/* * * hda_intel.c - Implementation of primary alsa driver code base * for Intel HD Audio. * * Copyright(c) 2004 Intel Corporation. All rights reserved. * * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de> * PeiSen Hou <pshou@realtek.com.tw> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * CONTACTS: * * Matt Jared matt.jared@intel.com * Andy Kopp andy.kopp@intel.com * Dan Kogan dan.d.kogan@intel.com * * CHANGES: * * 2004.12.01 Major rewrite by tiwai, merged the work of pshou * */ #include <asm/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/mutex.h> #include <linux/reboot.h> #include <sound/core.h> #include <sound/initval.h> #include "hda_codec.h" static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; static char *model[SNDRV_CARDS]; static int position_fix[SNDRV_CARDS]; static int bdl_pos_adj[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = -1}; static int probe_mask[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = -1}; static int probe_only[SNDRV_CARDS]; static int single_cmd; static int enable_msi; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Intel HD audio interface."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Intel HD audio interface."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Intel HD audio interface."); module_param_array(model, charp, NULL, 0444); MODULE_PARM_DESC(model, "Use the given board model."); module_param_array(position_fix, int, NULL, 0444); MODULE_PARM_DESC(position_fix, "Fix DMA pointer " "(0 = auto, 1 = none, 2 = POSBUF)."); module_param_array(bdl_pos_adj, int, NULL, 0644); MODULE_PARM_DESC(bdl_pos_adj, "BDL position adjustment offset."); module_param_array(probe_mask, int, NULL, 0444); MODULE_PARM_DESC(probe_mask, "Bitmask to probe codecs (default = -1)."); module_param_array(probe_only, bool, NULL, 0444); MODULE_PARM_DESC(probe_only, "Only probing and no codec initialization."); module_param(single_cmd, bool, 0444); MODULE_PARM_DESC(single_cmd, "Use single command to communicate with codecs " "(for debugging only)."); module_param(enable_msi, int, 0444); MODULE_PARM_DESC(enable_msi, "Enable Message Signaled Interrupt (MSI)"); #ifdef CONFIG_SND_HDA_POWER_SAVE static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT; module_param(power_save, int, 0644); MODULE_PARM_DESC(power_save, "Automatic power-saving timeout " "(in second, 0 = disable)."); /* reset the HD-audio controller in power save mode. * this may give more power-saving, but will take longer time to * wake up. */ static int power_save_controller = 1; module_param(power_save_controller, bool, 0644); MODULE_PARM_DESC(power_save_controller, "Reset controller in power save mode."); #endif MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Intel, ICH6}," "{Intel, ICH6M}," "{Intel, ICH7}," "{Intel, ESB2}," "{Intel, ICH8}," "{Intel, ICH9}," "{Intel, ICH10}," "{Intel, PCH}," "{Intel, SCH}," "{ATI, SB450}," "{ATI, SB600}," "{ATI, RS600}," "{ATI, RS690}," "{ATI, RS780}," "{ATI, R600}," "{ATI, RV630}," "{ATI, RV610}," "{ATI, RV670}," "{ATI, RV635}," "{ATI, RV620}," "{ATI, RV770}," "{VIA, VT8251}," "{VIA, VT8237A}," "{SiS, SIS966}," "{ULI, M5461}}"); MODULE_DESCRIPTION("Intel HDA driver"); #ifdef CONFIG_SND_VERBOSE_PRINTK #define SFX /* nop */ #else #define SFX "hda-intel: " #endif /* * registers */ #define ICH6_REG_GCAP 0x00 #define ICH6_GCAP_64OK (1 << 0) /* 64bit address support */ #define ICH6_GCAP_NSDO (3 << 1) /* # of serial data out signals */ #define ICH6_GCAP_BSS (31 << 3) /* # of bidirectional streams */ #define ICH6_GCAP_ISS (15 << 8) /* # of input streams */ #define ICH6_GCAP_OSS (15 << 12) /* # of output streams */ #define ICH6_REG_VMIN 0x02 #define ICH6_REG_VMAJ 0x03 #define ICH6_REG_OUTPAY 0x04 #define ICH6_REG_INPAY 0x06 #define ICH6_REG_GCTL 0x08 #define ICH6_GCTL_RESET (1 << 0) /* controller reset */ #define ICH6_GCTL_FCNTRL (1 << 1) /* flush control */ #define ICH6_GCTL_UNSOL (1 << 8) /* accept unsol. response enable */ #define ICH6_REG_WAKEEN 0x0c #define ICH6_REG_STATESTS 0x0e #define ICH6_REG_GSTS 0x10 #define ICH6_GSTS_FSTS (1 << 1) /* flush status */ #define ICH6_REG_INTCTL 0x20 #define ICH6_REG_INTSTS 0x24 #define ICH6_REG_WALCLK 0x30 #define ICH6_REG_SYNC 0x34 #define ICH6_REG_CORBLBASE 0x40 #define ICH6_REG_CORBUBASE 0x44 #define ICH6_REG_CORBWP 0x48 #define ICH6_REG_CORBRP 0x4a #define ICH6_CORBRP_RST (1 << 15) /* read pointer reset */ #define ICH6_REG_CORBCTL 0x4c #define ICH6_CORBCTL_RUN (1 << 1) /* enable DMA */ #define ICH6_CORBCTL_CMEIE (1 << 0) /* enable memory error irq */ #define ICH6_REG_CORBSTS 0x4d #define ICH6_CORBSTS_CMEI (1 << 0) /* memory error indication */ #define ICH6_REG_CORBSIZE 0x4e #define ICH6_REG_RIRBLBASE 0x50 #define ICH6_REG_RIRBUBASE 0x54 #define ICH6_REG_RIRBWP 0x58 #define ICH6_RIRBWP_RST (1 << 15) /* write pointer reset */ #define ICH6_REG_RINTCNT 0x5a #define ICH6_REG_RIRBCTL 0x5c #define ICH6_RBCTL_IRQ_EN (1 << 0) /* enable IRQ */ #define ICH6_RBCTL_DMA_EN (1 << 1) /* enable DMA */ #define ICH6_RBCTL_OVERRUN_EN (1 << 2) /* enable overrun irq */ #define ICH6_REG_RIRBSTS 0x5d #define ICH6_RBSTS_IRQ (1 << 0) /* response irq */ #define ICH6_RBSTS_OVERRUN (1 << 2) /* overrun irq */ #define ICH6_REG_RIRBSIZE 0x5e #define ICH6_REG_IC 0x60 #define ICH6_REG_IR 0x64 #define ICH6_REG_IRS 0x68 #define ICH6_IRS_VALID (1<<1) #define ICH6_IRS_BUSY (1<<0) #define ICH6_REG_DPLBASE 0x70 #define ICH6_REG_DPUBASE 0x74 #define ICH6_DPLBASE_ENABLE 0x1 /* Enable position buffer */ /* SD offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */ enum { SDI0, SDI1, SDI2, SDI3, SDO0, SDO1, SDO2, SDO3 }; /* stream register offsets from stream base */ #define ICH6_REG_SD_CTL 0x00 #define ICH6_REG_SD_STS 0x03 #define ICH6_REG_SD_LPIB 0x04 #define ICH6_REG_SD_CBL 0x08 #define ICH6_REG_SD_LVI 0x0c #define ICH6_REG_SD_FIFOW 0x0e #define ICH6_REG_SD_FIFOSIZE 0x10 #define ICH6_REG_SD_FORMAT 0x12 #define ICH6_REG_SD_BDLPL 0x18 #define ICH6_REG_SD_BDLPU 0x1c /* PCI space */ #define ICH6_PCIREG_TCSEL 0x44 /* * other constants */ /* max number of SDs */ /* ICH, ATI and VIA have 4 playback and 4 capture */ #define ICH6_NUM_CAPTURE 4 #define ICH6_NUM_PLAYBACK 4 /* ULI has 6 playback and 5 capture */ #define ULI_NUM_CAPTURE 5 #define ULI_NUM_PLAYBACK 6 /* ATI HDMI has 1 playback and 0 capture */ #define ATIHDMI_NUM_CAPTURE 0 #define ATIHDMI_NUM_PLAYBACK 1 /* TERA has 4 playback and 3 capture */ #define TERA_NUM_CAPTURE 3 #define TERA_NUM_PLAYBACK 4 /* this number is statically defined for simplicity */ #define MAX_AZX_DEV 16 /* max number of fragments - we may use more if allocating more pages for BDL */ #define BDL_SIZE 4096 #define AZX_MAX_BDL_ENTRIES (BDL_SIZE / 16) #define AZX_MAX_FRAG 32 /* max buffer size - no h/w limit, you can increase as you like */ #define AZX_MAX_BUF_SIZE (1024*1024*1024) /* max number of PCM devics per card */ #define AZX_MAX_PCMS 8 /* RIRB int mask: overrun[2], response[0] */ #define RIRB_INT_RESPONSE 0x01 #define RIRB_INT_OVERRUN 0x04 #define RIRB_INT_MASK 0x05 /* STATESTS int mask: S3,SD2,SD1,SD0 */ #define AZX_MAX_CODECS 4 #define STATESTS_INT_MASK ((1 << AZX_MAX_CODECS) - 1) /* SD_CTL bits */ #define SD_CTL_STREAM_RESET 0x01 /* stream reset bit */ #define SD_CTL_DMA_START 0x02 /* stream DMA start bit */ #define SD_CTL_STRIPE (3 << 16) /* stripe control */ #define SD_CTL_TRAFFIC_PRIO (1 << 18) /* traffic priority */ #define SD_CTL_DIR (1 << 19) /* bi-directional stream */ #define SD_CTL_STREAM_TAG_MASK (0xf << 20) #define SD_CTL_STREAM_TAG_SHIFT 20 /* SD_CTL and SD_STS */ #define SD_INT_DESC_ERR 0x10 /* descriptor error interrupt */ #define SD_INT_FIFO_ERR 0x08 /* FIFO error interrupt */ #define SD_INT_COMPLETE 0x04 /* completion interrupt */ #define SD_INT_MASK (SD_INT_DESC_ERR|SD_INT_FIFO_ERR|\ SD_INT_COMPLETE) /* SD_STS */ #define SD_STS_FIFO_READY 0x20 /* FIFO ready */ /* INTCTL and INTSTS */ #define ICH6_INT_ALL_STREAM 0xff /* all stream interrupts */ #define ICH6_INT_CTRL_EN 0x40000000 /* controller interrupt enable bit */ #define ICH6_INT_GLOBAL_EN 0x80000000 /* global interrupt enable bit */ /* below are so far hardcoded - should read registers in future */ #define ICH6_MAX_CORB_ENTRIES 256 #define ICH6_MAX_RIRB_ENTRIES 256 /* position fix mode */ enum { POS_FIX_AUTO, POS_FIX_LPIB, POS_FIX_POSBUF, }; /* Defines for ATI HD Audio support in SB450 south bridge */ #define ATI_SB450_HDAUDIO_MISC_CNTR2_ADDR 0x42 #define ATI_SB450_HDAUDIO_ENABLE_SNOOP 0x02 /* Defines for Nvidia HDA support */ #define NVIDIA_HDA_TRANSREG_ADDR 0x4e #define NVIDIA_HDA_ENABLE_COHBITS 0x0f #define NVIDIA_HDA_ISTRM_COH 0x4d #define NVIDIA_HDA_OSTRM_COH 0x4c #define NVIDIA_HDA_ENABLE_COHBIT 0x01 /* Defines for Intel SCH HDA snoop control */ #define INTEL_SCH_HDA_DEVC 0x78 #define INTEL_SCH_HDA_DEVC_NOSNOOP (0x1<<11) /* Define IN stream 0 FIFO size offset in VIA controller */ #define VIA_IN_STREAM0_FIFO_SIZE_OFFSET 0x90 /* Define VIA HD Audio Device ID*/ #define VIA_HDAC_DEVICE_ID 0x3288 /* HD Audio class code */ #define PCI_CLASS_MULTIMEDIA_HD_AUDIO 0x0403 /* */ struct azx_dev { struct snd_dma_buffer bdl; /* BDL buffer */ u32 *posbuf; /* position buffer pointer */ unsigned int bufsize; /* size of the play buffer in bytes */ unsigned int period_bytes; /* size of the period in bytes */ unsigned int frags; /* number for period in the play buffer */ unsigned int fifo_size; /* FIFO size */ unsigned long start_jiffies; /* start + minimum jiffies */ unsigned long min_jiffies; /* minimum jiffies before position is valid */ void __iomem *sd_addr; /* stream descriptor pointer */ u32 sd_int_sta_mask; /* stream int status mask */ /* pcm support */ struct snd_pcm_substream *substream; /* assigned substream, * set in PCM open */ unsigned int format_val; /* format value to be set in the * controller and the codec */ unsigned char stream_tag; /* assigned stream */ unsigned char index; /* stream index */ unsigned int opened :1; unsigned int running :1; unsigned int irq_pending :1; unsigned int start_flag: 1; /* stream full start flag */ /* * For VIA: * A flag to ensure DMA position is 0 * when link position is not greater than FIFO size */ unsigned int insufficient :1; }; /* CORB/RIRB */ struct azx_rb { u32 *buf; /* CORB/RIRB buffer * Each CORB entry is 4byte, RIRB is 8byte */ dma_addr_t addr; /* physical address of CORB/RIRB buffer */ /* for RIRB */ unsigned short rp, wp; /* read/write pointers */ int cmds[AZX_MAX_CODECS]; /* number of pending requests */ u32 res[AZX_MAX_CODECS]; /* last read value */ }; struct azx { struct snd_card *card; struct pci_dev *pci; int dev_index; /* chip type specific */ int driver_type; int playback_streams; int playback_index_offset; int capture_streams; int capture_index_offset; int num_streams; /* pci resources */ unsigned long addr; void __iomem *remap_addr; int irq; /* locks */ spinlock_t reg_lock; struct mutex open_mutex; /* streams (x num_streams) */ struct azx_dev *azx_dev; /* PCM */ struct snd_pcm *pcm[AZX_MAX_PCMS]; /* HD codec */ unsigned short codec_mask; int codec_probe_mask; /* copied from probe_mask option */ struct hda_bus *bus; /* CORB/RIRB */ struct azx_rb corb; struct azx_rb rirb; /* CORB/RIRB and position buffers */ struct snd_dma_buffer rb; struct snd_dma_buffer posbuf; /* flags */ int position_fix; unsigned int running :1; unsigned int initialized :1; unsigned int single_cmd :1; unsigned int polling_mode :1; unsigned int msi :1; unsigned int irq_pending_warned :1; unsigned int via_dmapos_patch :1; /* enable DMA-position fix for VIA */ unsigned int probing :1; /* codec probing phase */ /* for debugging */ unsigned int last_cmd[AZX_MAX_CODECS]; /* for pending irqs */ struct work_struct irq_pending_work; /* reboot notifier (for mysterious hangup problem at power-down) */ struct notifier_block reboot_notifier; }; /* driver types */ enum { AZX_DRIVER_ICH, AZX_DRIVER_SCH, AZX_DRIVER_ATI, AZX_DRIVER_ATIHDMI, AZX_DRIVER_VIA, AZX_DRIVER_SIS, AZX_DRIVER_ULI, AZX_DRIVER_NVIDIA, AZX_DRIVER_TERA, AZX_DRIVER_GENERIC, AZX_NUM_DRIVERS, /* keep this as last entry */ }; static char *driver_short_names[] __devinitdata = { [AZX_DRIVER_ICH] = "HDA Intel", [AZX_DRIVER_SCH] = "HDA Intel MID", [AZX_DRIVER_ATI] = "HDA ATI SB", [AZX_DRIVER_ATIHDMI] = "HDA ATI HDMI", [AZX_DRIVER_VIA] = "HDA VIA VT82xx", [AZX_DRIVER_SIS] = "HDA SIS966", [AZX_DRIVER_ULI] = "HDA ULI M5461", [AZX_DRIVER_NVIDIA] = "HDA NVidia", [AZX_DRIVER_TERA] = "HDA Teradici", [AZX_DRIVER_GENERIC] = "HD-Audio Generic", }; /* * macros for easy use */ #define azx_writel(chip,reg,value) \ writel(value, (chip)->remap_addr + ICH6_REG_##reg) #define azx_readl(chip,reg) \ readl((chip)->remap_addr + ICH6_REG_##reg) #define azx_writew(chip,reg,value) \ writew(value, (chip)->remap_addr + ICH6_REG_##reg) #define azx_readw(chip,reg) \ readw((chip)->remap_addr + ICH6_REG_##reg) #define azx_writeb(chip,reg,value) \ writeb(value, (chip)->remap_addr + ICH6_REG_##reg) #define azx_readb(chip,reg) \ readb((chip)->remap_addr + ICH6_REG_##reg) #define azx_sd_writel(dev,reg,value) \ writel(value, (dev)->sd_addr + ICH6_REG_##reg) #define azx_sd_readl(dev,reg) \ readl((dev)->sd_addr + ICH6_REG_##reg) #define azx_sd_writew(dev,reg,value) \ writew(value, (dev)->sd_addr + ICH6_REG_##reg) #define azx_sd_readw(dev,reg) \ readw((dev)->sd_addr + ICH6_REG_##reg) #define azx_sd_writeb(dev,reg,value) \ writeb(value, (dev)->sd_addr + ICH6_REG_##reg) #define azx_sd_readb(dev,reg) \ readb((dev)->sd_addr + ICH6_REG_##reg) /* for pcm support */ #define get_azx_dev(substream) (substream->runtime->private_data) static int azx_acquire_irq(struct azx *chip, int do_disconnect); /* * Interface for HD codec */ /* * CORB / RIRB interface */ static int azx_alloc_cmd_io(struct azx *chip) { int err; /* single page (at least 4096 bytes) must suffice for both ringbuffes */ err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), PAGE_SIZE, &chip->rb); if (err < 0) { snd_printk(KERN_ERR SFX "cannot allocate CORB/RIRB\n"); return err; } return 0; } static void azx_init_cmd_io(struct azx *chip) { spin_lock_irq(&chip->reg_lock); /* CORB set up */ chip->corb.addr = chip->rb.addr; chip->corb.buf = (u32 *)chip->rb.area; azx_writel(chip, CORBLBASE, (u32)chip->corb.addr); azx_writel(chip, CORBUBASE, upper_32_bits(chip->corb.addr)); /* set the corb size to 256 entries (ULI requires explicitly) */ azx_writeb(chip, CORBSIZE, 0x02); /* set the corb write pointer to 0 */ azx_writew(chip, CORBWP, 0); /* reset the corb hw read pointer */ azx_writew(chip, CORBRP, ICH6_CORBRP_RST); /* enable corb dma */ azx_writeb(chip, CORBCTL, ICH6_CORBCTL_RUN); /* RIRB set up */ chip->rirb.addr = chip->rb.addr + 2048; chip->rirb.buf = (u32 *)(chip->rb.area + 2048); chip->rirb.wp = chip->rirb.rp = 0; memset(chip->rirb.cmds, 0, sizeof(chip->rirb.cmds)); azx_writel(chip, RIRBLBASE, (u32)chip->rirb.addr); azx_writel(chip, RIRBUBASE, upper_32_bits(chip->rirb.addr)); /* set the rirb size to 256 entries (ULI requires explicitly) */ azx_writeb(chip, RIRBSIZE, 0x02); /* reset the rirb hw write pointer */ azx_writew(chip, RIRBWP, ICH6_RIRBWP_RST); /* set N=1, get RIRB response interrupt for new entry */ azx_writew(chip, RINTCNT, 1); /* enable rirb dma and response irq */ azx_writeb(chip, RIRBCTL, ICH6_RBCTL_DMA_EN | ICH6_RBCTL_IRQ_EN); spin_unlock_irq(&chip->reg_lock); } static void azx_free_cmd_io(struct azx *chip) { spin_lock_irq(&chip->reg_lock); /* disable ringbuffer DMAs */ azx_writeb(chip, RIRBCTL, 0); azx_writeb(chip, CORBCTL, 0); spin_unlock_irq(&chip->reg_lock); } static unsigned int azx_command_addr(u32 cmd) { unsigned int addr = cmd >> 28; if (addr >= AZX_MAX_CODECS) { snd_BUG(); addr = 0; } return addr; } static unsigned int azx_response_addr(u32 res) { unsigned int addr = res & 0xf; if (addr >= AZX_MAX_CODECS) { snd_BUG(); addr = 0; } return addr; } /* send a command */ static int azx_corb_send_cmd(struct hda_bus *bus, u32 val) { struct azx *chip = bus->private_data; unsigned int addr = azx_command_addr(val); unsigned int wp; spin_lock_irq(&chip->reg_lock); /* add command to corb */ wp = azx_readb(chip, CORBWP); wp++; wp %= ICH6_MAX_CORB_ENTRIES; chip->rirb.cmds[addr]++; chip->corb.buf[wp] = cpu_to_le32(val); azx_writel(chip, CORBWP, wp); spin_unlock_irq(&chip->reg_lock); return 0; } #define ICH6_RIRB_EX_UNSOL_EV (1<<4) /* retrieve RIRB entry - called from interrupt handler */ static void azx_update_rirb(struct azx *chip) { unsigned int rp, wp; unsigned int addr; u32 res, res_ex; wp = azx_readb(chip, RIRBWP); if (wp == chip->rirb.wp) return; chip->rirb.wp = wp; while (chip->rirb.rp != wp) { chip->rirb.rp++; chip->rirb.rp %= ICH6_MAX_RIRB_ENTRIES; rp = chip->rirb.rp << 1; /* an RIRB entry is 8-bytes */ res_ex = le32_to_cpu(chip->rirb.buf[rp + 1]); res = le32_to_cpu(chip->rirb.buf[rp]); addr = azx_response_addr(res_ex); if (res_ex & ICH6_RIRB_EX_UNSOL_EV) snd_hda_queue_unsol_event(chip->bus, res, res_ex); else if (chip->rirb.cmds[addr]) { chip->rirb.res[addr] = res; smp_wmb(); chip->rirb.cmds[addr]--; } else snd_printk(KERN_ERR SFX "spurious response %#x:%#x, " "last cmd=%#08x\n", res, res_ex, chip->last_cmd[addr]); } } /* receive a response */ static unsigned int azx_rirb_get_response(struct hda_bus *bus, unsigned int addr) { struct azx *chip = bus->private_data; unsigned long timeout; again: timeout = jiffies + msecs_to_jiffies(1000); for (;;) { if (chip->polling_mode) { spin_lock_irq(&chip->reg_lock); azx_update_rirb(chip); spin_unlock_irq(&chip->reg_lock); } if (!chip->rirb.cmds[addr]) { smp_rmb(); bus->rirb_error = 0; return chip->rirb.res[addr]; /* the last value */ } if (time_after(jiffies, timeout)) break; if (bus->needs_damn_long_delay) msleep(2); /* temporary workaround */ else { udelay(10); cond_resched(); } } if (chip->msi) { snd_printk(KERN_WARNING SFX "No response from codec, " "disabling MSI: last cmd=0x%08x\n", chip->last_cmd[addr]); free_irq(chip->irq, chip); chip->irq = -1; pci_disable_msi(chip->pci); chip->msi = 0; if (azx_acquire_irq(chip, 1) < 0) { bus->rirb_error = 1; return -1; } goto again; } if (!chip->polling_mode) { snd_printk(KERN_WARNING SFX "azx_get_response timeout, " "switching to polling mode: last cmd=0x%08x\n", chip->last_cmd[addr]); chip->polling_mode = 1; goto again; } if (chip->probing) { /* If this critical timeout happens during the codec probing * phase, this is likely an access to a non-existing codec * slot. Better to return an error and reset the system. */ return -1; } /* a fatal communication error; need either to reset or to fallback * to the single_cmd mode */ bus->rirb_error = 1; if (bus->allow_bus_reset && !bus->response_reset && !bus->in_reset) { bus->response_reset = 1; return -1; /* give a chance to retry */ } snd_printk(KERN_ERR "hda_intel: azx_get_response timeout, " "switching to single_cmd mode: last cmd=0x%08x\n", chip->last_cmd[addr]); chip->single_cmd = 1; bus->response_reset = 0; /* re-initialize CORB/RIRB */ azx_free_cmd_io(chip); azx_init_cmd_io(chip); return -1; } /* * Use the single immediate command instead of CORB/RIRB for simplicity * * Note: according to Intel, this is not preferred use. The command was * intended for the BIOS only, and may get confused with unsolicited * responses. So, we shouldn't use it for normal operation from the * driver. * I left the codes, however, for debugging/testing purposes. */ /* receive a response */ static int azx_single_wait_for_response(struct azx *chip, unsigned int addr) { int timeout = 50; while (timeout--) { /* check IRV busy bit */ if (azx_readw(chip, IRS) & ICH6_IRS_VALID) { /* reuse rirb.res as the response return value */ chip->rirb.res[addr] = azx_readl(chip, IR); return 0; } udelay(1); } if (printk_ratelimit()) snd_printd(SFX "get_response timeout: IRS=0x%x\n", azx_readw(chip, IRS)); chip->rirb.res[addr] = -1; return -EIO; } /* send a command */ static int azx_single_send_cmd(struct hda_bus *bus, u32 val) { struct azx *chip = bus->private_data; unsigned int addr = azx_command_addr(val); int timeout = 50; bus->rirb_error = 0; while (timeout--) { /* check ICB busy bit */ if (!((azx_readw(chip, IRS) & ICH6_IRS_BUSY))) { /* Clear IRV valid bit */ azx_writew(chip, IRS, azx_readw(chip, IRS) | ICH6_IRS_VALID); azx_writel(chip, IC, val); azx_writew(chip, IRS, azx_readw(chip, IRS) | ICH6_IRS_BUSY); return azx_single_wait_for_response(chip, addr); } udelay(1); } if (printk_ratelimit()) snd_printd(SFX "send_cmd timeout: IRS=0x%x, val=0x%x\n", azx_readw(chip, IRS), val); return -EIO; } /* receive a response */ static unsigned int azx_single_get_response(struct hda_bus *bus, unsigned int addr) { struct azx *chip = bus->private_data; return chip->rirb.res[addr]; } /* * The below are the main callbacks from hda_codec. * * They are just the skeleton to call sub-callbacks according to the * current setting of chip->single_cmd. */ /* send a command */ static int azx_send_cmd(struct hda_bus *bus, unsigned int val) { struct azx *chip = bus->private_data; chip->last_cmd[azx_command_addr(val)] = val; if (chip->single_cmd) return azx_single_send_cmd(bus, val); else return azx_corb_send_cmd(bus, val); } /* get a response */ static unsigned int azx_get_response(struct hda_bus *bus, unsigned int addr) { struct azx *chip = bus->private_data; if (chip->single_cmd) return azx_single_get_response(bus, addr); else return azx_rirb_get_response(bus, addr); } #ifdef CONFIG_SND_HDA_POWER_SAVE static void azx_power_notify(struct hda_bus *bus); #endif /* reset codec link */ static int azx_reset(struct azx *chip) { int count; /* clear STATESTS */ azx_writeb(chip, STATESTS, STATESTS_INT_MASK); /* reset controller */ azx_writel(chip, GCTL, azx_readl(chip, GCTL) & ~ICH6_GCTL_RESET); count = 50; while (azx_readb(chip, GCTL) && --count) msleep(1); /* delay for >= 100us for codec PLL to settle per spec * Rev 0.9 section 5.5.1 */ msleep(1); /* Bring controller out of reset */ azx_writeb(chip, GCTL, azx_readb(chip, GCTL) | ICH6_GCTL_RESET); count = 50; while (!azx_readb(chip, GCTL) && --count) msleep(1); /* Brent Chartrand said to wait >= 540us for codecs to initialize */ msleep(1); /* check to see if controller is ready */ if (!azx_readb(chip, GCTL)) { snd_printd(SFX "azx_reset: controller not ready!\n"); return -EBUSY; } /* Accept unsolicited responses */ azx_writel(chip, GCTL, azx_readl(chip, GCTL) | ICH6_GCTL_UNSOL); /* detect codecs */ if (!chip->codec_mask) { chip->codec_mask = azx_readw(chip, STATESTS); snd_printdd(SFX "codec_mask = 0x%x\n", chip->codec_mask); } return 0; } /* * Lowlevel interface */ /* enable interrupts */ static void azx_int_enable(struct azx *chip) { /* enable controller CIE and GIE */ azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) | ICH6_INT_CTRL_EN | ICH6_INT_GLOBAL_EN); } /* disable interrupts */ static void azx_int_disable(struct azx *chip) { int i; /* disable interrupts in stream descriptor */ for (i = 0; i < chip->num_streams; i++) { struct azx_dev *azx_dev = &chip->azx_dev[i]; azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) & ~SD_INT_MASK); } /* disable SIE for all streams */ azx_writeb(chip, INTCTL, 0); /* disable controller CIE and GIE */ azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) & ~(ICH6_INT_CTRL_EN | ICH6_INT_GLOBAL_EN)); } /* clear interrupts */ static void azx_int_clear(struct azx *chip) { int i; /* clear stream status */ for (i = 0; i < chip->num_streams; i++) { struct azx_dev *azx_dev = &chip->azx_dev[i]; azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK); } /* clear STATESTS */ azx_writeb(chip, STATESTS, STATESTS_INT_MASK); /* clear rirb status */ azx_writeb(chip, RIRBSTS, RIRB_INT_MASK); /* clear int status */ azx_writel(chip, INTSTS, ICH6_INT_CTRL_EN | ICH6_INT_ALL_STREAM); } /* start a stream */ static void azx_stream_start(struct azx *chip, struct azx_dev *azx_dev) { /* * Before stream start, initialize parameter */ azx_dev->insufficient = 1; /* enable SIE */ azx_writeb(chip, INTCTL, azx_readb(chip, INTCTL) | (1 << azx_dev->index)); /* set DMA start and interrupt mask */ azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) | SD_CTL_DMA_START | SD_INT_MASK); } /* stop DMA */ static void azx_stream_clear(struct azx *chip, struct azx_dev *azx_dev) { azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) & ~(SD_CTL_DMA_START | SD_INT_MASK)); azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK); /* to be sure */ } /* stop a stream */ static void azx_stream_stop(struct azx *chip, struct azx_dev *azx_dev) { azx_stream_clear(chip, azx_dev); /* disable SIE */ azx_writeb(chip, INTCTL, azx_readb(chip, INTCTL) & ~(1 << azx_dev->index)); } /* * reset and start the controller registers */ static void azx_init_chip(struct azx *chip) { if (chip->initialized) return; /* reset controller */ azx_reset(chip); /* initialize interrupts */ azx_int_clear(chip); azx_int_enable(chip); /* initialize the codec command I/O */ azx_init_cmd_io(chip); /* program the position buffer */ azx_writel(chip, DPLBASE, (u32)chip->posbuf.addr); azx_writel(chip, DPUBASE, upper_32_bits(chip->posbuf.addr)); chip->initialized = 1; } /* * initialize the PCI registers */ /* update bits in a PCI register byte */ static void update_pci_byte(struct pci_dev *pci, unsigned int reg, unsigned char mask, unsigned char val) { unsigned char