_up(&s->dma_dac.wait); } else { s->dma_dac.count -= diff; if (s->status & DO_DUAL_DAC) s->dma_adc.count -= diff; if (s->dma_dac.count <= 0) { pause_dac(s); s->dma_dac.error++; } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) { clear_advance(s); s->dma_dac.endcleared = 1; if (s->status & DO_DUAL_DAC) s->dma_adc.endcleared = 1; } if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) wake_up(&s->dma_dac.wait); } } } static irqreturn_t cm_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct cm_state *s = (struct cm_state *)dev_id; unsigned int intsrc, intstat; unsigned char mask = 0; /* fastpath out, to ease interrupt sharing */ intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS); if (!(intsrc & 0x80000000)) return IRQ_NONE; spin_lock(&s->lock); intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* acknowledge interrupt */ if (intsrc & ADCINT) mask |= ENADCINT; if (intsrc & DACINT) mask |= ENDACINT; outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2); outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2); cm_update_ptr(s); spin_unlock(&s->lock); #ifdef CONFIG_SOUND_CMPCI_MIDI if (intsrc & 0x00010000) { // UART interrupt if (s->midi_devc && intchk_mpu401((void *)s->midi_devc)) mpuintr(irq, (void *)s->midi_devc, regs); else inb(s->iomidi);// dummy read } #endif return IRQ_HANDLED; } /* --------------------------------------------------------------------- */ static const char invalid_magic[] = KERN_CRIT "cmpci: invalid magic value\n"; #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != CM_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) /* --------------------------------------------------------------------- */ #define MT_4 1 #define MT_5MUTE 2 #define MT_4MUTEMONO 3 #define MT_6MUTE 4 #define MT_5MUTEMONO 5 static const struct { unsigned left; unsigned right; unsigned type; unsigned rec; unsigned play; } mixtable[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_CD] = { DSP_MIX_CDVOLIDX_L, DSP_MIX_CDVOLIDX_R, MT_5MUTE, 0x04, 0x06 }, [SOUND_MIXER_LINE] = { DSP_MIX_LINEVOLIDX_L, DSP_MIX_LINEVOLIDX_R, MT_5MUTE, 0x10, 0x18 }, [SOUND_MIXER_MIC] = { DSP_MIX_MICVOLIDX, DSP_MIX_MICVOLIDX, MT_5MUTEMONO, 0x01, 0x01 }, [SOUND_MIXER_SYNTH] = { DSP_MIX_FMVOLIDX_L, DSP_MIX_FMVOLIDX_R, MT_5MUTE, 0x40, 0x00 }, [SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE, 0x00, 0x00 }, [SOUND_MIXER_PCM] = { DSP_MIX_VOICEVOLIDX_L, DSP_MIX_VOICEVOLIDX_R, MT_5MUTE, 0x00, 0x00 }, [SOUND_MIXER_LINE1] = { DSP_MIX_AUXVOL_L, DSP_MIX_AUXVOL_R, MT_5MUTE, 0x80, 0x60 }, [SOUND_MIXER_SPEAKER]= { DSP_MIX_SPKRVOLIDX, DSP_MIX_SPKRVOLIDX, MT_5MUTEMONO, 0x00, 0x01 } }; static const unsigned char volidx[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_CD] = 1, [SOUND_MIXER_LINE] = 2, [SOUND_MIXER_MIC] = 3, [SOUND_MIXER_SYNTH] = 4, [SOUND_MIXER_VOLUME] = 5, [SOUND_MIXER_PCM] = 6, [SOUND_MIXER_LINE1] = 7, [SOUND_MIXER_SPEAKER]= 8 }; static unsigned mixer_outmask(struct cm_state *s) { unsigned long flags; int i, j, k; spin_lock_irqsave(&s->lock, flags); j = rdmixer(s, DSP_MIX_OUTMIXIDX); spin_unlock_irqrestore(&s->lock, flags); for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (j & mixtable[i].play) k |= 1 << i; return k; } static unsigned mixer_recmask(struct cm_state *s) { unsigned long flags; int i, j, k; spin_lock_irqsave(&s->lock, flags); j = rdmixer(s, DSP_MIX_ADCMIXIDX_L); spin_unlock_irqrestore(&s->lock, flags); for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (j & mixtable[i].rec) k |= 1 << i; return k; } static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg) { unsigned long flags; int i, val, j; unsigned char l, r, rl, rr; void __user *argp = (void __user *)arg; int __user *p = argp; VALIDATE_STATE(s); if (cmd == SOUND_MIXER_INFO) { mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, "cmpci", sizeof(info.id)); strlcpy(info.name, "C-Media PCI", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user(argp, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, "cmpci", sizeof(info.id)); strlcpy(info.name, "C-Media cmpci", sizeof(info.name)); if (copy_to_user(argp, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, p); if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_SIOC_DIR(cmd) == _SIOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ val = mixer_recmask(s); return put_user(val, p); case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */ val = mixer_outmask(s); return put_user(val, p); case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type) val |= 1 << i; return put_user(val, p); case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].rec) val |= 1 << i; return put_user(val, p); case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].play) val |= 1 << i; return put_user(val, p); case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO) val |= 1 << i; return put_user(val, p); case SOUND_MIXER_CAPS: return