/* * C-Media CMI8788 driver - main driver module * * Copyright (c) Clemens Ladisch <clemens@ladisch.de> * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <linux/pci.h> #include <sound/ac97_codec.h> #include <sound/asoundef.h> #include <sound/core.h> #include <sound/info.h> #include <sound/mpu401.h> #include <sound/pcm.h> #include "oxygen.h" #include "cm9780.h" MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); MODULE_DESCRIPTION("C-Media CMI8788 helper library"); MODULE_LICENSE("GPL v2"); #define DRIVER "oxygen" static inline int oxygen_uart_input_ready(struct oxygen *chip) { return !(oxygen_read8(chip, OXYGEN_MPU401 + 1) & MPU401_RX_EMPTY); } static void oxygen_read_uart(struct oxygen *chip) { if (unlikely(!oxygen_uart_input_ready(chip))) { /* no data, but read it anyway to clear the interrupt */ oxygen_read8(chip, OXYGEN_MPU401); return; } do { u8 data = oxygen_read8(chip, OXYGEN_MPU401); if (data == MPU401_ACK) continue; if (chip->uart_input_count >= ARRAY_SIZE(chip->uart_input)) chip->uart_input_count = 0; chip->uart_input[chip->uart_input_count++] = data; } while (oxygen_uart_input_ready(chip)); if (chip->model.uart_input) chip->model.uart_input(chip); } static irqreturn_t oxygen_interrupt(int dummy, void *dev_id) { struct oxygen *chip = dev_id; unsigned int status, clear, elapsed_streams, i; status = oxygen_read16(chip, OXYGEN_INTERRUPT_STATUS); if (!status) return IRQ_NONE; spin_lock(&chip->reg_lock); clear = status & (OXYGEN_CHANNEL_A | OXYGEN_CHANNEL_B | OXYGEN_CHANNEL_C | OXYGEN_CHANNEL_SPDIF | OXYGEN_CHANNEL_MULTICH | OXYGEN_CHANNEL_AC97 | OXYGEN_INT_SPDIF_IN_DETECT | OXYGEN_INT_GPIO | OXYGEN_INT_AC97); if (clear) { if (clear & OXYGEN_INT_SPDIF_IN_DETECT) chip->interrupt_mask &= ~OXYGEN_INT_SPDIF_IN_DETECT; oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask & ~clear); oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask); } elapsed_streams = status & chip->pcm_running; spin_unlock(&chip->reg_lock); for (i = 0; i < PCM_COUNT; ++i) if ((elapsed_streams & (1 << i)) && chip->streams[i]) snd_pcm_period_elapsed(chip->streams[i]); if (status & OXYGEN_INT_SPDIF_IN_DETECT) { spin_lock(&chip->reg_lock); i = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); if (i & (OXYGEN_SPDIF_SENSE_INT | OXYGEN_SPDIF_LOCK_INT | OXYGEN_SPDIF_RATE_INT)) { /* write the interrupt bit(s) to clear */ oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, i); schedule_work(&chip->spdif_input_bits_work); } spin_unlock(&chip->reg_lock); } if (status & OXYGEN_INT_GPIO) schedule_work(&chip->gpio_work); if (status & OXYGEN_INT_MIDI) { if (chip->midi) snd_mpu401_uart_interrupt(0, chip->midi->private_data); else oxygen_read_uart(chip); } if (status & OXYGEN_INT_AC97) wake_up(&chip->ac97_waitqueue); return IRQ_HANDLED; } static void oxygen_spdif_input_bits_changed(struct work_struct *work) { struct oxygen *chip = container_of(work, struct oxygen, spdif_input_bits_work); u32 reg; /* * This function gets