data; pci_read_config_byte(pci, reg, &data); data &= ~mask; data |= (val & mask); pci_write_config_byte(pci, reg, data); } static void azx_init_pci(struct azx *chip) { unsigned short snoop; /* Clear bits 0-2 of PCI register TCSEL (at offset 0x44) * TCSEL == Traffic Class Select Register, which sets PCI express QOS * Ensuring these bits are 0 clears playback static on some HD Audio * codecs */ update_pci_byte(chip->pci, ICH6_PCIREG_TCSEL, 0x07, 0); switch (chip->driver_type) { case AZX_DRIVER_ATI: /* For ATI SB450 azalia HD audio, we need to enable snoop */ update_pci_byte(chip->pci, ATI_SB450_HDAUDIO_MISC_CNTR2_ADDR, 0x07, ATI_SB450_HDAUDIO_ENABLE_SNOOP); break; case AZX_DRIVER_NVIDIA: /* For NVIDIA HDA, enable snoop */ update_pci_byte(chip->pci, NVIDIA_HDA_TRANSREG_ADDR, 0x0f, NVIDIA_HDA_ENABLE_COHBITS); update_pci_byte(chip->pci, NVIDIA_HDA_ISTRM_COH, 0x01, NVIDIA_HDA_ENABLE_COHBIT); update_pci_byte(chip->pci, NVIDIA_HDA_OSTRM_COH, 0x01, NVIDIA_HDA_ENABLE_COHBIT); break; case AZX_DRIVER_SCH: pci_read_config_word(chip->pci, INTEL_SCH_HDA_DEVC, &snoop); if (snoop & INTEL_SCH_HDA_DEVC_NOSNOOP) { pci_write_config_word(chip->pci, INTEL_SCH_HDA_DEVC, snoop & (~INTEL_SCH_HDA_DEVC_NOSNOOP)); pci_read_config_word(chip->pci, INTEL_SCH_HDA_DEVC, &snoop); snd_printdd(SFX "HDA snoop disabled, enabling ... %s\n", (snoop & INTEL_SCH_HDA_DEVC_NOSNOOP) ? "Failed" : "OK"); } break; } } static int azx_position_ok(struct azx *chip, struct azx_dev *azx_dev); /* * interrupt handler */ static irqreturn_t azx_interrupt(int irq, void *dev_id) { struct azx *chip = dev_id; struct azx_dev *azx_dev; u32 status; int i, ok; spin_lock(&chip->reg_lock); status = azx_readl(chip, INTSTS); if (status == 0) { spin_unlock(&chip->reg_lock); return IRQ_NONE; } for (i = 0; i < chip->num_streams; i++) { azx_dev = &chip->azx_dev[i]; if (status & azx_dev->sd_int_sta_mask) { azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK); if (!azx_dev->substream || !azx_dev->running) continue; /* check whether this IRQ is really acceptable */ ok = azx_position_ok(chip, azx_dev); if (ok == 1) { azx_dev->irq_pending = 0; spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(azx_dev->substream); spin_lock(&chip->reg_lock); } else if (ok == 0 && chip->bus && chip->bus->workq) { /* bogus IRQ, process it later */ azx_dev->irq_pending = 1; queue_work(chip->bus->workq, &chip->irq_pending_work); } } } /* clear rirb int */ status = azx_readb(chip, RIRBSTS); if (status & RIRB_INT_MASK) { if (status & RIRB_INT_RESPONSE) azx_update_rirb(chip); azx_writeb(chip, RIRBSTS, RIRB_INT_MASK); } #if 0 /* clear state status int */ if (azx_readb(chip, STATESTS) & 0x04) azx_writeb(chip, STATESTS, 0x04); #endif spin_unlock(&chip->reg_lock); return IRQ_HANDLED; } /* * set up a BDL entry */ static int setup_bdle(struct snd_pcm_substream *substream, struct azx_dev *azx_dev, u32 **bdlp, int ofs, int size, int with_ioc) { u32 *bdl = *bdlp; while (size > 0) { dma_addr_t addr; int chunk; if (azx_dev->frags >= AZX_MAX_BDL_ENTRIES) return -EINVAL; addr = snd_pcm_sgbuf_get_addr(substream, ofs); /* program the address field of the BDL entry */ bdl[0] = cpu_to_le32((u32)addr); bdl[1] = cpu_to_le32(upper_32_bits(addr)); /* program the size field of the BDL entry */ chunk = snd_pcm_sgbuf_get_chunk_size(substream, ofs, size); bdl[2] = cpu_to_le32(chunk); /* program the IOC to enable interrupt * only when the whole fragment is processed */ size -= chunk; bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01); bdl += 4; azx_dev->frags++; ofs += chunk; } *bdlp = bdl; return ofs; } /* * set up BDL entries */ static int azx_setup_periods(struct azx *chip, struct snd_pcm_substream *substream, struct azx_dev *azx_dev) { u32 *bdl; int i, ofs, periods, period_bytes; int pos_adj; /* reset BDL address */ azx_sd_writel(azx_dev, SD_BDLPL, 0); azx_sd_writel(azx_dev, SD_BDLPU, 0); period_bytes = azx_dev->period_bytes; periods = azx_dev->bufsize / period_bytes; /* program the initial BDL entries */ bdl = (u32 *)azx_dev->bdl.area; ofs = 0; azx_dev->frags = 0; pos_adj = bdl_pos_adj[chip->dev_index]; if (pos_adj > 0) { struct snd_pcm_runtime *runtime = substream->runtime; int pos_align = pos_adj; pos_adj = (pos_adj * runtime->rate + 47999) / 48000; if (!pos_adj) pos_adj = pos_align; else pos_adj = ((pos_adj + pos_align - 1) / pos_align) * pos_align; pos_adj = frames_to_bytes(runtime, pos_adj); if (pos_adj >= period_bytes) { snd_printk(KERN_WARNING SFX "Too big adjustment %d\n", bdl_pos_adj[chip->dev_index]); pos_adj = 0; } else { ofs = setup_bdle(substream, azx_dev, &bdl, ofs, pos_adj, 1); if (ofs < 0) goto error; } } else pos_adj = 0; for (i = 0; i < periods; i++) { if (i == periods - 1 && pos_adj) ofs = setup_bdle(substream, azx_dev, &bdl, ofs, period_bytes - pos_adj, 0); else ofs = setup_bdle(substream, azx_dev, &bdl, ofs, period_bytes, 1); if (ofs < 0) goto error; } return 0; error: snd_printk(KERN_ERR SFX "Too many BDL entries: buffer=%d, period=%d\n", azx_dev->bufsize, period_bytes); return -EINVAL; } /* reset stream */ static void azx_stream_reset(struct azx *chip, struct azx_dev *azx_dev) { unsigned char val; int timeout; azx_stream_clear(chip, azx_dev); azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) | SD_CTL_STREAM_RESET); udelay(3); timeout = 300; while (!((val = azx_sd_readb(azx_dev, SD_CTL)) & SD_CTL_STREAM_RESET) && --timeout) ; val &= ~SD_CTL_STREAM_RESET; azx_sd_writeb(azx_dev, SD_CTL, val); udelay(3); timeout = 300; /* waiting for hardware to report that the stream is out of reset */ while (((val = azx_sd_readb(azx_dev, SD_CTL)) & SD_CTL_STREAM_RESET) && --timeout) ; /* reset first position - may not be synced with hw at this time */ *azx_dev->posbuf = 0; } /* * set up the SD for streaming */ static int azx_setup_controller(struct azx *chip, struct azx_dev *azx_dev) { /* make sure the run bit is zero for SD */ azx_stream_clear(chip, azx_dev); /* program the stream_tag */ azx_sd_writel(azx_dev, SD_CTL, (azx_sd_readl(azx_dev, SD_CTL) & ~SD_CTL_STREAM_TAG_MASK)| (azx_dev->stream_tag << SD_CTL_STREAM_TAG_SHIFT)); /* program the length of samples in cyclic buffer */ azx_sd_writel(azx_dev, SD_CBL, azx_dev->bufsize); /* program the stream format */ /* this value needs to be the same as the one programmed */ azx_sd_writew(azx_dev, SD_FORMAT, azx_dev->format_val); /* program the stream LVI (last valid index) of the BDL */ azx_sd_writew(azx_dev, SD_LVI, azx_dev->frags - 1); /* program the BDL address */ /* lower BDL address */ azx_sd_writel(azx_dev, SD_BDLPL, (u32)azx_dev->bdl.addr); /* upper BDL address */ azx_sd_writel(azx_dev, SD_BDLPU, upper_32_bits(azx_dev->bdl.addr)); /* enable the position buffer */ if (chip->position_fix == POS_FIX_POSBUF || chip->position_fix == POS_FIX_AUTO || chip->via_dmapos_patch) { if (!(azx_readl(chip, DPLBASE) & ICH6_DPLBASE_ENABLE)) azx_writel(chip, DPLBASE, (u32)chip->posbuf.addr | ICH6_DPLBASE_ENABLE); } /* set the interrupt enable bits in the descriptor control register */ azx_sd_writel(azx_dev, SD_CTL, azx_sd_readl(azx_dev, SD_CTL) | SD_INT_MASK); return 0; } /* * Probe the given codec address */ static int probe_codec(struct azx *chip, int addr) { unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) | (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID; unsigned int res; mutex_lock(&chip->bus->cmd_mutex); chip->probing = 1; azx_send_cmd(chip->bus, cmd); res = azx_get_response(chip->bus, addr); chip->probing = 0; mutex_unlock(&chip->bus->cmd_mutex); if (res == -1) return -EIO; snd_printdd(SFX "codec #%d probed OK\n", addr); return 0; } static int azx_attach_pcm_stream(struct hda_bus *bus, struct hda_codec *codec, struct hda_pcm *cpcm); static void azx_stop_chip(struct azx *chip); static void azx_bus_reset(struct hda_bus *bus) { struct azx *chip = bus->private_data; bus->in_reset = 1; azx_stop_chip(chip); azx_init_chip(chip); #ifdef CONFIG_PM if (chip->initialized) { int i; for (i = 0; i < AZX_MAX_PCMS; i++) snd_pcm_suspend_all(chip->pcm[i]); snd_hda_suspend(chip->bus); snd_hda_resume(chip->bus); } #endif bus->in_reset = 0; } /* * Codec initialization */ /* number of codec slots for each chipset: 0 = default slots (i.e. 4) */ static unsigned int azx_max_codecs[AZX_NUM_DRIVERS] __devinitdata = { [AZX_DRIVER_TERA] = 1, }; static int __devinit azx_codec_create(struct azx *chip, const char *model, int no_init) { struct hda_bus_template bus_temp; int c, codecs, err; int max_slots; memset(&bus_temp, 0, sizeof(bus_temp)); bus_temp.private_data = chip; bus_temp.modelname = model; bus_temp.pci = chip->pci; bus_temp.ops.command = azx_send_cmd; bus_temp.ops.get_response = azx_get_response; bus_temp.ops.attach_pcm = azx_attach_pcm_stream; bus_temp.ops.bus_reset = azx_bus_reset; #ifdef CONFIG_SND_HDA_POWER_SAVE bus_temp.power_save = &power_save; bus_temp.ops.pm_notify = azx_power_notify; #endif err = snd_hda_bus_new(chip->card, &bus_temp, &chip->bus); if (err < 0) return err; if (chip->driver_type == AZX_DRIVER_NVIDIA) chip->bus->needs_damn_long_delay = 1; codecs = 0; max_slots = azx_max_codecs[chip->driver_type]; if (!max_slots) max_slots = AZX_MAX_CODECS; /* First try to probe all given codec slots */ for (c = 0; c < max_slots; c++) { if ((chip->codec_mask & (1 << c)) & chip->codec_probe_mask) { if (probe_codec(chip, c) < 0) { /* Some BIOSen give you wrong codec addresses * that don't exist */ snd_printk(KERN_WARNING SFX "Codec #%d probe error; " "disabling it...