put_user(0, p); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; if (!volidx[i]) return -EINVAL; return put_user(s->mix.vol[volidx[i]-1], p); } } if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE)) return -EINVAL; s->mix.modcnt++; switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ if (get_user(val, p)) return -EFAULT; i = generic_hweight32(val); for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (!mixtable[i].rec) { val &= ~(1 << i); continue; } j |= mixtable[i].rec; } spin_lock_irqsave(&s->lock, flags); wrmixer(s, DSP_MIX_ADCMIXIDX_L, j); wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1) | (j & 0x80)); spin_unlock_irqrestore(&s->lock, flags); return 0; case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */ if (get_user(val, p)) return -EFAULT; for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (!mixtable[i].play) { val &= ~(1 << i); continue; } j |= mixtable[i].play; } spin_lock_irqsave(&s->lock, flags); wrmixer(s, DSP_MIX_OUTMIXIDX, j); spin_unlock_irqrestore(&s->lock, flags); return 0; default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; if (get_user(val, p)) return -EFAULT; l = val & 0xff; r = (val >> 8) & 0xff; if (l > 100) l = 100; if (r > 100) r = 100; spin_lock_irqsave(&s->lock, flags); switch (mixtable[i].type) { case MT_4: if (l >= 10) l -= 10; if (r >= 10) r -= 10; frobindir(s, mixtable[i].left, 0xf0, l / 6); frobindir(s, mixtable[i].right, 0xf0, l / 6); break; case MT_4MUTEMONO: rl = (l < 4 ? 0 : (l - 5) / 3) & 31; rr = (rl >> 2) & 7; wrmixer(s, mixtable[i].left, rl<<3); if (i == SOUND_MIXER_MIC) maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1); break; case MT_5MUTEMONO: rl = l < 4 ? 0 : (l - 5) / 3; wrmixer(s, mixtable[i].left, rl<<3); l = rdmixer(s, DSP_MIX_OUTMIXIDX) & ~mixtable[i].play; r = rl ? mixtable[i].play : 0; wrmixer(s, DSP_MIX_OUTMIXIDX, l | r); /* for recording */ if (i == SOUND_MIXER_MIC) { if (s->chip_version >= 37) { rr = rl >> 1; maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, (rr&0x07)<<1); frobindir(s, DSP_MIX_EXTENSION, ~0x01, rr>>3); } else { rr = rl >> 2; maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1); } } break; case MT_5MUTE: rl = l < 4 ? 0 : (l - 5) / 3; rr = r < 4 ? 0 : (r - 5) / 3; wrmixer(s, mixtable[i].left, rl<<3); wrmixer(s, mixtable[i].right, rr<<3); l = rdmixer(s, DSP_MIX_OUTMIXIDX); l &= ~mixtable[i].play; r = (rl|rr) ? mixtable[i].play : 0; wrmixer(s, DSP_MIX_OUTMIXIDX, l | r); break; case MT_6MUTE: if (l < 6) rl = 0x00; else rl = l * 2 / 3; if (r < 6) rr = 0x00; else rr = r * 2 / 3; wrmixer(s, mixtable[i].left, rl); wrmixer(s, mixtable[i].right, rr); break; } spin_unlock_irqrestore(&s->lock, flags); if (!volidx[i]) return -EINVAL; s->mix.vol[volidx[i]-1] = val; return put_user(s->mix.vol[volidx[i]-1], p); } } /* --------------------------------------------------------------------- */ static int cm_open_mixdev(struct inode *inode, struct file *file) { int minor = iminor(inode); struct list_head *list; struct cm_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct cm_state, devs); if (s->dev_mixer == minor) break; } VALIDATE_STATE(s); file->private_data = s; return nonseekable_open(inode, file); } static int cm_release_mixdev(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); return 0; } static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg); } static /*const*/ struct file_operations cm_mixer_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .ioctl = cm_ioctl_mixdev, .open = cm_open_mixdev, .release = cm_release_mixdev, }; /* --------------------------------------------------------------------- */ static int drain_dac(struct cm_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count, tmo; if (s->dma_dac.mapped || !s->dma_dac.ready) return 0; add_wait_queue(&s->dma_dac.wait, &wait); for (;;) { __set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&s->lock, flags); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac; tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]; if (!schedule_timeout(tmo + 1)) DBG(printk(KERN_DEBUG "cmpci: dma timed out??\n");) } remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* --------------------------------------------------------------------- */ static ssize_t cm_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; add_wait_queue(&s->dma_adc.wait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); swptr = s->dma_adc.swptr; cnt = s->dma_adc.dmasize-swptr; if (s->dma_adc.count < cnt) cnt = s->dma_adc.count; if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (s->dma_adc.enabled) start_adc(s); if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; goto out; } if (!schedule_timeout(HZ)) { printk(KERN_DEBUG "cmpci: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count, s->dma_adc.hwptr, s->dma_adc.swptr); spin_lock_irqsave(&s->lock, flags); stop_adc_unlocked(s); set_dmaadc(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples); /* program sample counts */ set_countadc(s, s->dma_adc.fragsamples); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; goto out; } continue; } if (s->status & DO_BIGENDIAN_R) { int i, err; unsigned char *src; char __user *dst = buffer; unsigned char data[2]; src = (unsigned char *) (s->dma_adc.rawbuf + swptr); // copy left/right sample at one time for (i = 0; i < cnt / 2; i++) { data[0] = src[1]; data[1] = src[0]; if ((err = __put_user(data[0], dst++))) { ret = err; goto out; } if ((err = __put_user(data[1], dst++))) { ret = err; goto out; } src += 2; } } else if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) { if (!ret) ret = -EFAULT; goto out; } swptr = (swptr + cnt) % s->dma_adc.