called when there is new activity on the SPDIF * input, or when we lose lock on the input signal, or when the rate * changes. */ msleep(1); spin_lock_irq(&chip->reg_lock); reg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); if ((reg & (OXYGEN_SPDIF_SENSE_STATUS | OXYGEN_SPDIF_LOCK_STATUS)) == OXYGEN_SPDIF_SENSE_STATUS) { /* * If we detect activity on the SPDIF input but cannot lock to * a signal, the clock bit is likely to be wrong. */ reg ^= OXYGEN_SPDIF_IN_CLOCK_MASK; oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, reg); spin_unlock_irq(&chip->reg_lock); msleep(1); spin_lock_irq(&chip->reg_lock); reg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); if ((reg & (OXYGEN_SPDIF_SENSE_STATUS | OXYGEN_SPDIF_LOCK_STATUS)) == OXYGEN_SPDIF_SENSE_STATUS) { /* nothing detected with either clock; give up */ if ((reg & OXYGEN_SPDIF_IN_CLOCK_MASK) == OXYGEN_SPDIF_IN_CLOCK_192) { /* * Reset clock to <= 96 kHz because this is * more likely to be received next time. */ reg &= ~OXYGEN_SPDIF_IN_CLOCK_MASK; reg |= OXYGEN_SPDIF_IN_CLOCK_96; oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, reg); } } } spin_unlock_irq(&chip->reg_lock); if (chip->controls[CONTROL_SPDIF_INPUT_BITS]) { spin_lock_irq(&chip->reg_lock); chip->interrupt_mask |= OXYGEN_INT_SPDIF_IN_DETECT; oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask); spin_unlock_irq(&chip->reg_lock); /* * We don't actually know that any channel status bits have * changed, but let's send a notification just to be sure. */ snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &chip->controls[CONTROL_SPDIF_INPUT_BITS]->id); } } static void oxygen_gpio_changed(struct work_struct *work) { struct oxygen *chip = container_of(work, struct oxygen, gpio_work); if (chip->model.gpio_changed) chip->model.gpio_changed(chip); } #ifdef CONFIG_PROC_FS static void oxygen_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct oxygen *chip = entry->private_data; int i, j; snd_iprintf(buffer, "CMI8788\n\n"); for (i = 0; i < OXYGEN_IO_SIZE; i += 0x10) { snd_iprintf(buffer, "%02x:", i); for (j = 0; j < 0x10; ++j) snd_iprintf(buffer, " %02x", oxygen_read8(chip, i + j)); snd_iprintf(buffer, "\n"); } if (mutex_lock_interruptible(&chip->mutex) < 0) return; if (chip->has_ac97_0) { snd_iprintf(buffer, "\nAC97\n"); for (i = 0; i < 0x80; i += 0x10) { snd_iprintf(buffer, "%02x:", i); for (j = 0; j < 0x10; j += 2) snd_iprintf(buffer, " %04x", oxygen_read_ac97(chip, 0, i + j)); snd_iprintf(buffer, "\n"); } } if (chip->has_ac97_1) { snd_iprintf(buffer, "\nAC97 2\n"); for (i = 0; i < 0x80; i += 0x10) { snd_iprintf(buffer, "%02x:", i); for (j = 0; j < 0x10; j += 2) snd_iprintf(buffer, " %04x", oxygen_read_ac97(chip, 1, i + j)); snd_iprintf(buffer, "\n"); } } mutex_unlock(&chip->mutex); } static void oxygen_proc_init(struct oxygen *chip) { struct snd_info_entry *entry; if (!snd_card_proc_new(chip->card, "cmi8788", &entry)) snd_info_set_text_ops(entry, chip, oxygen_proc_read); } #else #define oxygen_proc_init(chip) #endif static const struct pci_device_id * oxygen_search_pci_id(struct oxygen *chip, const struct pci_device_id ids[]) { u16 subdevice; /* * Make sure the EEPROM pins are available, i.e., not used for SPI. * (This function is called before we initialize or use SPI.) */ oxygen_clear_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_ENABLE_SPI_4_5); /* * Read the subsystem device ID directly from the EEPROM, because the * chip didn't if the first EEPROM word was overwritten. */ subdevice = oxygen_read_eeprom(chip, 2); /* * We use only the subsystem device ID for searching because it is * unique even without the subsystem vendor ID, which may have been * overwritten in the EEPROM. */ for (; ids->vendor; ++ids) if (ids->subdevice == subdevice && ids->driver_data != BROKEN_EEPROM_DRIVER_DATA) return ids; return NULL; } static void oxygen_restore_eeprom(struct oxygen *chip, const struct pci_device_id *id) { if (oxygen_read_eeprom(chip, 0) != OXYGEN_EEPROM_ID) { /* * This function gets called only when a known card model has * been detected, i.e., we know there is a valid subsystem * product ID at index 2 in the EEPROM. Therefore, we have * been able to deduce the correct subsystem vendor ID, and * this is enough information to restore the original EEPROM * contents. */ oxygen_write_eeprom(chip, 1, id->subvendor); oxygen_write_eeprom(chip, 0, OXYGEN_EEPROM_ID); oxygen_set_bits8(chip, OXYGEN_MISC, OXYGEN_MISC_WRITE_PCI_SUBID); pci_write_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, id->subvendor); pci_write_config_word(chip->pci, PCI_SUBSYSTEM_ID, id->subdevice); oxygen_clear_bits8(chip, OXYGEN_MISC, OXYGEN_MISC_WRITE_PCI_SUBID); snd_printk(KERN_INFO "EEPROM ID restored\n"); } } static void oxygen_init(struct oxygen *chip) { unsigned int i; chip->dac_routing = 1; for (i = 0; i < 8; ++i) chip->dac_volume[i] = chip->model.dac_volume_min; chip->dac_mute = 1; chip->spdif_playback_enable = 1; chip->spdif_bits = OXYGEN_SPDIF_C | OXYGEN_SPDIF_ORIGINAL | (IEC958_AES1_CON_PCM_CODER << OXYGEN_SPDIF_CATEGORY_SHIFT); chip->spdif_pcm_bits = chip->spdif_bits; if (oxygen_read8(chip, OXYGEN_REVISION) & OXYGEN_REVISION_2) chip->revision = 2; else chip->revision = 1; if (chip->revision == 1) oxygen_set_bits8(chip, OXYGEN_MISC, OXYGEN_MISC_PCI_MEM_W_1_CLOCK); i = oxygen_read16(chip, OXYGEN_AC97_CONTROL); chip->has_ac97_0 = (i & OXYGEN_AC97_CODEC_0) != 0; chip->has_ac97_1 = (i & OXYGEN_AC97_CODEC_1) != 0; oxygen_write8_masked(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC | chip->model.function_flags, OXYGEN_FUNCTION_RESET_CODEC | OXYGEN_FUNCTION_2WIRE_SPI_MASK | OXYGEN_FUNCTION_ENABLE_SPI_4_5); oxygen_write8(chip, OXYGEN_DMA_STATUS, 0); oxygen_write8(chip, OXYGEN_DMA_PAUSE, 0); oxygen_write8(chip, OXYGEN_PLAY_CHANNELS, OXYGEN_PLAY_CHANNELS_2 | OXYGEN_DMA_A_BURST_8 | OXYGEN_DMA_MULTICH_BURST_8); oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0); oxygen_write8_masked(chip, OXYGEN_MISC, chip->model.misc_flags, OXYGEN_MISC_WRITE_PCI_SUBID | OXYGEN_MISC_REC_C_FROM_SPDIF | OXYGEN_MISC_REC_B_FROM_AC97 | OXYGEN_MISC_REC_A_FROM_MULTICH | OXYGEN_MISC_MIDI); oxygen_write8(chip, OXYGEN_REC_FORMAT, (OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_A_SHIFT) | (OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_B_SHIFT) | (OXYGEN_FORMAT_16 << OXYGEN_REC_FORMAT_C_SHIFT)); oxygen_write8(chip, OXYGEN_PLAY_FORMAT, (OXYGEN_FORMAT_16 << OXYGEN_SPDIF_FORMAT_SHIFT) | (OXYGEN_FORMAT_16 << OXYGEN_MULTICH_FORMAT_SHIFT)); oxygen_write8(chip, OXYGEN_REC_CHANNELS, OXYGEN_REC_CHANNELS_2_2_2); oxygen_write16(chip, OXYGEN_I2S_MULTICH_FORMAT, OXYGEN_RATE_48000 | chip->model.dac_i2s_format | OXYGEN_I2S_MCLK_256 | OXYGEN_I2S_BITS_16 | OXYGEN_I2S_MASTER | OXYGEN_I2S_BCLK_64); if (chip->model.device_config & CAPTURE_0_FROM_I2S_1) oxygen_write16(chip, OXYGEN_I2S_A_FORMAT, OXYGEN_RATE_48000 | chip->model.adc_i2s_format | OXYGEN_I2S_MCLK_256 | OXYGEN_I2S_BITS_16 | OXYGEN_I2S_MASTER | OXYGEN_I2S_BCLK_64); else oxygen_write16(chip, OXYGEN_I2S_A_FORMAT, OXYGEN_I2S_MASTER | OXYGEN_I2S_MUTE_MCLK); if (chip->model.device_config & (CAPTURE_0_FROM_I2S_2 | CAPTURE_2_FROM_I2S_2)) oxygen_write16(chip, OXYGEN_I2S_B_FORMAT, OXYGEN_RATE_48000 | chip->model.adc_i2s_format | OXYGEN_I2S_MCLK_256 | OXYGEN_I2S_BITS_16 | OXYGEN_I2S_MASTER | OXYGEN_I2S_BCLK_64); else oxygen_write16(chip, OXYGEN_I2S_B_FORMAT, OXYGEN_I2S_MASTER | OXYGEN_I2S_MUTE_MCLK); oxygen_write16(chip, OXYGEN_I2S_C_FORMAT, OXYGEN_I2S_MASTER | OXYGEN_I2S_MUTE_MCLK); oxygen_clear_bits32(chip, OXYGEN_SPDIF_CONTROL, OXYGEN_SPDIF_OUT_ENABLE | OXYGEN_SPDIF_LOOPBACK); if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) oxygen_write32_masked(chip, OXYGEN_SPDIF_CONTROL, OXYGEN_SPDIF_SENSE_MASK | OXYGEN_SPDIF_LOCK_MASK | OXYGEN_SPDIF_RATE_MASK | OXYGEN_SPDIF_LOCK_PAR | OXYGEN_SPDIF_IN_CLOCK_96, OXYGEN_SPDIF_SENSE_MASK | OXYGEN_SPDIF_LOCK_MASK | OXYGEN_SPDIF_RATE_MASK | OXYGEN_SPDIF_SENSE_PAR | OXYGEN_SPDIF_LOCK_PAR | OXYGEN_SPDIF_IN_CLOCK_MASK); else oxygen_clear_bits32(chip, OXYGEN_SPDIF_CONTROL, OXYGEN_SPDIF_SENSE_MASK | OXYGEN_SPDIF_LOCK_MASK | OXYGEN_SPDIF_RATE_MASK); oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS, chip->spdif_bits); oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS, OXYGEN_2WIRE_LENGTH_8 | OXYGEN_2WIRE_INTERRUPT_MASK | OXYGEN_2WIRE_SPEED_STANDARD); oxygen_clear_bits8(chip, OXYGEN_MPU401_CONTROL, OXYGEN_MPU401_LOOPBACK); oxygen_write8(chip, OXYGEN_GPI_INTERRUPT_MASK, 0); oxygen_write16(chip, OXYGEN_GPIO_INTERRUPT_MASK, 0); oxygen_write16(chip, OXYGEN_PLAY_ROUTING, OXYGEN_PLAY_MULTICH_I2S_DAC | OXYGEN_PLAY_SPDIF_SPDIF | (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT)); oxygen_write8(chip, OXYGEN_REC_ROUTING, OXYGEN_REC_A_ROUTE_I2S_ADC_1 | OXYGEN_REC_B_ROUTE_I2S_ADC_2 | OXYGEN_REC_C_ROUTE_SPDIF); oxygen_write8(chip, OXYGEN_ADC_MONITOR, 0); oxygen_write8(chip, OXYGEN_A_MONITOR_ROUTING, (0 << OXYGEN_A_MONITOR_ROUTE_0_SHIFT) | (1 << OXYGEN_A_MONITOR_ROUTE_1_SHIFT) | (2 << OXYGEN_A_MONITOR_ROUTE_2_SHIFT) | (3 << OXYGEN_A_MONITOR_ROUTE_3_SHIFT)); if (chip->has_ac97_0 | chip->has_ac97_1) oxygen_write8(chip, OXYGEN_AC97_INTERRUPT_MASK, OXYGEN_AC97_INT_READ_DONE | OXYGEN_AC97_INT_WRITE_DONE); else oxygen_write8(chip, OXYGEN_AC97_INTERRUPT_MASK, 0); oxygen_write32(chip, OXYGEN_AC97_OUT_CONFIG, 0); oxygen_write32(chip, OXYGEN_AC97_IN_CONFIG, 0); if (!