\n", c); chip->codec_mask &= ~(1 << c); /* More badly, accessing to a non-existing * codec often screws up the controller chip, * and distrubs the further communications. * Thus if an error occurs during probing, * better to reset the controller chip to * get back to the sanity state. */ azx_stop_chip(chip); azx_init_chip(chip); } } } /* Then create codec instances */ for (c = 0; c < max_slots; c++) { if ((chip->codec_mask & (1 << c)) & chip->codec_probe_mask) { struct hda_codec *codec; err = snd_hda_codec_new(chip->bus, c, !no_init, &codec); if (err < 0) continue; codecs++; } } if (!codecs) { snd_printk(KERN_ERR SFX "no codecs initialized\n"); return -ENXIO; } return 0; } /* * PCM support */ /* assign a stream for the PCM */ static inline struct azx_dev *azx_assign_device(struct azx *chip, int stream) { int dev, i, nums; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { dev = chip->playback_index_offset; nums = chip->playback_streams; } else { dev = chip->capture_index_offset; nums = chip->capture_streams; } for (i = 0; i < nums; i++, dev++) if (!chip->azx_dev[dev].opened) { chip->azx_dev[dev].opened = 1; return &chip->azx_dev[dev]; } return NULL; } /* release the assigned stream */ static inline void azx_release_device(struct azx_dev *azx_dev) { azx_dev->opened = 0; } static struct snd_pcm_hardware azx_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | /* No full-resume yet implemented */ /* SNDRV_PCM_INFO_RESUME |*/ SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = AZX_MAX_BUF_SIZE, .period_bytes_min = 128, .period_bytes_max = AZX_MAX_BUF_SIZE / 2, .periods_min = 2, .periods_max = AZX_MAX_FRAG, .fifo_size = 0, }; struct azx_pcm { struct azx *chip; struct hda_codec *codec; struct hda_pcm_stream *hinfo[2]; }; static int azx_pcm_open(struct snd_pcm_substream *substream) { struct azx_pcm *apcm = snd_pcm_substream_chip(substream); struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream]; struct azx *chip = apcm->chip; struct azx_dev *azx_dev; struct snd_pcm_runtime *runtime = substream->runtime; unsigned long flags; int err; mutex_lock(&chip->open_mutex); azx_dev = azx_assign_device(chip, substream->stream); if (azx_dev == NULL) { mutex_unlock(&chip->open_mutex); return -EBUSY; } runtime->hw = azx_pcm_hw; runtime->hw.channels_min = hinfo->channels_min; runtime->hw.channels_max = hinfo->channels_max; runtime->hw.formats = hinfo->formats; runtime->hw.rates = hinfo->rates; snd_pcm_limit_hw_rates(runtime); snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 128); snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 128); snd_hda_power_up(apcm->codec); err = hinfo->ops.open(hinfo, apcm->codec, substream); if (err < 0) { azx_release_device(azx_dev); snd_hda_power_down(apcm->codec); mutex_unlock(&chip->open_mutex); return err; } snd_pcm_limit_hw_rates(runtime); /* sanity check */ if (snd_BUG_ON(!runtime->hw.channels_min) || snd_BUG_ON(!runtime->hw.channels_max) || snd_BUG_ON(!runtime->hw.formats) || snd_BUG_ON(!runtime->hw.rates)) { azx_release_device(azx_dev); hinfo->ops.close(hinfo, apcm->codec, substream); snd_hda_power_down(apcm->codec); mutex_unlock(&chip->open_mutex); return -EINVAL; } spin_lock_irqsave(&chip->reg_lock, flags); azx_dev->substream = substream; azx_dev->running = 0; spin_unlock_irqrestore(&chip->reg_lock, flags); runtime->private_data = azx_dev; snd_pcm_set_sync(substream); mutex_unlock(&chip->open_mutex); return 0; } static int azx_pcm_close(struct snd_pcm_substream *substream) { struct azx_pcm *apcm = snd_pcm_substream_chip(substream); struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream]; struct azx *chip = apcm->chip; struct azx_dev *azx_dev = get_azx_dev(substream); unsigned long flags; mutex_lock(&chip->open_mutex); spin_lock_irqsave(&chip->reg_lock, flags); azx_dev->substream = NULL; azx_dev->running = 0; spin_unlock_irqrestore(&chip->reg_lock, flags); azx_release_device(azx_dev); hinfo->ops.close(hinfo, apcm->codec, substream); snd_hda_power_down(apcm->codec); mutex_unlock(&chip->open_mutex); return 0; } static int azx_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct azx_dev *azx_dev = get_azx_dev(substream); azx_dev->bufsize = 0; azx_dev->period_bytes = 0; azx_dev->format_val = 0; return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int azx_pcm_hw_free(struct snd_pcm_substream *substream) { struct azx_pcm *apcm = snd_pcm_substream_chip(substream); struct azx_dev *azx_dev = get_azx_dev(substream); struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream]; /* reset BDL address */ azx_sd_writel(azx_dev, SD_BDLPL, 0); azx_sd_writel(azx_dev, SD_BDLPU, 0); azx_sd_writel(azx_dev, SD_CTL, 0); azx_dev->bufsize = 0; azx_dev->period_bytes = 0; azx_dev->format_val = 0; hinfo->ops.cleanup(hinfo, apcm->codec, substream); return snd_pcm_lib_free_pages(substream); } static int azx_pcm_prepare(struct snd_pcm_substream *substream) { struct azx_pcm *apcm = snd_pcm_substream_chip(substream); struct azx *chip = apcm->chip; struct azx_dev *azx_dev = get_azx_dev(substream); struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream]; struct snd_pcm_runtime *runtime = substream->runtime; unsigned int bufsize, period_bytes, format_val; int err; azx_stream_reset(chip, azx_dev); format_val = snd_hda_calc_stream_format(runtime->rate, runtime->channels, runtime->format, hinfo->maxbps); if (!format_val) { snd_printk(KERN_ERR SFX "invalid format_val, rate=%d, ch=%d, format=%d\n", runtime->rate, runtime->channels, runtime->format); return -EINVAL; } bufsize = snd_pcm_lib_buffer_bytes(substream); period_bytes = snd_pcm_lib_period_bytes(substream); snd_printdd(SFX "azx_pcm_prepare: bufsize=0x%x, format=0x%x\n", bufsize, format_val); if (bufsize != azx_dev->bufsize || period_bytes != azx_dev->period_bytes || format_val != azx_dev->format_val) { azx_dev->bufsize = bufsize; azx_dev->period_bytes = period_bytes; azx_dev->format_val = format_val; err = azx_setup_periods(chip, substream, azx_dev); if (err < 0) return err; } azx_dev->min_jiffies = (runtime->period_size * HZ) / (runtime->rate * 2); azx_setup_controller(chip, azx_dev); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) azx_dev->fifo_size = azx_sd_readw(azx_dev, SD_FIFOSIZE) + 1; else azx_dev->fifo_size = 0; return hinfo->ops.prepare(hinfo, apcm->codec, azx_dev->stream_tag, azx_dev->format_val, substream); } static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct azx_pcm *apcm = snd_pcm_substream_chip(substream); struct azx *chip = apcm->chip; struct azx_dev *azx_dev; struct snd_pcm_substream *s; int rstart = 0, start, nsync = 0, sbits = 0; int nwait, timeout; switch (cmd) { case SNDRV_PCM_TRIGGER_START: rstart = 1; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: start = 1; break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: start = 0; break; default: return -EINVAL; } snd_pcm_group_for_each_entry(s, substream) { if (s->pcm->card != substream->pcm->card) continue; azx_dev = get_azx_dev(s); sbits |= 1 << azx_dev->index; nsync++; snd_pcm_trigger_done(s, substream); } spin_lock(&chip->reg_lock); if (nsync > 1) { /* first, set SYNC bits of corresponding streams */ azx_writel(chip, SYNC, azx_readl(chip, SYNC) | sbits); } snd_pcm_group_for_each_entry(s, substream) { if (s->pcm->card != substream->pcm->card) continue; azx_dev = get_azx_dev(s); if (rstart) { azx_dev->start_flag = 1; azx_dev->start_jiffies = jiffies + azx_dev->min_jiffies; } if (start) azx_stream_start(chip, azx_dev); else azx_stream_stop(chip, azx_dev); azx_dev->running = start; } spin_unlock(&chip->reg_lock); if (start) { if (nsync == 1) return 0; /* wait until all FIFOs get ready */ for (timeout = 5000; timeout; timeout--) { nwait = 0; snd_pcm_group_for_each_entry(s, substream) { if (s->pcm->card != substream->pcm->card) continue; azx_dev = get_azx_dev(s); if (!