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = swptr; s->dma_adc.count -= cnt; count -= cnt; buffer += cnt; ret += cnt; if (s->dma_adc.enabled) start_adc_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } out: remove_wait_queue(&s->dma_adc.wait, &wait); set_current_state(TASK_RUNNING); return ret; } static ssize_t cm_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; if (s->status & DO_DUAL_DAC) { if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; } if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; add_wait_queue(&s->dma_dac.wait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } if (s->status & DO_DUAL_DAC) { s->dma_adc.swptr = s->dma_dac.swptr; s->dma_adc.count = s->dma_dac.count; s->dma_adc.endcleared = s->dma_dac.endcleared; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->status & DO_AC3_SW) { if (s->dma_dac.count + 2 * cnt > s->dma_dac.dmasize) cnt = (s->dma_dac.dmasize - s->dma_dac.count) / 2; } else { if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; } if (cnt <= 0) __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if ((s->status & DO_DUAL_DAC) && (cnt > count / 2)) cnt = count / 2; if (cnt <= 0) { if (s->dma_dac.enabled) start_dac(s); if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; goto out; } if (!schedule_timeout(HZ)) { printk(KERN_DEBUG "cmpci: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count, s->dma_dac.hwptr, s->dma_dac.swptr); spin_lock_irqsave(&s->lock, flags); stop_dac_unlocked(s); set_dmadac(s, s->dma_dac.dmaaddr, s->dma_dac.dmasamples); /* program sample counts */ set_countdac(s, s->dma_dac.fragsamples); s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0; if (s->status & DO_DUAL_DAC) { set_dmadac1(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; } spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; goto out; } continue; } if (s->status & DO_AC3_SW) { int err; // clip exceeded data, caught by 033 and 037 if (swptr + 2 * cnt > s->dma_dac.dmasize) cnt = (s->dma_dac.dmasize - swptr) / 2; if ((err = trans_ac3(s, s->dma_dac.rawbuf + swptr, buffer, cnt))) { ret = err; goto out; } swptr = (swptr + 2 * cnt) % s->dma_dac.dmasize; } else if ((s->status & DO_DUAL_DAC) && (s->status & DO_BIGENDIAN_W)) { int i, err; const char __user *src = buffer; unsigned char *dst0, *dst1; unsigned char data[8]; dst0 = (unsigned char *) (s->dma_dac.rawbuf + swptr); dst1 = (unsigned char *) (s->dma_adc.rawbuf + swptr); // copy left/right sample at one time for (i = 0; i < cnt / 4; i++) { if ((err = __get_user(data[0], src++))) { ret = err; goto out; } if ((err = __get_user(data[1], src++))) { ret = err; goto out; } if ((err = __get_user(data[2], src++))) { ret = err; goto out; } if ((err = __get_user(data[3], src++))) { ret = err; goto out; } if ((err = __get_user(data[4], src++))) { ret = err; goto out; } if ((err = __get_user(data[5], src++))) { ret = err; goto out; } if ((err = __get_user(data[6], src++))) { ret = err; goto out; } if ((err = __get_user(data[7], src++))) { ret = err; goto out; } dst0[0] = data[1]; dst0[1] = data[0]; dst0[2] = data[3]; dst0[3] = data[2]; dst1[0] = data[5]; dst1[1] = data[4]; dst1[2] = data[7]; dst1[3] = data[6]; dst0 += 4; dst1 += 4; } swptr = (swptr + cnt) % s->dma_dac.dmasize; } else if (s->status & DO_DUAL_DAC) { int i, err; unsigned long __user *src = (unsigned long __user *) buffer; unsigned long *dst0, *dst1; dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr); dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr); // copy left/right sample at one time for (i = 0; i < cnt / 4; i++) { if ((err = __get_user(*dst0++, src++))) { ret = err; goto out; } if ((err = __get_user(*dst1++, src++))) { ret = err; goto out; } } swptr = (swptr + cnt) % s->dma_dac.dmasize; } else if (s->status & DO_BIGENDIAN_W) { int i, err; const char __user *src = buffer; unsigned char *dst; unsigned char data[2]; dst = (unsigned char *) (s->dma_dac.rawbuf + swptr); // swap hi/lo bytes for each sample for (i = 0; i < cnt / 2; i++) { if ((err = __get_user(data[0], src++))) { ret = err; goto out; } if ((err = __get_user(data[1], src++))) { ret = err; goto out; } dst[0] = data[1]; dst[1] = data[0]; dst += 2; } swptr = (swptr + cnt) % s->dma_dac.dmasize; } else { if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) { if (!ret) ret = -EFAULT; goto out; } swptr = (swptr + cnt) % s->dma_dac.dmasize; } spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; if (s->status & DO_AC3_SW) s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; if (s->status & DO_DUAL_DAC) { count -= cnt; buffer += cnt; ret += cnt; } if (s->dma_dac.enabled) start_dac(s); } out: remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return ret; } static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) { if (!s->dma_dac.ready && prog_dmabuf(s, 0)) return 0; poll_wait(file, &s->dma_dac.wait, wait); } if (file->f_mode & FMODE_READ) { if (!s->dma_adc.ready && prog_dmabuf(s, 1)) return 0; poll_wait(file, &s->dma_adc.wait, wait); } spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); if (file->f_mode & FMODE_READ) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cm_mmap(struct file *file, struct vm_area_struct *vma) { struct cm_state *s = (struct cm_state *)file->private_data; struct dmabuf *db; int ret = -EINVAL; unsigned long size; VALIDATE_STATE(s); lock_kernel(); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf(s, 0)) != 0) goto out; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf(s, 1)) != 0) goto out; db = &s->dma_adc; } else goto out; ret = -EINVAL; if (vma->vm_pgoff != 0) goto out; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) goto out; ret = -EINVAL; if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(db->rawbuf) >> PAGE_SHIFT, size, vma->vm_page_prot)) goto out; db->mapped = 1; ret = 0; out: unlock_kernel(); return ret; } #define SNDCTL_SPDIF_COPYRIGHT _SIOW('S', 0, int) // set/reset S/PDIF copy protection #define SNDCTL_SPDIF_LOOP _SIOW('S', 1, int) // set/reset S/PDIF loop #define SNDCTL_SPDIF_MONITOR _SIOW('S', 2, int) // set S/PDIF monitor #define SNDCTL_SPDIF_LEVEL _SIOW('S', 3, int) // set/reset S/PDIF out level #define SNDCTL_SPDIF_INV _SIOW('S', 4, int) // set/reset S/PDIF in inverse #define SNDCTL_SPDIF_SEL2 _SIOW('S', 5, int) // set S/PDIF in #2 #define SNDCTL_SPDIF_VALID _SIOW('S', 6, int) // set S/PDIF valid #define SNDCTL_SPDIFOUT _SIOW('S', 7, int) // set S/PDIF out #define SNDCTL_SPDIFIN _SIOW('S', 8, int) // set S/PDIF out static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret; unsigned char fmtm, fmtd; void __user *argp = (void __user *)arg; int __user *p = argp; VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, p); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BIND, p); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(s->irq); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0; if (s->status & DO_DUAL_DAC) s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(s->irq); s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, p)) return -EFAULT; if (val >= 0) { if (file->f_mode & FMODE_READ) { spin_lock_irqsave(&s->lock, flags); stop_adc_unlocked(s); s->dma_adc.ready = 0; set_adc_rate_unlocked(s, val); spin_unlock_irqrestore(&s->lock, flags); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (s->status & DO_DUAL_DAC) s->dma_adc.ready = 0; set_dac_rate(s, val); } } return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p); case SNDCTL_DSP_STEREO: if (get_user(val, p)) return -EFAULT; fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); if (s->status & DO_DUAL_DAC) { s->dma_adc.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, p)) return -EFAULT; if (val != 0) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); if (s->status & DO_DUAL_DAC) { s->dma_adc.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); if ((s->capability & CAN_MULTI_CH) && (file->f_mode & FMODE_WRITE)) { val = set_dac_channels(s, val); return put_user(val, p); } } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_S16_BE|AFMT_S16_LE|AFMT_U8| ((s->capability & CAN_AC3) ? AFMT_AC3 : 0), p); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ if (get_user(val, p)) return -EFAULT; if (val != AFMT_QUERY) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val == AFMT_S16_BE || val == AFMT_S16_LE) fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT); if (val == AFMT_S16_BE) s->status |= DO_BIGENDIAN_R; else s->status &= ~DO_BIGENDIAN_R; } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val == AFMT_S16_BE || val == AFMT_S16_LE || val == AFMT_AC3) fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT); if (val == AFMT_AC3) { fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; set_ac3(s, 48000); } else set_ac3(s, 0); if (s->status & DO_DUAL_DAC) { s->dma_adc.ready = 0; if (val == AFMT_S16_BE || val == AFMT_S16_LE) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (val == AFMT_S16_BE) s->status |= DO_BIGENDIAN_W; else s->status &= ~DO_BIGENDIAN_W; } set_fmt(s, fmtm, fmtd); } if (s->status & DO_AC3) return