/* * C-Media CMI8788 driver - mixer code * * Copyright (c) Clemens Ladisch * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include "oxygen.h" #include "cm9780.h" static int dac_volume_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { struct oxygen *chip = ctl->private_data; info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = chip->model->dac_channels; info->value.integer.min = 0; info->value.integer.max = 0xff; return 0; } static int dac_volume_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int i; mutex_lock(&chip->mutex); for (i = 0; i < chip->model->dac_channels; ++i) value->value.integer.value[i] = chip->dac_volume[i]; mutex_unlock(&chip->mutex); return 0; } static int dac_volume_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int i; int changed; changed = 0; mutex_lock(&chip->mutex); for (i = 0; i < chip->model->dac_channels; ++i) if (value->value.integer.value[i] != chip->dac_volume[i]) { chip->dac_volume[i] = value->value.integer.value[i]; changed = 1; } if (changed) chip->model->update_dac_volume(chip); mutex_unlock(&chip->mutex); return changed; } static int dac_mute_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; mutex_lock(&chip->mutex); value->value.integer.value[0] = !chip->dac_mute; mutex_unlock(&chip->mutex); return 0; } static int dac_mute_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; int changed; mutex_lock(&chip->mutex); changed = !value->value.integer.value[0] != chip->dac_mute; if (changed) { chip->dac_mute = !value->value.integer.value[0]; chip->model->update_dac_mute(chip); } mutex_unlock(&chip->mutex); return changed; } static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { static const char *const names[3] = { "Front", "Front+Surround", "Front+Surround+Back" }; struct oxygen *chip = ctl->private_data; unsigned int count = 2 + (chip->model->dac_channels == 8); info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; info->count = 1; info->value.enumerated.items = count; if (info->value.enumerated.item >= count) info->value.enumerated.item = count - 1; strcpy(info->value.enumerated.name, names[info->value.enumerated.item]); return 0; } static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; mutex_lock(&chip->mutex); value->value.enumerated.item[0] = chip->dac_routing; mutex_unlock(&chip->mutex); return 0; } void oxygen_update_dac_routing(struct oxygen *chip) { /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */ static const unsigned int reg_values[3] = { /* stereo -> front */ (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT), /* stereo -> front+surround */ (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT), /* stereo -> front+surround+back */ (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT), }; u8 channels; unsigned int reg_value; channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) & OXYGEN_PLAY_CHANNELS_MASK; if (channels == OXYGEN_PLAY_CHANNELS_2) reg_value = reg_values[chip->dac_routing]; else if (channels == OXYGEN_PLAY_CHANNELS_8) /* in 7.1 mode, "rear" channels go to the "back" jack */ reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT); else reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT); oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value, OXYGEN_PLAY_DAC0_SOURCE_MASK | OXYGEN_PLAY_DAC1_SOURCE_MASK | OXYGEN_PLAY_DAC2_SOURCE_MASK | OXYGEN_PLAY_DAC3_SOURCE_MASK); } static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int count = 2 + (chip->model->dac_channels == 8); int changed; mutex_lock(&chip->mutex); changed = value->value.enumerated.item[0] != chip->dac_routing; if (changed) { chip->dac_routing = min(value->value.enumerated.item[0], count - 1); spin_lock_irq(&chip->reg_lock); oxygen_update_dac_routing(chip); spin_unlock_irq(&chip->reg_lock); } mutex_unlock(&chip->mutex); return changed; } static int spdif_switch_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; mutex_lock(&chip->mutex); value->value.integer.value[0] = chip->spdif_playback_enable; mutex_unlock(&chip->mutex); return 0; } static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate) { switch (oxygen_rate) { case OXYGEN_RATE_32000: return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT; case OXYGEN_RATE_44100: return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT; default: /* OXYGEN_RATE_48000 */ return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT; case OXYGEN_RATE_64000: return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT; case OXYGEN_RATE_88200: return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT; case OXYGEN_RATE_96000: return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT; case OXYGEN_RATE_176400: return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT; case OXYGEN_RATE_192000: return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT; } } void oxygen_update_spdif_source(struct oxygen *chip) { u32 old_control, new_control; u16 old_routing, new_routing; unsigned int oxygen_rate; old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING); if (chip->pcm_active & (1 << PCM_SPDIF)) { new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE; new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK) | OXYGEN_PLAY_SPDIF_SPDIF; oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT) & OXYGEN_I2S_RATE_MASK; /* S/PDIF rate was already set by the caller */ } else if ((chip->pcm_active & (1 << PCM_MULTICH)) && chip->spdif_playback_enable) { new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK) | OXYGEN_PLAY_SPDIF_MULTICH_01; oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT) & OXYGEN_I2S_RATE_MASK; new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) | (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) | OXYGEN_SPDIF_OUT_ENABLE; } else { new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE; new_routing = old_routing; oxygen_rate = OXYGEN_RATE_44100; } if (old_routing != new_routing) { oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control & ~OXYGEN_SPDIF_OUT_ENABLE); oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing); } if (new_control & OXYGEN_SPDIF_OUT_ENABLE) oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS, oxygen_spdif_rate(oxygen_rate) | ((chip->pcm_active & (1 << PCM_SPDIF)) ? chip->spdif_pcm_bits : chip->spdif_bits)); oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control); } static int spdif_switch_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; int changed; mutex_lock(&chip->mutex); changed = value->value.integer.value[0] != chip->spdif_playback_enable; if (changed) { chip->spdif_playback_enable = !!value->value.integer.value[0]; spin_lock_irq(&chip->reg_lock); oxygen_update_spdif_source(chip); spin_unlock_irq(&chip->reg_lock); } mutex_unlock(&chip->mutex); return changed; } static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_IEC958; info->count = 1; return 0; } static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value) { value->value.iec958.status[0] = bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C | OXYGEN_SPDIF_PREEMPHASIS); value->value.iec958.status[1] = /* category and original */ bits >> OXYGEN_SPDIF_CATEGORY_SHIFT; } static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value) { u32 bits; bits = value->value.iec958.status[0] & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C | OXYGEN_SPDIF_PREEMPHASIS); bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT; if (bits & OXYGEN_SPDIF_NONAUDIO) bits |= OXYGEN_SPDIF_V; return bits; } static inline void write_spdif_bits(struct oxygen *chip, u32 bits) { oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits, OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C | OXYGEN_SPDIF_PREEMPHASIS | OXYGEN_SPDIF_CATEGORY_MASK | OXYGEN_SPDIF_ORIGINAL | OXYGEN_SPDIF_V); } static int spdif_default_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; mutex_lock(&chip->mutex); oxygen_to_iec958(chip->spdif_bits, value); mutex_unlock(&chip->mutex); return 0; } static int spdif_default_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u32 new_bits; int changed; new_bits = iec958_to_oxygen(value); mutex_lock(&chip->mutex); changed = new_bits != chip->spdif_bits; if (changed) { chip->spdif_bits = new_bits; if (!(chip->pcm_active & (1 << PCM_SPDIF))) write_spdif_bits(chip, new_bits); } mutex_unlock(&chip->mutex); return changed; } static int spdif_mask_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { value->value.iec958.status[0] = IEC958_AES0_NONAUDIO | IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS; value->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL; return 0; } static int spdif_pcm_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; mutex_lock(&chip->mutex); oxygen_to_iec958(chip->spdif_pcm_bits, value); mutex_unlock(&chip->mutex); return 0; } static int spdif_pcm_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u32 new_bits; int changed; new_bits = iec958_to_oxygen(value); mutex_lock(&chip->mutex); changed = new_bits != chip->spdif_pcm_bits; if (changed) { chip->spdif_pcm_bits = new_bits; if (chip->pcm_active & (1 << PCM_SPDIF)) write_spdif_bits(chip, new_bits); } mutex_unlock(&chip->mutex); return changed; } static int spdif_input_mask_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { value->value.iec958.status[0] = 0xff; value->value.iec958.status[1] = 0xff; value->value.iec958.status[2] = 0xff; value->value.iec958.status[3] = 0xff; return 0; } static int spdif_input_default_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u32 bits; bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS); value->value.iec958.status[0] = bits; value->value.iec958.status[1] = bits >> 8; value->value.iec958.status[2] = bits >> 16; value->value.iec958.status[3] = bits >> 24; return 0; } static int spdif_loopback_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; value->value.integer.value[0] = !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL) & OXYGEN_SPDIF_LOOPBACK); return 0; } static int spdif_loopback_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u32 oldreg, newreg; int changed; spin_lock_irq(&chip->reg_lock); oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); if (value->value.integer.value[0]) newreg = oldreg | OXYGEN_SPDIF_LOOPBACK; else newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK; changed = newreg != oldreg; if (changed) oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg); spin_unlock_irq(&chip->reg_lock); return changed; } static int monitor_volume_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 1; info->value.integer.min = 0; info->value.integer.max = 1; return 0; } static int monitor_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u8 bit = ctl->private_value; int invert = ctl->private_value & (1 << 8); value->value.integer.value[0] = !