(azx_sd_readb(azx_dev, SD_STS) & SD_STS_FIFO_READY)) nwait++; } if (!nwait) break; cpu_relax(); } } else { /* wait until all RUN bits are cleared */ for (timeout = 5000; timeout; timeout--) { nwait = 0; snd_pcm_group_for_each_entry(s, substream) { if (s->pcm->card != substream->pcm->card) continue; azx_dev = get_azx_dev(s); if (azx_sd_readb(azx_dev, SD_CTL) & SD_CTL_DMA_START) nwait++; } if (!nwait) break; cpu_relax(); } } if (nsync > 1) { spin_lock(&chip->reg_lock); /* reset SYNC bits */ azx_writel(chip, SYNC, azx_readl(chip, SYNC) & ~sbits); spin_unlock(&chip->reg_lock); } return 0; } /* get the current DMA position with correction on VIA chips */ static unsigned int azx_via_get_position(struct azx *chip, struct azx_dev *azx_dev) { unsigned int link_pos, mini_pos, bound_pos; unsigned int mod_link_pos, mod_dma_pos, mod_mini_pos; unsigned int fifo_size; link_pos = azx_sd_readl(azx_dev, SD_LPIB); if (azx_dev->index >= 4) { /* Playback, no problem using link position */ return link_pos; } /* Capture */ /* For new chipset, * use mod to get the DMA position just like old chipset */ mod_dma_pos = le32_to_cpu(*azx_dev->posbuf); mod_dma_pos %= azx_dev->period_bytes; /* azx_dev->fifo_size can't get FIFO size of in stream. * Get from base address + offset. */ fifo_size = readw(chip->remap_addr + VIA_IN_STREAM0_FIFO_SIZE_OFFSET); if (azx_dev->insufficient) { /* Link position never gather than FIFO size */ if (link_pos <= fifo_size) return 0; azx_dev->insufficient = 0; } if (link_pos <= fifo_size) mini_pos = azx_dev->bufsize + link_pos - fifo_size; else mini_pos = link_pos - fifo_size; /* Find nearest previous boudary */ mod_mini_pos = mini_pos % azx_dev->period_bytes; mod_link_pos = link_pos % azx_dev->period_bytes; if (mod_link_pos >= fifo_size) bound_pos = link_pos - mod_link_pos; else if (mod_dma_pos >= mod_mini_pos) bound_pos = mini_pos - mod_mini_pos; else { bound_pos = mini_pos - mod_mini_pos + azx_dev->period_bytes; if (bound_pos >= azx_dev->bufsize) bound_pos = 0; } /* Calculate real DMA position we want */ return bound_pos + mod_dma_pos; } static unsigned int azx_get_position(struct azx *chip, struct azx_dev *azx_dev) { unsigned int pos; if (chip->via_dmapos_patch) pos = azx_via_get_position(chip, azx_dev); else if (chip->position_fix == POS_FIX_POSBUF || chip->position_fix == POS_FIX_AUTO) { /* use the position buffer */ pos = le32_to_cpu(*azx_dev->posbuf); } else { /* read LPIB */ pos = azx_sd_readl(azx_dev, SD_LPIB); } if (pos >= azx_dev->bufsize) pos = 0; return pos; } static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream) { struct azx_pcm *apcm = snd_pcm_substream_chip(substream); struct azx *chip = apcm->chip; struct azx_dev *azx_dev = get_azx_dev(substream); return bytes_to_frames(substream->runtime, azx_get_position(chip, azx_dev)); } /* * Check whether the current DMA position is acceptable for updating * periods. Returns non-zero if it's OK. * * Many HD-audio controllers appear pretty inaccurate about * the update-IRQ timing. The IRQ is issued before actually the * data is processed. So, we need to process it afterwords in a * workqueue. */ static int azx_position_ok(struct azx *chip, struct azx_dev *azx_dev) { unsigned int pos; if (azx_dev->start_flag && time_before_eq(jiffies, azx_dev->start_jiffies)) return -1; /* bogus (too early) interrupt */ azx_dev->start_flag = 0; pos = azx_get_position(chip, azx_dev); if (chip->position_fix == POS_FIX_AUTO) { if (!pos) { printk(KERN_WARNING "hda-intel: Invalid position buffer, " "using LPIB read method instead.\n"); chip->position_fix = POS_FIX_LPIB; pos = azx_get_position(chip, azx_dev); } else chip->position_fix = POS_FIX_POSBUF; } if (!bdl_pos_adj[chip->dev_index]) return 1; /* no delayed ack */ if (pos % azx_dev->period_bytes > azx_dev->period_bytes / 2) return 0; /* NG - it's below the period boundary */ return 1; /* OK, it's fine */ } /* * The work for pending PCM period updates. */ static void azx_irq_pending_work(struct work_struct *work) { struct azx *chip = container_of(work, struct azx, irq_pending_work); int i, pending; if (!chip->irq_pending_warned) { printk(KERN_WARNING "hda-intel: IRQ timing workaround is activated " "for card #%d. Suggest a bigger bdl_pos_adj.\n", chip->card->number); chip->irq_pending_warned = 1; } for (;;) { pending = 0; spin_lock_irq(&chip->reg_lock); for (i = 0; i < chip->num_streams; i++) { struct azx_dev *azx_dev = &chip->azx_dev[i]; if (!azx_dev->irq_pending || !azx_dev->substream || !azx_dev->running) continue; if (azx_position_ok(chip, azx_dev)) { azx_dev->irq_pending = 0; spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(azx_dev->substream); spin_lock(&chip->reg_lock); } else pending++; } spin_unlock_irq(&chip->reg_lock); if (!pending) return; cond_resched(); } } /* clear irq_pending flags and assure no on-going workq */ static void azx_clear_irq_pending(struct azx *chip) { int i; spin_lock_irq(&chip->reg_lock); for (i = 0; i < chip->num_streams; i++) chip->azx_dev[i].irq_pending = 0; spin_unlock_irq(&chip->reg_lock); } static struct snd_pcm_ops azx_pcm_ops = { .open = azx_pcm_open, .close = azx_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = azx_pcm_hw_params, .hw_free = azx_pcm_hw_free, .prepare = azx_pcm_prepare, .trigger = azx_pcm_trigger, .pointer = azx_pcm_pointer, .page = snd_pcm_sgbuf_ops_page, }; static void azx_pcm_free(struct snd_pcm *pcm) { struct azx_pcm *apcm = pcm->private_data; if (apcm) { apcm->chip->pcm[pcm->device] = NULL; kfree(apcm); } } static int azx_attach_pcm_stream(struct hda_bus *bus, struct hda_codec *codec, struct hda_pcm *cpcm) { struct azx *chip = bus->private_data; struct snd_pcm *pcm; struct azx_pcm *apcm; int pcm_dev = cpcm->device; int s, err; if (pcm_dev >= AZX_MAX_PCMS) { snd_printk(KERN_ERR SFX "Invalid PCM device number %d\n", pcm_dev); return -EINVAL; } if (chip->pcm[pcm_dev]) { snd_printk(KERN_ERR SFX "PCM %d already exists\n", pcm_dev); return -EBUSY; } err = snd_pcm_new(chip->card, cpcm->name, pcm_dev, cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams, cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams, &pcm); if (err < 0) return err; strlcpy(pcm->name, cpcm->name, sizeof(pcm->name)); apcm = kzalloc(sizeof(*apcm), GFP_KERNEL); if (apcm == NULL) return -ENOMEM; apcm->chip = chip; apcm->codec = codec; pcm->private_data = apcm; pcm->private_free = azx_pcm_free; if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM) pcm->dev_class = SNDRV_PCM_CLASS_MODEM; chip->pcm[pcm_dev] = pcm; cpcm->pcm = pcm; for (s = 0; s < 2; s++) { apcm->hinfo[s] = &cpcm->stream[s]; if (cpcm->stream[s].substreams) snd_pcm_set_ops(pcm, s, &azx_pcm_ops); } /* buffer pre-allocation */ snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG, snd_dma_pci_data(chip->pci), 1024 * 64, 32 * 1024 * 1024); return 0; } /* * mixer creation - all stuff is implemented in hda module */ static int __devinit azx_mixer_create(struct azx *chip) { return snd_hda_build_controls(chip->bus); } /* * initialize SD streams */ static int __devinit azx_init_stream(struct azx *chip) { int i; /* initialize each stream (aka device) * assign the starting bdl address to each stream (device) * and initialize */ for (i = 0; i < chip->num_streams; i++) { struct azx_dev *azx_dev = &chip->azx_dev[i]; azx_dev->posbuf = (u32 __iomem *)(chip->posbuf.area + i * 8); /* offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */ azx_dev->sd_addr = chip->remap_addr + (0x20 * i + 0x80); /* int mask: SDI0=0x01, SDI1=0x02, ... SDO3=0x80 */ azx_dev->sd_int_sta_mask = 1 << i; /* stream tag: must be non-zero and unique */ azx_dev->index = i; azx_dev->stream_tag = i + 1; } return 0; } static int azx_acquire_irq(struct azx *chip, int do_disconnect) { if (request_irq(chip->pci->irq, azx_interrupt, chip->msi ? 