put_user(AFMT_AC3, p); return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? val : AFMT_U8, p); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (s->status & DO_DUAL_DAC) { if (file->f_mode & FMODE_WRITE && (s->enable & ENDAC) && (s->enable & ENADC)) val |= PCM_ENABLE_OUTPUT; return put_user(val, p); } if (file->f_mode & FMODE_READ && s->enable & ENADC) val |= PCM_ENABLE_INPUT; if (file->f_mode & FMODE_WRITE && s->enable & ENDAC) val |= PCM_ENABLE_OUTPUT; return put_user(val, p); case SNDCTL_DSP_SETTRIGGER: if (get_user(val, p)) return -EFAULT; if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; s->dma_adc.enabled = 1; start_adc(s); } else { s->dma_adc.enabled = 0; stop_adc(s); } } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (s->status & DO_DUAL_DAC) { if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; } s->dma_dac.enabled = 1; start_dac(s); } else { s->dma_dac.enabled = 0; stop_dac(s); } } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(s->enable & ENDAC) && (val = prog_dmabuf(s, 0)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!(s->enable & ENADC) && (val = prog_dmabuf(s, 1)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_adc.fragsize; abinfo.bytes = s->dma_adc.count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); val = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); return put_user(val, p); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_adc.total_bytes; cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift; cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift; cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize-1; if (s->status & DO_DUAL_DAC) { if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; } spin_unlock_irqrestore(&s->lock, flags); return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf(s, 0))) return val; if (s->status & DO_DUAL_DAC) { if ((val = prog_dmabuf(s, 1))) return val; return put_user(2 * s->dma_dac.fragsize, p); } return put_user(s->dma_dac.fragsize, p); } if ((val = prog_dmabuf(s, 1))) return val; return put_user(s->dma_adc.fragsize, p); case SNDCTL_DSP_SETFRAGMENT: if (get_user(val, p)) return -EFAULT; if (file->f_mode & FMODE_READ) { s->dma_adc.ossfragshift = val & 0xffff; s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_adc.ossfragshift < 4) s->dma_adc.ossfragshift = 4; if (s->dma_adc.ossfragshift > 15) s->dma_adc.ossfragshift = 15; if (s->dma_adc.ossmaxfrags < 4) s->dma_adc.ossmaxfrags = 4; } if (file->f_mode & FMODE_WRITE) { s->dma_dac.ossfragshift = val & 0xffff; s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_dac.ossfragshift < 4) s->dma_dac.ossfragshift = 4; if (s->dma_dac.ossfragshift > 15) s->dma_dac.ossfragshift = 15; if (s->dma_dac.ossmaxfrags < 4) s->dma_dac.ossmaxfrags = 4; if (s->status & DO_DUAL_DAC) { s->dma_adc.ossfragshift = s->dma_dac.ossfragshift; s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags; } } return 0; case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; if (get_user(val, p)) return -EFAULT; if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; if (file->f_mode & FMODE_WRITE) { s->dma_dac.subdivision = val; if (s->status & DO_DUAL_DAC) s->dma_adc.subdivision = val; } return 0; case SOUND_PCM_READ_RATE: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p); case SOUND_PCM_READ_CHANNELS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p); case SOUND_PCM_READ_BITS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, p); case SOUND_PCM_READ_FILTER: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p); case SNDCTL_DSP_GETCHANNELMASK: return put_user(DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE|DSP_BIND_SPDIF, p); case SNDCTL_DSP_BIND_CHANNEL: if (get_user(val, p)) return -EFAULT; if (val == DSP_BIND_QUERY) { val = DSP_BIND_FRONT; if (s->status & DO_SPDIF_OUT) val |= DSP_BIND_SPDIF; else { if (s->curr_channels == 4) val |= DSP_BIND_SURR; if (s->curr_channels > 4) val |= DSP_BIND_CENTER_LFE; } } else { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val & DSP_BIND_SPDIF) { set_spdifin(s, s->rateadc); if (!(s->status & DO_SPDIF_OUT)) val &= ~DSP_BIND_SPDIF; } } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val & DSP_BIND_SPDIF) { set_spdifout(s, s->ratedac); set_dac_channels(s, s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1); if (!