/** * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. * * This source file is released under GPL v2 license (no other versions). * See the COPYING file included in the main directory of this source * distribution for the license terms and conditions. * * @File ctvmem.c * * @Brief * This file contains the implementation of virtual memory management object * for card device. * * @Author Liu Chun * @Date Apr 1 2008 */ #include "ctvmem.h" #include #include #include /* for PAGE_SIZE macro definition */ #include #include #define CT_PTES_PER_PAGE (PAGE_SIZE / sizeof(void *)) #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * PAGE_SIZE) /* * * Find or create vm block based on requested @size. * @size must be page aligned. * */ static struct ct_vm_block * get_vm_block(struct ct_vm *vm, unsigned int size) { struct ct_vm_block *block = NULL, *entry = NULL; struct list_head *pos = NULL; list_for_each(pos, &vm->unused) { entry = list_entry(pos, struct ct_vm_block, list); if (entry->size >= size) break; /* found a block that is big enough */ } if (pos == &vm->unused) return NULL; if (entry->size == size) { /* Move the vm node from unused list to used list directly */ list_del(&entry->list); list_add(&entry->list, &vm->used); vm->size -= size; return entry; } block = kzalloc(sizeof(*block), GFP_KERNEL); if (NULL == block) return NULL; block->addr = entry->addr; block->size = size; list_add(&block->list, &vm->used); entry->addr += size; entry->size -= size; vm->size -= size; return block; } static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block) { struct ct_vm_block *entry = NULL, *pre_ent = NULL; struct list_head *pos = NULL, *pre = NULL; list_del(&block->list); vm->size += block->size; list_for_each(pos, &vm->unused) { entry = list_entry(pos, struct ct_vm_block, list); if (entry->addr >= (block->addr + block->size)) break; /* found a position */ } if (pos == &vm->unused) { list_add_tail(&block->list, &vm->unused); entry = block; } else { if ((block->addr + block->size) == entry->addr) { entry->addr = block->addr; entry->size += block->size; kfree(block); } else { __list_add(&block->list, pos->prev, pos); entry = block; } } pos = &entry->list; pre = pos->prev; while (pre != &vm->unused) { entry = list_entry(pos, struct ct_vm_block, list); pre_ent = list_entry(pre, struct ct_vm_block, list); if ((pre_ent->addr + pre_ent->size) > entry->addr) break; pre_ent->size += entry->size; list_del(pos); kfree(entry); pos = pre; pre = pos->prev; } } /* Map host addr (kmalloced/vmalloced) to device logical addr. */ static struct ct_vm_block * ct_vm_map(struct ct_vm *vm, void *host_addr, int size) { struct ct_vm_block *block = NULL; unsigned long pte_start; unsigned long i; unsigned long pages; unsigned long start_phys; unsigned long *ptp; /* do mapping */ if ((unsigned long)host_addr >= VMALLOC_START) { printk(KERN_ERR "Fail! Not support vmalloced addr now!\n"); return NULL; } if (size > vm->size) { printk(KERN_ERR "Fail! No sufficient device virtural " "memory space available!\n"); return NULL; } start_phys = (virt_to_phys(host_addr) & PAGE_MASK); pages = (PAGE_ALIGN(virt_to_phys(host_addr) + size) - start_phys) >> PAGE_SHIFT; ptp = vm->ptp[0]; block = get_vm_block(vm, (pages << PAGE_SHIFT)); if (block == NULL) { printk(KERN_ERR "No virtual memory block that is big " "enough to allocate!\n"); return NULL; } pte_start = (block->addr >> PAGE_SHIFT); for (i = 0; i < pages; i++) ptp[pte_start+i] = start_phys + (i << PAGE_SHIFT); block->addr += (virt_to_phys(host_addr) & (~PAGE_MASK)); block->size = size; return block; } static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block) { /* do unmapping */ block->size = ((block->addr + block->size + PAGE_SIZE - 1) & PAGE_MASK) - (block->addr & PAGE_MASK); block->addr &= PAGE_MASK; put_vm_block(vm, block); } /* * * return the host (kmalloced) addr of the @index-th device * page talbe page on success, or NULL on failure. * The first returned NULL indicates the termination. * */ static void * ct_get_ptp_virt(struct ct_vm *vm, int index) { void *addr; addr = (index >= CT_PTP_NUM) ? NULL : vm->ptp[index]; return addr; } int ct_vm_create(struct ct_vm **rvm) { struct ct_vm *vm; struct ct_vm_block *block; int i; *rvm = NULL; vm = kzalloc(sizeof(*vm), GFP_KERNEL); if (NULL == vm) return -ENOMEM; /* Allocate page table pages */ for (i = 0; i < CT_PTP_NUM; i++) { vm->ptp[i] = kmalloc(PAGE_SIZE, GFP_KERNEL); if (NULL == vm->ptp[i]) break; } if (!i) { /* no page table pages are allocated */ kfree(vm); return -ENOMEM; } vm->size = CT_ADDRS_PER_PAGE * i; /* Initialise remaining ptps */ for (; i < CT_PTP_NUM; i++) vm->ptp[i] = NULL; vm->map = ct_vm_map; vm->unmap = ct_vm_unmap; vm->get_ptp_virt = ct_get_ptp_virt; INIT_LIST_HEAD(&vm->unused); INIT_LIST_HEAD(&vm->used); block = kzalloc(sizeof(*block), GFP_KERNEL); if (NULL != block) { block->addr = 0; block->size = vm->size; list_add(&block->list, &vm->unused); } *rvm = vm; return 0; } /* The caller must ensure no mapping pages are being used * by hardware before calling this function */ void ct_vm_destroy(struct ct_vm *vm) { int i; struct list_head *pos = NULL; struct ct_vm_block *entry = NULL; /* free used and unused list nodes */ while (!list_empty(&vm->used)) { pos = vm->used.next; list_del(pos); entry = list_entry(pos, struct ct_vm_block, list); kfree(entry); } while (!list_empty(&vm->unused)) { pos = vm->unused.next; list_del(pos); entry = list_entry(pos, struct ct_vm_block, list); kfree(entry); } /* free allocated page table pages */ for (i = 0; i < CT_PTP_NUM; i++) kfree(vm->ptp[i]); vm->size = 0; kfree(vm); }