(chip->has_ac97_0 | chip->has_ac97_1)) oxygen_set_bits16(chip, OXYGEN_AC97_CONTROL, OXYGEN_AC97_CLOCK_DISABLE); if (!chip->has_ac97_0) { oxygen_set_bits16(chip, OXYGEN_AC97_CONTROL, OXYGEN_AC97_NO_CODEC_0); } else { oxygen_write_ac97(chip, 0, AC97_RESET, 0); msleep(1); oxygen_ac97_set_bits(chip, 0, CM9780_GPIO_SETUP, CM9780_GPIO0IO | CM9780_GPIO1IO); oxygen_ac97_set_bits(chip, 0, CM9780_MIXER, CM9780_BSTSEL | CM9780_STRO_MIC | CM9780_MIX2FR | CM9780_PCBSW); oxygen_ac97_set_bits(chip, 0, CM9780_JACK, CM9780_RSOE | CM9780_CBOE | CM9780_SSOE | CM9780_FROE | CM9780_MIC2MIC | CM9780_LI2LI); oxygen_write_ac97(chip, 0, AC97_MASTER, 0x0000); oxygen_write_ac97(chip, 0, AC97_PC_BEEP, 0x8000); oxygen_write_ac97(chip, 0, AC97_MIC, 0x8808); oxygen_write_ac97(chip, 0, AC97_LINE, 0x0808); oxygen_write_ac97(chip, 0, AC97_CD, 0x8808); oxygen_write_ac97(chip, 0, AC97_VIDEO, 0x8808); oxygen_write_ac97(chip, 0, AC97_AUX, 0x8808); oxygen_write_ac97(chip, 0, AC97_REC_GAIN, 0x8000); oxygen_write_ac97(chip, 0, AC97_CENTER_LFE_MASTER, 0x8080); oxygen_write_ac97(chip, 0, AC97_SURROUND_MASTER, 0x8080); oxygen_ac97_clear_bits(chip, 0, CM9780_GPIO_STATUS, CM9780_GPO0); /* power down unused ADCs and DACs */ oxygen_ac97_set_bits(chip, 0, AC97_POWERDOWN, AC97_PD_PR0 | AC97_PD_PR1); oxygen_ac97_set_bits(chip, 0, AC97_EXTENDED_STATUS, AC97_EA_PRI | AC97_EA_PRJ | AC97_EA_PRK); } if (chip->has_ac97_1) { oxygen_set_bits32(chip, OXYGEN_AC97_OUT_CONFIG, OXYGEN_AC97_CODEC1_SLOT3 | OXYGEN_AC97_CODEC1_SLOT4); oxygen_write_ac97(chip, 1, AC97_RESET, 0); msleep(1); oxygen_write_ac97(chip, 1, AC97_MASTER, 0x0000); oxygen_write_ac97(chip, 1, AC97_HEADPHONE, 0x8000); oxygen_write_ac97(chip, 1, AC97_PC_BEEP, 0x8000); oxygen_write_ac97(chip, 1, AC97_MIC, 0x8808); oxygen_write_ac97(chip, 1, AC97_LINE, 0x8808); oxygen_write_ac97(chip, 1, AC97_CD, 0x8808); oxygen_write_ac97(chip, 1, AC97_VIDEO, 0x8808); oxygen_write_ac97(chip, 1, AC97_AUX, 0x8808); oxygen_write_ac97(chip, 1, AC97_PCM, 0x0808); oxygen_write_ac97(chip, 1, AC97_REC_SEL, 0x0000); oxygen_write_ac97(chip, 1, AC97_REC_GAIN, 0x0000); oxygen_ac97_set_bits(chip, 1, 0x6a, 0x0040); } } static void oxygen_card_free(struct snd_card *card) { struct oxygen *chip = card->private_data; spin_lock_irq(&chip->reg_lock); chip->interrupt_mask = 0; chip->pcm_running = 0; oxygen_write16(chip, OXYGEN_DMA_STATUS, 0); oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0); spin_unlock_irq(&chip->reg_lock); if (chip->irq >= 