(s->status & DO_SPDIF_OUT)) val &= ~DSP_BIND_SPDIF; } else { int channels; int mask; mask = val & (DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE); switch (mask) { case DSP_BIND_FRONT: channels = 2; break; case DSP_BIND_FRONT|DSP_BIND_SURR: channels = 4; break; case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE: channels = 6; break; default: channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1; break; } set_dac_channels(s, channels); } } } return put_user(val, p); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_MAPINBUF: case SNDCTL_DSP_MAPOUTBUF: case SNDCTL_DSP_SETSYNCRO: return -EINVAL; case SNDCTL_SPDIF_COPYRIGHT: if (get_user(val, p)) return -EFAULT; set_spdif_copyright(s, val); return 0; case SNDCTL_SPDIF_LOOP: if (get_user(val, p)) return -EFAULT; set_spdif_loop(s, val); return 0; case SNDCTL_SPDIF_MONITOR: if (get_user(val, p)) return -EFAULT; set_spdif_monitor(s, val); return 0; case SNDCTL_SPDIF_LEVEL: if (get_user(val, p)) return -EFAULT; set_spdifout_level(s, val); return 0; case SNDCTL_SPDIF_INV: if (get_user(val, p)) return -EFAULT; set_spdifin_inverse(s, val); return 0; case SNDCTL_SPDIF_SEL2: if (get_user(val, p)) return -EFAULT; set_spdifin_channel2(s, val); return 0; case SNDCTL_SPDIF_VALID: if (get_user(val, p)) return -EFAULT; set_spdifin_valid(s, val); return 0; case SNDCTL_SPDIFOUT: if (get_user(val, p)) return -EFAULT; set_spdifout(s, val ? s->ratedac : 0); return 0; case SNDCTL_SPDIFIN: if (get_user(val, p)) return -EFAULT; set_spdifin(s, val ? s->rateadc : 0); return 0; } return mixer_ioctl(s, cmd, arg); } static int cm_open(struct inode *inode, struct file *file) { int minor = iminor(inode); DECLARE_WAITQUEUE(wait, current); unsigned char fmtm = ~0, fmts = 0; struct list_head *list; struct cm_state *s; for (list = devs.next; ; list = list->next) { if (list == &devs) return -ENODEV; s = list_entry(list, struct cm_state, devs); if (!((s->dev_audio ^ minor) & ~0xf)) break; } VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ mutex_lock(&s->open_mutex); while (s->open_mode & file->f_mode) { if (file->f_flags & O_NONBLOCK) { mutex_unlock(&s->open_mutex); return -EBUSY; } add_wait_queue(&s->open_wait, &wait); __set_current_state(TASK_INTERRUPTIBLE); mutex_unlock(&s->open_mutex); schedule(); remove_wait_queue(&s->open_wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; mutex_lock(&s->open_mutex); } if (file->f_mode & FMODE_READ) { s->status &= ~DO_BIGENDIAN_R; fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; s->dma_adc.enabled = 1; set_adc_rate(s, 8000); // spdif-in is turnned off by default set_spdifin(s, 0); } if (file->f_mode & FMODE_WRITE) { s->status &= ~DO_BIGENDIAN_W; fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; s->dma_dac.enabled = 1; set_dac_rate(s, 8000); // clear previous multichannel, spdif, ac3 state set_spdifout(s, 0); set_ac3(s, 0); set_dac_channels(s, 1); } set_fmt(s, fmtm, fmts); s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); mutex_unlock(&s->open_mutex); return nonseekable_open(inode, file); } static int cm_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) drain_dac(s, file->f_flags & O_NONBLOCK); mutex_lock(&s->open_mutex); if (file->f_mode & FMODE_WRITE) { stop_dac(s); dealloc_dmabuf(s, &s->dma_dac); if (s->status & DO_DUAL_DAC) dealloc_dmabuf(s, &s->dma_adc); if (s->status & DO_MULTI_CH) set_dac_channels(s, 1); if (s->status & DO_AC3) set_ac3(s, 0); if (s->status & DO_SPDIF_OUT) set_spdifout(s, 0); /* enable SPDIF loop */ set_spdif_loop(s, spdif_loop); s->status &= ~DO_BIGENDIAN_W; } if (file->f_mode & FMODE_READ) { stop_adc(s); dealloc_dmabuf(s, &s->dma_adc); s->status &= ~DO_BIGENDIAN_R; } s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE)); mutex_unlock(&s->open_mutex); wake_up(&s->open_wait); unlock_kernel(); return 0; } static /*const*/ struct file_operations cm_audio_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = cm_read, .write = cm_write, .poll = cm_poll, .ioctl = cm_ioctl, .mmap = cm_mmap, .open = cm_open, .release = cm_release, }; /* --------------------------------------------------------------------- */ static struct initvol { int mixch; int vol; } initvol[] __devinitdata = { { SOUND_MIXER_WRITE_CD, 0x4f4f }, { SOUND_MIXER_WRITE_LINE, 0x4f4f }, { SOUND_MIXER_WRITE_MIC, 0x4f4f }, { SOUND_MIXER_WRITE_SYNTH, 0x4f4f }, { SOUND_MIXER_WRITE_VOLUME, 0x4f4f }, { SOUND_MIXER_WRITE_PCM, 0x4f4f } }; /* check chip version and capability */ static int query_chip(struct cm_state *s) { int ChipVersion = -1; unsigned char RegValue; // check reg 0Ch, bit 24-31 RegValue = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 3); if (RegValue == 0) { // check reg 08h, bit 24-28 RegValue = inb(s->iobase + CODEC_CMI_CHFORMAT + 3); RegValue &= 0x1f; if (RegValue == 0) { ChipVersion = 33; s->max_channels = 4; s->capability |= CAN_AC3_SW; s->capability |= CAN_DUAL_DAC; } else { ChipVersion = 37; s->max_channels = 4; s->capability |= CAN_AC3_HW; s->capability |= CAN_DUAL_DAC; } } else { // check reg 0Ch, bit 26 if (RegValue & (1 << (26-24))) { ChipVersion = 39; if (RegValue & (1 << (24-24))) s->max_channels = 6; else s->max_channels = 4; s->capability |= CAN_AC3_HW; s->capability |= CAN_DUAL_DAC; s->capability |= CAN_MULTI_CH_HW; s->capability |= CAN_LINE_AS_BASS; s->capability |= CAN_MIC_AS_BASS; } else { ChipVersion = 55; // 4 or 6 channels s->max_channels = 6; s->capability |= CAN_AC3_HW; s->capability |= CAN_DUAL_DAC; s->capability |= CAN_MULTI_CH_HW; s->capability |= CAN_LINE_AS_BASS; s->capability |= CAN_MIC_AS_BASS; } } s->capability |= CAN_LINE_AS_REAR; return ChipVersion; } #ifdef CONFIG_SOUND_CMPCI_JOYSTICK static int __devinit cm_create_gameport(struct cm_state *s, int io_port) { struct gameport *gp; if (!request_region(io_port, CM_EXTENT_GAME, "cmpci GAME")) { printk(KERN_ERR "cmpci: gameport io ports 0x%#x in use\n", io_port); return -EBUSY; } if (!