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit); return 0; } static int monitor_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u8 bit = ctl->private_value; int invert = ctl->private_value & (1 << 8); u8 oldreg, newreg; int changed; spin_lock_irq(&chip->reg_lock); oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR); if ((!!value->value.integer.value[0] ^ !!invert) != 0) newreg = oldreg | bit; else newreg = oldreg & ~bit; changed = newreg != oldreg; if (changed) oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg); spin_unlock_irq(&chip->reg_lock); return changed; } static int ac97_switch_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int codec = (ctl->private_value >> 24) & 1; unsigned int index = ctl->private_value & 0xff; unsigned int bitnr = (ctl->private_value >> 8) & 0xff; int invert = ctl->private_value & (1 << 16); u16 reg; mutex_lock(&chip->mutex); reg = oxygen_read_ac97(chip, codec, index); mutex_unlock(&chip->mutex); if (!(reg & (1 << bitnr)) ^ !invert) value->value.integer.value[0] = 1; else value->value.integer.value[0] = 0; return 0; } static int ac97_switch_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int codec = (ctl->private_value >> 24) & 1; unsigned int index = ctl->private_value & 0xff; unsigned int bitnr = (ctl->private_value >> 8) & 0xff; int invert = ctl->private_value & (1 << 16); u16 oldreg, newreg; int change; mutex_lock(&chip->mutex); oldreg = oxygen_read_ac97(chip, codec, index); newreg = oldreg; if (!value->value.integer.value[0] ^ !invert) newreg |= 1 << bitnr; else newreg &= ~(1 << bitnr); change = newreg != oldreg; if (change) { oxygen_write_ac97(chip, codec, index, newreg); if (bitnr == 15 && chip->model->ac97_switch_hook) chip->model->ac97_switch_hook(chip, codec, index, newreg & 0x8000); } mutex_unlock(&chip->mutex); return change; } static int ac97_volume_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 2; info->value.integer.min = 0; info->value.integer.max = 0x1f; return 0; } static int ac97_volume_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int codec = (ctl->private_value >> 24) & 1; unsigned int index = ctl->private_value & 0xff; u16 reg; mutex_lock(&chip->mutex); reg = oxygen_read_ac97(chip, codec, index); mutex_unlock(&chip->mutex); value->value.integer.value[0] = 31 - (reg & 0x1f); value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f); return 0; } static int ac97_volume_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; unsigned int codec = (ctl->private_value >> 24) & 1; unsigned int index = ctl->private_value & 0xff; u16 oldreg, newreg; int change; mutex_lock(&chip->mutex); oldreg = oxygen_read_ac97(chip, codec, index); newreg = oldreg; newreg = (newreg & ~0x1f) | (31 - (value->value.integer.value[0] & 0x1f)); newreg = (newreg & ~0x1f00) | ((31 - (value->value.integer.value[0] & 0x1f)) << 8); change = newreg != oldreg; if (change) oxygen_write_ac97(chip, codec, index, newreg); mutex_unlock(&chip->mutex); return change; } static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 2; info->value.integer.min = 0; info->value.integer.max = 7; return 0; } static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u16 reg; mutex_lock(&chip->mutex); reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN); mutex_unlock(&chip->mutex); value->value.integer.value[0] = reg & 7; value->value.integer.value[1] = (reg >> 8) & 7; return 0; } static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u16 oldreg, newreg; int change; mutex_lock(&chip->mutex); oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN); newreg = oldreg & ~0x0707; newreg = newreg | (value->value.integer.value[0] & 7); newreg = newreg | ((value->value.integer.value[0] & 7) << 8); change = newreg != oldreg; if (change) oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg); mutex_unlock(&chip->mutex); return change; } #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = xname, \ .info = snd_ctl_boolean_mono_info, \ .get = ac97_switch_get, \ .put = ac97_switch_put, \ .private_value = ((codec) << 24) | ((invert) << 16) | \ ((bitnr) << 8) | (index), \ } #define AC97_VOLUME(xname, codec, index) { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = xname, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ .info = ac97_volume_info, \ .get = ac97_volume_get, \ .put = ac97_volume_put, \ .tlv = { .p = ac97_db_scale, }, \ .private_value = ((codec) << 24) | (index), \ } static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0); static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0); static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0); static const struct snd_kcontrol_new controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = dac_volume_info, .get = dac_volume_get, .put = dac_volume_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = snd_ctl_boolean_mono_info, .get = dac_mute_get, .put = dac_mute_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Stereo Upmixing", .info = upmix_info, .get = upmix_get, .put = upmix_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH), .info = snd_ctl_boolean_mono_info, .get = spdif_switch_get, .put = spdif_switch_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .device = 1, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = spdif_info, .get = spdif_default_get, .put = spdif_default_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .device = 1, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = spdif_info, .get = spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .device = 1, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, .info = spdif_info, .get = spdif_pcm_get, .put = spdif_pcm_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .device = 1, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = spdif_info, .get = spdif_input_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .device = 1, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = spdif_info, .get = spdif_input_default_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH), .info = snd_ctl_boolean_mono_info, .get = spdif_loopback_get, .put = spdif_loopback_put, }, }; static const struct { unsigned int pcm_dev; struct snd_kcontrol_new controls[2]; } monitor_controls[] = { { .pcm_dev = CAPTURE_0_FROM_I2S_1, .controls = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Input Monitor Switch", .info = snd_ctl_boolean_mono_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_A, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Input Monitor Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .info = monitor_volume_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL | (1 << 8), .tlv = { .p = monitor_db_scale, }, }, }, }, { .pcm_dev = CAPTURE_0_FROM_I2S_2, .controls = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Input Monitor Switch", .info = snd_ctl_boolean_mono_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_B, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Input Monitor Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .info = monitor_volume_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL | (1 << 8), .tlv = { .p = monitor_db_scale, }, }, }, }, { .pcm_dev = CAPTURE_2_FROM_I2S_2, .controls = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Input Monitor Switch", .index = 1, .info = snd_ctl_boolean_mono_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_B, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Input Monitor Volume", .index = 1, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .info = monitor_volume_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL | (1 << 8), .tlv = { .p = monitor_db_scale, }, }, }, }, { .pcm_dev = CAPTURE_1_FROM_SPDIF, .controls = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Input Monitor Switch", .info = snd_ctl_boolean_mono_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_C, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Input Monitor Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .info = monitor_volume_info, .get = monitor_get, .put = monitor_put, .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL | (1 << 8), .tlv = { .p = monitor_db_scale, }, }, }, }, }; static const struct snd_kcontrol_new ac97_controls[] = { AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC), AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1), AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0), AC97_VOLUME("Line Capture Volume", 0, AC97_LINE), AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1), AC97_VOLUME("CD Capture Volume", 0, AC97_CD), AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1), AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX), AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1), }; static const struct snd_kcontrol_new ac97_fp_controls[] = { AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE), AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Front Panel Capture Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .info = ac97_fp_rec_volume_info, .get = ac97_fp_rec_volume_get, .put = ac97_fp_rec_volume_put, .tlv = { .p = ac97_rec_db_scale, }, }, AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1), }; static void oxygen_any_ctl_free(struct snd_kcontrol *ctl) { struct oxygen *chip = ctl->private_data; unsigned int i; /* I'm too lazy to write a function for each control :-) */ for (i = 0; i < ARRAY_SIZE(chip->controls); ++i) chip->controls[i] = NULL; } static int add_controls(struct oxygen *chip, const struct snd_kcontrol_new controls[], unsigned int count) { static const char *const known_ctl_names[CONTROL_COUNT] = { [CONTROL_SPDIF_PCM] = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), [CONTROL_SPDIF_INPUT_BITS] = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch", [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch", [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch", [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch", }; unsigned int i, j; struct snd_kcontrol_new template; struct snd_kcontrol *ctl; int err; for (i = 0; i < count; ++i) { template = controls[i]; err = chip->model->control_filter(&template); if (err < 0) return err; if (err == 1) continue; ctl = snd_ctl_new1(&template, chip); if (!ctl) return -ENOMEM; err = snd_ctl_add(chip->card, ctl); if (err < 0) return err; for (j = 0; j < CONTROL_COUNT; ++j) if (!strcmp(ctl->id.name, known_ctl_names[j])) { chip->controls[j] = ctl; ctl->private_free = oxygen_any_ctl_free; } } return 0; } int oxygen_mixer_init(struct oxygen *chip) { unsigned int i; int err; err = add_controls(chip, controls, ARRAY_SIZE(controls)); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) { if (!(chip->model->pcm_dev_cfg & monitor_controls[i].pcm_dev)) continue; err = add_controls(chip, monitor_controls[i].controls, ARRAY_SIZE(monitor_controls[i].controls)); if (err < 0) return err; } if (chip->has_ac97_0) { err = add_controls(chip, ac97_controls, ARRAY_SIZE(ac97_controls)); if (err < 0) return err; } if (chip->has_ac97_1) { err = add_controls(chip, ac97_fp_controls, ARRAY_SIZE(ac97_fp_controls)); if (err < 0) return err; } return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0; }