0) free_irq(chip->irq, chip); flush_scheduled_work(); chip->model.cleanup(chip); kfree(chip->model_data); mutex_destroy(&chip->mutex); pci_release_regions(chip->pci); pci_disable_device(chip->pci); } int oxygen_pci_probe(struct pci_dev *pci, int index, char *id, struct module *owner, const struct pci_device_id *ids, int (*get_model)(struct oxygen *chip, const struct pci_device_id *id ) ) { struct snd_card *card; struct oxygen *chip; const struct pci_device_id *pci_id; int err; err = snd_card_create(index, id, owner, sizeof(*chip), &card); if (err < 0) return err; chip = card->private_data; chip->card = card; chip->pci = pci; chip->irq = -1; spin_lock_init(&chip->reg_lock); mutex_init(&chip->mutex); INIT_WORK(&chip->spdif_input_bits_work, oxygen_spdif_input_bits_changed); INIT_WORK(&chip->gpio_work, oxygen_gpio_changed); init_waitqueue_head(&chip->ac97_waitqueue); err = pci_enable_device(pci); if (err < 0) goto err_card; err = pci_request_regions(pci, DRIVER); if (err < 0) { snd_printk(KERN_ERR "cannot reserve PCI resources\n"); goto err_pci_enable; } if (!(pci_resource_flags(pci, 0) & IORESOURCE_IO) || pci_resource_len(pci, 0) < OXYGEN_IO_SIZE) { snd_printk(KERN_ERR "invalid PCI I/O range\n"); err = -ENXIO; goto err_pci_regions; } chip->addr = pci_resource_start(pci, 0); pci_id = oxygen_search_pci_id(chip, ids); if (!pci_id) { err = -ENODEV; goto err_pci_regions; } oxygen_restore_eeprom(chip, pci_id); err = get_model(chip, pci_id); if (err < 0) goto err_pci_regions; if (chip->model.model_data_size) { chip->model_data = kzalloc(chip->model.model_data_size, GFP_KERNEL); if (!chip->model_data) { err = -ENOMEM; goto err_pci_regions; } } pci_set_master(pci); snd_card_set_dev(card, &pci->dev); card->private_free = oxygen_card_free; oxygen_init(chip); chip->model.init(chip); err = request_irq(pci->irq, oxygen_interrupt, IRQF_SHARED, DRIVER, chip); if (err < 0) { snd_printk(KERN_ERR "cannot grab interrupt %d\n", pci->irq); goto err_card; } chip->irq = pci->irq; strcpy(card->driver, chip->model.chip); strcpy(card->shortname, chip->model.shortname); sprintf(card->longname, "%s (rev %u) at %#lx, irq %i", chip->model.longname, chip->revision, chip->addr, chip->irq); strcpy(card->mixername, chip->model.chip); snd_component_add(card, chip->model.chip); err = oxygen_pcm_init(chip); if (err < 0) goto err_card; err = oxygen_mixer_init(chip); if (err < 0) goto err_card; if (chip->model.device_config & (MIDI_OUTPUT | MIDI_INPUT)) { unsigned int info_flags = MPU401_INFO_INTEGRATED; if (chip->model.device_config & MIDI_OUTPUT) info_flags |= MPU401_INFO_OUTPUT; if (chip->model.device_config & MIDI_INPUT) info_flags |= MPU401_INFO_INPUT; err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, chip->addr + OXYGEN_MPU401, info_flags, 0, 0, &chip->midi); if (err < 0) goto err_card; } oxygen_proc_init(chip); spin_lock_irq(&chip->reg_lock); if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) chip->interrupt_mask |= OXYGEN_INT_SPDIF_IN_DETECT; if (chip->has_ac97_0 | chip->has_ac97_1) chip->interrupt_mask |= OXYGEN_INT_AC97; oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask); spin_unlock_irq(&chip->reg_lock); err = snd_card_register(card); if (err < 0) goto err_card; pci_set_drvdata(pci, card); return 0; err_pci_regions: pci_release_regions(pci); err_pci_enable: pci_disable_device(pci); err_card: snd_card_free(card); return err; } EXPORT_SYMBOL(oxygen_pci_probe); void oxygen_pci_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } EXPORT_SYMBOL(oxygen_pci_remove); #ifdef CONFIG_PM int oxygen_pci_suspend(struct pci_dev *pci, pm_message_t state) { struct snd_card *card = pci_get_drvdata(pci); struct oxygen *chip = card->private_data; unsigned int i, saved_interrupt_mask; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); for (i = 0; i < PCM_COUNT; ++i) if (chip->streams[i]) snd_pcm_suspend(chip->streams[i]); if (chip->model.suspend) chip->model.suspend(chip); spin_lock_irq(&chip->reg_lock); saved_interrupt_mask = chip->interrupt_mask; chip->interrupt_mask = 0; oxygen_write16(chip, OXYGEN_DMA_STATUS, 0); oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0); spin_unlock_irq(&chip->reg_lock); synchronize_irq(chip->irq); flush_scheduled_work(); chip->interrupt_mask = saved_interrupt_mask; pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, pci_choose_state(pci, state)); return 0; } EXPORT_SYMBOL(oxygen_pci_suspend); static const u32 registers_to_restore[OXYGEN_IO_SIZE / 32] = { 0xffffffff, 0x00ff077f, 0x00011d08, 0x007f00ff, 0x00300000, 0x00000fe4, 0x0ff7001f, 0x00000000 }; static const u32 ac97_registers_to_restore[2][0x40 / 32] = { { 0x18284fa2, 0x03060000 }, { 0x00007fa6, 0x00200000 } }; static inline int is_bit_set(const u32 *bitmap, unsigned int bit) { return bitmap[bit / 32] & (1 << (bit & 31)); } static void oxygen_restore_ac97(struct oxygen *chip, unsigned int codec) { unsigned int i; oxygen_write_ac97(chip, codec, AC97_RESET, 0); msleep(1); for (i = 1; i < 0x40; ++i) if (is_bit_set(ac97_registers_to_restore[codec], i)) oxygen_write_ac97(chip, codec, i * 2, chip->saved_ac97_registers[codec][i]); } int oxygen_pci_resume(struct pci_dev *pci) { struct snd_card *card = pci_get_drvdata(pci); struct oxygen *chip = card->private_data; unsigned int i; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { snd_printk(KERN_ERR "cannot reenable device"); snd_card_disconnect(card); return -EIO; } pci_set_master(pci); oxygen_write16(chip, OXYGEN_DMA_STATUS, 0); oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, 0); for (i = 0; i < OXYGEN_IO_SIZE; ++i) if (is_bit_set(registers_to_restore, i)) oxygen_write8(chip, i, chip->saved_registers._8[i]); if (chip->has_ac97_0) oxygen_restore_ac97(chip, 0); if (chip->has_ac97_1) oxygen_restore_ac97(chip, 1); if (chip->model.resume) chip->model.resume(chip); oxygen_write16(chip, OXYGEN_INTERRUPT_MASK, chip->interrupt_mask); snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } EXPORT_SYMBOL(oxygen_pci_resume); #endif /* CONFIG_PM */