(s->gameport = gp = gameport_allocate_port())) { printk(KERN_ERR "cmpci: can not allocate memory for gameport\n"); release_region(io_port, CM_EXTENT_GAME); return -ENOMEM; } gameport_set_name(gp, "C-Media GP"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(s->dev)); gp->dev.parent = &s->dev->dev; gp->io = io_port; /* enable joystick */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x02); gameport_register_port(gp); return 0; } static void __devexit cm_free_gameport(struct cm_state *s) { if (s->gameport) { int gpio = s->gameport->io; gameport_unregister_port(s->gameport); s->gameport = NULL; maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0); release_region(gpio, CM_EXTENT_GAME); } } #else static inline int cm_create_gameport(struct cm_state *s, int io_port) { return -ENOSYS; } static inline void cm_free_gameport(struct cm_state *s) { } #endif #define echo_option(x)\ if (x) strcat(options, "" #x " ") static int __devinit cm_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid) { struct cm_state *s; mm_segment_t fs; int i, val, ret; unsigned char reg_mask; int timeout; struct resource *ports; struct { unsigned short deviceid; char *devicename; } devicetable[] = { { PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" }, { PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" }, { PCI_DEVICE_ID_CMEDIA_CM8738, "CM8738" }, { PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" }, }; char *devicename = "unknown"; char options[256]; if ((ret = pci_enable_device(pcidev))) return ret; if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO)) return -ENODEV; if (pcidev->irq == 0) return -ENODEV; i = pci_set_dma_mask(pcidev, DMA_32BIT_MASK); if (i) { printk(KERN_WARNING "cmpci: architecture does not support 32bit PCI busmaster DMA\n"); return i; } s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) { printk(KERN_WARNING "cmpci: out of memory\n"); return -ENOMEM; } /* search device name */ for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) { if (devicetable[i].deviceid == pcidev->device) { devicename = devicetable[i].devicename; break; } } memset(s, 0, sizeof(struct cm_state)); init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->open_wait); mutex_init(&s->open_mutex); spin_lock_init(&s->lock); s->magic = CM_MAGIC; s->dev = pcidev; s->iobase = pci_resource_start(pcidev, 0); s->iosynth = fmio; s->iomidi = mpuio; #ifdef CONFIG_SOUND_CMPCI_MIDI s->midi_devc = 0; #endif s->status = 0; if (s->iobase == 0) return -ENODEV; s->irq = pcidev->irq; if (!request_region(s->iobase, CM_EXTENT_CODEC, "cmpci")) { printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1); ret = -EBUSY; goto err_region5; } /* dump parameters */ strcpy(options, "cmpci: "); echo_option(joystick); echo_option(spdif_inverse); echo_option(spdif_loop); echo_option(spdif_out); echo_option(use_line_as_rear); echo_option(use_line_as_bass); echo_option(use_mic_as_bass); echo_option(mic_boost); echo_option(hw_copy); printk(KERN_INFO "%s\n", options); /* initialize codec registers */ outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */ outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */ /* reset mixer */ wrmixer(s, DSP_MIX_DATARESETIDX, 0); /* request irq */ if ((ret = request_irq(s->irq, cm_interrupt, SA_SHIRQ, "cmpci", s))) { printk(KERN_ERR "cmpci: irq %u in use\n", s->irq); goto err_irq; } printk(KERN_INFO "cmpci: found %s adapter at io %#x irq %u\n", devicename, s->iobase, s->irq); /* register devices */ if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) { ret = s->dev_audio; goto err_dev1; } if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) { ret = s->dev_mixer; goto err_dev2; } pci_set_master(pcidev); /* enable bus mastering */ /* initialize the chips */ fs = get_fs(); set_fs(KERNEL_DS); /* set mixer output */ frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f); /* set mixer input */ val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val); for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val); } set_fs(fs); /* use channel 1 for playback, channel 0 for record */ maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, CHADC0); /* turn off VMIC3 - mic boost */ if (mic_boost) maskb(s->iobase + CODEC_CMI_MIXER2, ~1, 0); else maskb(s->iobase + CODEC_CMI_MIXER2, ~0, 1); s->deviceid = pcidev->device; if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738 || pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { /* chip version and hw capability check */ s->chip_version = query_chip(s); printk(KERN_INFO "cmpci: chip version = 0%d\n", s->chip_version); /* set SPDIF-in inverse before enable SPDIF loop */ set_spdifin_inverse(s, spdif_inverse); /* use SPDIF in #1 */ set_spdifin_channel2(s, 0); } else { s->chip_version = 0; /* 8338 will fall here */ s->max_channels = 4; s->capability |= CAN_DUAL_DAC; s->capability |= CAN_LINE_AS_REAR; } /* enable SPDIF loop */ set_spdif_loop(s, spdif_loop); // enable 4 speaker mode (analog duplicate) set_hw_copy(s, hw_copy); reg_mask = 0; #ifdef CONFIG_SOUND_CMPCI_FM /* disable FM */ maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0); if (s->iosynth) { /* don't enable OPL3 if there is one */ if (opl3_detect(s->iosynth, NULL)) { s->iosynth = 0; } else { /* set IO based at 0x388 */ switch (s->iosynth) { case 0x388: reg_mask = 0; break; case 0x3C8: reg_mask = 0x01; break; case 0x3E0: reg_mask = 0x02; break; case 0x3E8: reg_mask = 0x03; break; default: s->iosynth = 0; break; } maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x03, reg_mask); /* enable FM */ if (s->iosynth) { maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 8); if (opl3_detect(s->iosynth, NULL)) ret = opl3_init(s->iosynth, NULL, THIS_MODULE); else { maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0); s->iosynth = 0; } } } } #endif #ifdef CONFIG_SOUND_CMPCI_MIDI switch (s->iomidi) { case 0x330: reg_mask = 0; break; case 0x320: reg_mask = 0x20; break; case 0x310: reg_mask = 0x40; break; case 0x300: reg_mask = 0x60; break; default: s->iomidi = 0; goto skip_mpu; } ports = request_region(s->iomidi, 2, "mpu401"); if (!ports) goto skip_mpu; /* disable MPU-401 */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0); s->mpu_data.name = "cmpci mpu"; s->mpu_data.io_base = s->iomidi; s->mpu_data.irq = -s->irq; // tell mpu401 to share irq if (probe_mpu401(&s->mpu_data, ports)) { release_region(s->iomidi, 2); s->iomidi = 0; goto skip_mpu; } maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x60, reg_mask); /* enable MPU-401 */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04); /* clear all previously received interrupt */ for (timeout = 900000; timeout > 0; timeout--) { if ((inb(s->iomidi + 1) && 0x80) == 0) inb(s->iomidi); else break; } if (!probe_mpu401(&s->mpu_data, ports)) { release_region(s->iomidi, 2); s->iomidi = 0; maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04); } else { attach_mpu401(&s->mpu_data, THIS_MODULE); s->midi_devc = s->mpu_data.slots[1]; } skip_mpu: #endif /* disable joystick port */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0); if (joystick) cm_create_gameport(s, 0x200); /* store it in the driver field */ pci_set_drvdata(pcidev, s); /* put it into driver list */ list_add_tail(&s->devs, &devs); /* increment devindex */ if (devindex < NR_DEVICE-1) devindex++; return 0; err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: printk(KERN_ERR "cmpci: cannot register misc device\n"); free_irq(s->irq, s); err_irq: release_region(s->iobase, CM_EXTENT_CODEC); err_region5: kfree(s); return ret; } /* --------------------------------------------------------------------- */ MODULE_AUTHOR("ChenLi Tien, cltien@cmedia.com.tw"); MODULE_DESCRIPTION("CM8x38 Audio Driver"); MODULE_LICENSE("GPL"); static void __devexit cm_remove(struct pci_dev *dev) { struct cm_state *s = pci_get_drvdata(dev); if (!s) return; cm_free_gameport(s); #ifdef CONFIG_SOUND_CMPCI_FM if (s->iosynth) { /* disable FM */ maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0); } #endif #ifdef CONFIG_SOUND_CMPCI_MIDI if (s->iomidi) { unload_mpu401(&s->mpu_data); /* disable MPU-401 */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0); } #endif set_spdif_loop(s, 0); list_del(&s->devs); outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */ synchronize_irq(s->irq); outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */ free_irq(s->irq, s); /* reset mixer */ wrmixer(s, DSP_MIX_DATARESETIDX, 0); release_region(s->iobase, CM_EXTENT_CODEC); unregister_sound_dsp(s->dev_audio); unregister_sound_mixer(s->dev_mixer); kfree(s); pci_set_drvdata(dev, NULL); } static struct pci_device_id id_table[] __devinitdata = { { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 }, { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0 }, { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0 }, { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 }, { 0, } }; MODULE_DEVICE_TABLE(pci, id_table); static struct pci_driver cm_driver = { .name = "cmpci", .id_table = id_table, .probe = cm_probe, .remove = __devexit_p(cm_remove) }; static int __init init_cmpci(void) { printk(KERN_INFO "cmpci: version $Revision: 6.82 $ time " __TIME__ " " __DATE__ "\n"); return pci_register_driver(&cm_driver); } static void __exit cleanup_cmpci(void) { printk(KERN_INFO "cmpci: unloading\n"); pci_unregister_driver(&cm_driver); } module_init(init_cmpci); module_exit(cleanup_cmpci);