0 : IRQF_SHARED, "HDA Intel", chip)) { printk(KERN_ERR "hda-intel: unable to grab IRQ %d, " "disabling device\n", chip->pci->irq); if (do_disconnect) snd_card_disconnect(chip->card); return -1; } chip->irq = chip->pci->irq; pci_intx(chip->pci, !chip->msi); return 0; } static void azx_stop_chip(struct azx *chip) { if (!chip->initialized) return; /* disable interrupts */ azx_int_disable(chip); azx_int_clear(chip); /* disable CORB/RIRB */ azx_free_cmd_io(chip); /* disable position buffer */ azx_writel(chip, DPLBASE, 0); azx_writel(chip, DPUBASE, 0); chip->initialized = 0; } #ifdef CONFIG_SND_HDA_POWER_SAVE /* power-up/down the controller */ static void azx_power_notify(struct hda_bus *bus) { struct azx *chip = bus->private_data; struct hda_codec *c; int power_on = 0; list_for_each_entry(c, &bus->codec_list, list) { if (c->power_on) { power_on = 1; break; } } if (power_on) azx_init_chip(chip); else if (chip->running && power_save_controller) azx_stop_chip(chip); } #endif /* CONFIG_SND_HDA_POWER_SAVE */ #ifdef CONFIG_PM /* * power management */ static int snd_hda_codecs_inuse(struct hda_bus *bus) { struct hda_codec *codec; list_for_each_entry(codec, &bus->codec_list, list) { if (snd_hda_codec_needs_resume(codec)) return 1; } return 0; } static int azx_suspend(struct pci_dev *pci, pm_message_t state) { struct snd_card *card = pci_get_drvdata(pci); struct azx *chip = card->private_data; int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); azx_clear_irq_pending(chip); for (i = 0; i < AZX_MAX_PCMS; i++) snd_pcm_suspend_all(chip->pcm[i]); if (chip->initialized) snd_hda_suspend(chip->bus); azx_stop_chip(chip); if (chip->irq >= 0) { free_irq(chip->irq, chip); chip->irq = -1; } if (chip->msi) pci_disable_msi(chip->pci); pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); return 0; } static int azx_resume(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); struct azx *chip = card->private_data; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR "hda-intel: pci_enable_device failed, " "disabling device\n"); snd_card_disconnect(card); return -EIO; } pci_set_master(pci); if (chip->msi) if (pci_enable_msi(pci) < 0) chip->msi = 0; if (azx_acquire_irq(chip, 1) < 0) return -EIO; azx_init_pci(chip); if (snd_hda_codecs_inuse(chip->bus)) azx_init_chip(chip); snd_hda_resume(chip->bus); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } #endif /* CONFIG_PM */ /* * reboot notifier for hang-up problem at power-down */ static int azx_halt(struct notifier_block *nb, unsigned long event, void *buf) { struct azx *chip = container_of(nb, struct azx, reboot_notifier); azx_stop_chip(chip); return NOTIFY_OK; } static void azx_notifier_register(struct azx *chip) { chip->reboot_notifier.notifier_call = azx_halt; register_reboot_notifier(&chip->reboot_notifier); } static void azx_notifier_unregister(struct azx *chip) { if (chip->reboot_notifier.notifier_call) unregister_reboot_notifier(&chip->reboot_notifier); } /* * destructor */ static int azx_free(struct azx *chip) { int i; azx_notifier_unregister(chip); if (chip->initialized) { azx_clear_irq_pending(chip); for (i = 0; i < chip->num_streams; i++) azx_stream_stop(chip, &chip->azx_dev[i]); azx_stop_chip(chip); } if (chip->irq >= 0) free_irq(chip->irq, (void*)chip); if (chip->msi) pci_disable_msi(chip->pci); if (chip->remap_addr) iounmap(chip->remap_addr); if (chip->azx_dev) { for (i = 0; i < chip->num_streams; i++) if (chip->azx_dev[i].bdl.area) snd_dma_free_pages(&chip->azx_dev[i].bdl); } if (chip->rb.area) snd_dma_free_pages(&chip->rb); if (chip->posbuf.area) snd_dma_free_pages(&chip->posbuf); pci_release_regions(chip->pci); pci_disable_device(chip->pci); kfree(chip->azx_dev); kfree(chip); return 0; } static int azx_dev_free(struct snd_device *device) { return azx_free(device->device_data); } /* * white/black-listing for position_fix */ static struct snd_pci_quirk position_fix_list[] __devinitdata = { SND_PCI_QUIRK(0x1028, 0x01cc, "Dell D820", POS_FIX_LPIB), SND_PCI_QUIRK(0x1028, 0x01de, "Dell Precision 390", POS_FIX_LPIB), SND_PCI_QUIRK(0x1043, 0x813d, "ASUS P5AD2", POS_FIX_LPIB), {} }; static int __devinit check_position_fix(struct azx *chip, int fix) { const struct snd_pci_quirk *q; switch (fix) { case POS_FIX_LPIB: case POS_FIX_POSBUF: return fix; } /* Check VIA/ATI HD Audio Controller exist */ switch (chip->driver_type) { case AZX_DRIVER_VIA: case AZX_DRIVER_ATI: chip->via_dmapos_patch = 1; /* Use link position directly, avoid any transfer problem. */ return POS_FIX_LPIB; } chip->via_dmapos_patch = 0; q = snd_pci_quirk_lookup(chip->pci, position_fix_list); if (q) { printk(KERN_INFO "hda_intel: position_fix set to %d " "for device %04x:%04x\n", q->value, q->subvendor, q->subdevice); return q->value; } return POS_FIX_AUTO; } /* * black-lists for probe_mask */ static struct snd_pci_quirk probe_mask_list[] __devinitdata = { /* Thinkpad often breaks the controller communication when accessing * to the non-working (or non-existing) modem codec slot. */ SND_PCI_QUIRK(0x1014, 0x05b7, "Thinkpad Z60", 0x01), SND_PCI_QUIRK(0x17aa, 0x2010, "Thinkpad X/T/R60", 0x01), SND_PCI_QUIRK(0x17aa, 0x20ac, "Thinkpad X/T/R61", 0x01), /* broken BIOS */ SND_PCI_QUIRK(0x1028, 0x20ac, "Dell Studio Desktop", 0x01), /* including bogus ALC268 in slot#2 that conflicts with ALC888 */ SND_PCI_QUIRK(0x17c0, 0x4085, "Medion MD96630", 0x01), /* forced codec slots */ SND_PCI_QUIRK(0x1043, 0x1262, "ASUS W5Fm", 0x103), SND_PCI_QUIRK(0x1046, 0x1262, "ASUS W5F", 0x103), {} }; #define AZX_FORCE_CODEC_MASK 0x100 static void __devinit check_probe_mask(struct azx *chip, int dev) { const struct snd_pci_quirk *q; chip->codec_probe_mask = probe_mask[dev]; if (chip->codec_probe_mask == -1) { q = snd_pci_quirk_lookup(chip->pci, probe_mask_list); if (q) { printk(KERN_INFO "hda_intel: probe_mask set to 0x%x " "for device %04x:%04x\n", q->value, q->subvendor, q->subdevice); chip->codec_probe_mask = q->value; } } /* check forced option */ if (chip->codec_probe_mask != -1 && (chip->codec_probe_mask & AZX_FORCE_CODEC_MASK)) { chip->codec_mask = chip->codec_probe_mask & 0xff; printk(KERN_INFO "hda_intel: codec_mask forced to 0x%x\n", chip->codec_mask); } } /* * constructor */ static int __devinit azx_create(struct snd_card *card, struct pci_dev *pci, int dev, int driver_type, struct azx **rchip) { struct azx *chip; int i, err; unsigned short gcap; static struct snd_device_ops ops = { .dev_free = azx_dev_free, }; *rchip = NULL; err = pci_enable_device(pci); if (err < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (!chip) { snd_printk(KERN_ERR SFX "cannot allocate chip\n"); pci_disable_device(pci); return -ENOMEM; } spin_lock_init(&chip->reg_lock); mutex_init(&chip->open_mutex); chip->card = card; chip->pci = pci; chip->irq = -1; chip->driver_type = driver_type; chip->msi = enable_msi; chip->dev_index = dev; INIT_WORK(&chip->irq_pending_work, azx_irq_pending_work); chip->position_fix = check_position_fix(chip, position_fix[dev]); check_probe_mask(chip, dev); chip->single_cmd = single_cmd; if (bdl_pos_adj[dev] < 0) { switch (chip->driver_type) { case AZX_DRIVER_ICH: bdl_pos_adj[dev] = 1; break; default: bdl_pos_adj[dev] = 32; break; } } #if BITS_PER_LONG != 64 /* Fix up base address on ULI M5461 */ if (chip->driver_type == AZX_DRIVER_ULI) { u16 tmp3; pci_read_config_word(pci, 0x40, &tmp3); pci_write_config_word(pci, 0x40, tmp3 | 0x10); pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, 0); } #endif err = pci_request_regions(pci, "ICH HD audio"); if (err < 0) { kfree(chip); pci_disable_device(pci); return err; } chip->addr = pci_resource_start(pci, 0); chip->remap_addr = pci_ioremap_bar(pci, 0); if (chip->remap_addr == NULL) { snd_printk(KERN_ERR SFX "ioremap error\n"); err = -ENXIO; goto errout; } if (chip->msi) if (pci_enable_msi(pci) < 0) chip->msi = 0; if (azx_acquire_irq(chip, 0) < 0) { err = -EBUSY; goto errout; } pci_set_master(pci); synchronize_irq(chip->irq); gcap = azx_readw(chip, GCAP); snd_printdd(SFX "chipset global capabilities = 0x%x\n", gcap); /* disable SB600 64bit support for safety */ if ((chip->driver_type == AZX_DRIVER_ATI) || (chip->driver_type == AZX_DRIVER_ATIHDMI)) { struct pci_dev *p_smbus; p_smbus = pci_get_device(PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_SBX00_SMBUS, NULL); if (p_smbus) { if (p_smbus->revision < 0x30) gcap &= ~ICH6_GCAP_64OK; pci_dev_put(p_smbus); } } /* allow 64bit DMA address if supported by H/W */ if ((gcap & ICH6_GCAP_64OK) && !pci_set_dma_mask(pci, DMA_BIT_MASK(64))) pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(64)); else { pci_set_dma_mask(pci, DMA_BIT_MASK(32)); pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)); } /* read number of streams from GCAP register instead of using * hardcoded value */ chip->capture_streams = (gcap >> 8) & 0x0f; chip->playback_streams = (gcap >> 12) & 0x0f; if (!chip->playback_streams && !chip->capture_streams) { /* gcap didn't give any info, switching to old method */ switch (chip->driver_type) { case AZX_DRIVER_ULI: chip->playback_streams = ULI_NUM_PLAYBACK; chip->capture_streams = ULI_NUM_CAPTURE; break; case AZX_DRIVER_ATIHDMI: chip->playback_streams = ATIHDMI_NUM_PLAYBACK; chip->capture_streams = ATIHDMI_NUM_CAPTURE; break; case AZX_DRIVER_GENERIC: default: chip->playback_streams = ICH6_NUM_PLAYBACK; chip->capture_streams = ICH6_NUM_CAPTURE; break; } } chip->capture_index_offset = 0; chip->playback_index_offset = chip->capture_streams; chip->num_streams = chip->playback_streams + chip->capture_streams; chip->azx_dev = kcalloc(chip->num_streams, sizeof(*chip->azx_dev), GFP_KERNEL); if (!chip->azx_dev) { snd_printk(KERN_ERR SFX "cannot malloc azx_dev\n"); goto errout; } for (i = 0; i < chip->num_streams; i++) { /* allocate memory for the BDL for each stream */ err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), BDL_SIZE, &chip->azx_dev[i].bdl); if (err < 0) { snd_printk(KERN_ERR SFX "cannot allocate BDL\n"); goto errout; } } /* allocate memory for the position buffer */ err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), chip->num_streams * 8, &chip->posbuf); if (err < 0) { snd_printk(KERN_ERR SFX "cannot allocate posbuf\n"); goto errout; } /* allocate CORB/RIRB */ err = azx_alloc_cmd_io(chip); if (err < 0) goto errout; /* initialize streams */ azx_init_stream(chip); /* initialize chip */ azx_init_pci(chip); azx_init_chip(chip); /* codec detection */ if (!chip->codec_mask) { snd_printk(KERN_ERR SFX "no codecs found!\n"); err = -ENODEV; goto errout; } err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err <0) { snd_printk(KERN_ERR SFX "Error creating device [card]!\n"); goto errout; } strcpy(card->driver, "HDA-Intel"); strlcpy(card->shortname, driver_short_names[chip->driver_type], sizeof(card->shortname)); snprintf(card->longname, sizeof(card->longname), "%s at 0x%lx irq %i", card->shortname, chip->addr, chip->irq); *rchip = chip; return 0; errout: azx_free(chip); return err; } static void power_down_all_codecs(struct azx *chip) { #ifdef CONFIG_SND_HDA_POWER_SAVE /* The codecs were powered up in snd_hda_codec_new(). * Now all initialization done, so turn them down if possible */ struct hda_codec *codec; list_for_each_entry(codec, &chip->bus->codec_list, list) { snd_hda_power_down(codec); } #endif } static int __devinit azx_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct azx *chip; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) { snd_printk(KERN_ERR SFX "Error creating card!\n"); return err; } err = azx_create(card, pci, dev, pci_id->driver_data, &chip); if (err < 0) goto out_free; card->private_data = chip; /* create codec instances */ err = azx_codec_create(chip, model[dev], probe_only[dev]); if (err < 0) goto out_free; /* create PCM streams */ err = snd_hda_build_pcms(chip->bus); if (err < 0) goto out_free; /* create mixer controls */ err = azx_mixer_create(chip); if (err < 0) goto out_free; snd_card_set_dev(card, &pci->dev); err = snd_card_register(card); if (err < 0) goto out_free; pci_set_drvdata(pci, card); chip->running = 1; power_down_all_codecs(chip); azx_notifier_register(chip); dev++; return err; out_free: snd_card_free(card); return err; } static void __devexit azx_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } /* PCI IDs */ static struct pci_device_id azx_ids[] = { /* ICH 6..10 */ { PCI_DEVICE(0x8086, 0x2668), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x27d8), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x269a), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x284b), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x2911), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x293e), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x293f), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x3a3e), .driver_data = AZX_DRIVER_ICH }, { PCI_DEVICE(0x8086, 0x3a6e), .driver_data = AZX_DRIVER_ICH }, /* PCH */ { PCI_DEVICE(0x8086, 0x3b56), .driver_data = AZX_DRIVER_ICH }, /* SCH */ { PCI_DEVICE(0x8086, 0x811b), .driver_data = AZX_DRIVER_SCH }, /* ATI SB 450/600 */ { PCI_DEVICE(0x1002, 0x437b), .driver_data = AZX_DRIVER_ATI }, { PCI_DEVICE(0x1002, 0x4383), .driver_data = AZX_DRIVER_ATI }, /* ATI HDMI */ { PCI_DEVICE(0x1002, 0x793b), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0x7919), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0x960f), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0x970f), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa00), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa08), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa10), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa18), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa20), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa28), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa30), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa38), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa40), .driver_data = AZX_DRIVER_ATIHDMI }, { PCI_DEVICE(0x1002, 0xaa48), .driver_data = AZX_DRIVER_ATIHDMI }, /* VIA VT8251/VT8237A */ { PCI_DEVICE(0x1106, 0x3288), .driver_data = AZX_DRIVER_VIA }, /* SIS966 */ { PCI_DEVICE(0x1039, 0x7502), .driver_data = AZX_DRIVER_SIS }, /* ULI M5461 */ { PCI_DEVICE(0x10b9, 0x5461), .driver_data = AZX_DRIVER_ULI }, /* NVIDIA MCP */ { PCI_DEVICE(0x10de, 0x026c), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0371), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x03e4), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x03f0), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x044a), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x044b), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x055c), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x055d), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0774), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0775), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0776), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0777), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x07fc), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x07fd), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0ac0), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0ac1), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0ac2), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0ac3), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0d94), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0d95), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0d96), .driver_data = AZX_DRIVER_NVIDIA }, { PCI_DEVICE(0x10de, 0x0d97), .driver_data = AZX_DRIVER_NVIDIA }, /* Teradici */ { PCI_DEVICE(0x6549, 0x1200), .driver_data = AZX_DRIVER_TERA }, /* Creative X-Fi (CA0110-IBG) */ #if !defined(CONFIG_SND_CTXFI) && !defined(CONFIG_SND_CTXFI_MODULE) /* the following entry conflicts with snd-ctxfi driver, * as ctxfi driver mutates from HD-audio to native mode with * a special command sequence. */ { PCI_DEVICE(PCI_VENDOR_ID_CREATIVE, PCI_ANY_ID), .class = PCI_CLASS_MULTIMEDIA_HD_AUDIO << 8, .class_mask = 0xffffff, .driver_data = AZX_DRIVER_GENERIC }, #else /* this entry seems still valid -- i.e. without emu20kx chip */ { PCI_DEVICE(0x1102, 0x0009), .driver_data = AZX_DRIVER_GENERIC }, #endif /* AMD Generic, PCI class code and Vendor ID for HD Audio */ { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_ANY_ID), .class = PCI_CLASS_MULTIMEDIA_HD_AUDIO << 8, .class_mask = 0xffffff, .driver_data = AZX_DRIVER_GENERIC }, { 0, } }; MODULE_DEVICE_TABLE(pci, azx_ids); /* pci_driver definition */ static struct pci_driver driver = { .name = "HDA Intel", .id_table = azx_ids, .probe = azx_probe, .remove = __devexit_p(azx_remove), #ifdef CONFIG_PM .suspend = azx_suspend, .resume = azx_resume, #endif }; static int __init alsa_card_azx_init(void) { return pci_register_driver(&driver); } static void __exit alsa_card_azx_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_azx_init) module_exit(alsa_card_azx_exit)